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The experimental data of Takahashi et al. �Physica D 43, 318 �1990��, on the response of squid giant axons
stimulated by periodic sequence of short current pulses is interpreted within the Hodgkin-Huxley model. The
minimum of the firing rate as a function of the stimulus amplitude I0 in the high-frequency regime is due to the
multimodal transition. Below this singular point only odd multiples of the driving period remain and the
system is sensitive to noise. The coefficient of variation has a maximum and the firing rate has a minimum as
a function of the noise intensity, which is an indication of the stochastic coherence antiresonance. The model
calculations reproduce the frequency of occurrence of the most common modes in the vicinity of the transition.
A linear relation of output frequency vs I0 above the transition is also confirmed.
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The Hodgkin-Huxley �HH� model �1� is a prototypical
resonant neuron with the main resonant frequency typically
of order 40–60 Hz. Its output interspike intervals �ISI� can be
classified in terms of integer multiples of the driving period.
The multimodality is revealed when the HH neuron is stimu-
lated by noisy inputs, such as additive noise �2,3�, random
synaptic inputs �2,4,5�, or channel noise �6�. Such ISI histo-
grams are encountered frequently in periodically forced sen-
sory neurons. An explanation in terms of a two-state system
with noise was put forward by Longtin et al. �7�. The multi-
modal character is manifest also in a deterministic HH model
near excitation threshold �8,9� and in regimes of irregular
response between mode-locked states �9�. It was shown re-
cently that also the parity of ISI plays a significant role �10�.
Even �odd� modes dominate in the vicinity of even �odd�
mode-locked states. The most significant manifestation of
this effect is the multimodal odd-all transition between states
3:1 and 2:1 �10�, where the coefficient of variation �CV� has
a maximum and the firing rate has a minimum. The notation
p :q means q output spikes for every p input current pulse.
Below this singularity only odd multiples of the input period
exist, and above it harmonics of both parities participate in
the response. The transition may be crossed by varying either
the stimulus amplitude or the input period. The minimum of
the firing rate occurs slightly above the transition.

In earlier experiments in giant axons of squid stimulated
periodically by a train of short rectangular current pulses, the
firing rate, defined as the ratio of the output and input fre-
quencies fo / f i, had a well pronounced minimum as a func-
tion of the interval between adjacent pulses �11� or the stimu-
lus amplitude �12�. On careful inspection of results of Ref.
�12� one may notice that even modes were absent below the
minimum. This effect occurred near the excitation threshold,
between states 3:1 and 2:1. Another interesting result was the
continuous relation between the firing rate and the stimulus
amplitude. This set of experimental and theoretical results
deserves a more detailed comparison.

The theory can be tested also by considering a periodic
drive in the presence of noise. Noisy biological systems
�2,5,13–16�, including the HH neuron, are known to exhibit
stochastic resonance. This phenomenon is mainly, although
not exclusively, characterized by a maximum of the signal-
to-noise ratio as a function of the noise intensity. Another

effect associated with the presence of noise is the decrease in
the firing threshold and the coherence resonance �17,18�,
where the minimum variability of the output signal, ex-
pressed by CV in the absence of a deterministic drive, is
achieved at some intermediate noise strength. Recently it
was found experimentally �19,20� and theoretically �21,22�
that small amplitude noise may decrease the firing rate or
even turn it off. The nonlinear system in the vicinity of the
multimodal transition is a natural candidate for finding inter-
esting effects due to noise since the trajectories of different
modes are very close in parameter space. In the following we
compare experimental data to theoretical results for the de-
terministic case and calculate the system’s response to a pe-
riodic drive with additive Gaussian noise.

In the experiment of Takahashi et al. �12� the squid axon
was stimulated by periodic train of rectangular current steps
of width equal to 0.3 ms. Figure 1 shows the experimentally
obtained firing rate as a function of stimulus amplitude
scaled by the minimum current threshold It. On the left side
of the minimum only odd modes were recorded. Even modes
were present at the minimum point, with the 6:1 mode oc-
curring more frequently than the 4:1 component, and 2:1
entirely absent. This is consistent with calculation results
�10�, where even modes disappear before reaching the mul-
timodal transition �which is slightly below the minimum of
the firing rate�, with the low-order modes vanishing first,
beginning with mode 2:1.

FIG. 1. The average firing rate fo / f i as a function of the stimulus
amplitude I from the work of Takahashi et al. �12�. It is the mini-
mum current threshold obtained in the range Ti=2.5 ms to
Ti=6.5 ms. The measurements were carried out at Ti=3.8 ms.
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We try to reproduce this type of dependence using the HH
model with the classic parameter set and rate constants �1�,

C
dV

dt
= − INa − IK − IL + Iapp, �1�

where INa, IK, IL, and Iapp are the sodium, potassium, leak,
and external currents, respectively. C=1 �F /cm2 is the
membrane capacitance. The input current is a periodic set of
rectangular steps of width equal to 0.6 ms and height I0.
Equations are integrated within the fourth-order Runge-Kutta
scheme with a time step of 0.001 ms. The data points are
obtained from runs of 400 s, discarding the initial 4 s. The
dependence of the firing rate on the stimulus amplitude is
shown in Fig. 2, where the input period is Ti=7 ms. The
similarity to experiment is striking. Although the calculated
minimum occurs at almost twice the experimental Ti, the
other time scales such as the refractory period and the time
span of the bifurcation diagram differ by a similar factor. The
entire dynamics of the axon from the study of Takahashi et
al. is significantly faster than that of Hodgkin and Huxley.
This difference of time scales is not unusual. Long time ago
Best �23� noted that the axon used by Hodgkin and Huxley
was of poor quality, and in later studies significantly higher
conductivities were obtained. Paydarfar et al. �19� in their
recent study recorded firing periods in the range between 7
and 16 ms. The overall dynamics of Figs. 1 and 2 agrees very
well, including the location and depth of the local minima.
We verified that the form of Fig. 2 was unchanged for pulse
widths between 0 and 1 ms after dividing the current ampli-
tude by �0

TiI�t�dt.
Figure 3 shows the response diagram in the high-

frequency limit. The dotted line separates the monostable
firing solution from the silent state and bistable areas where
the limit cycle coexists with a fixed-point solution. Bound-
aries of bistability were determined using a continuation
method starting from a region with a single solution.

The experimental local maximum on the plateau
fo / f i=0.4 is due to the state 10 100, where modes 2:1 and
3:1 alternate. The other local maximum at fo / f i=0.429 with
tendency to lock into the �10�2100 state was also reproduced.
Figure 4 shows the relative frequency of participation of the
most common modes on a logarithmic scale. Higher-order
modes appear more frequently near the minimum of the fir-
ing rate. Experimental and calculated ISI histograms are

compared in Table I. The overall agreement is quite remark-
able. Also the calculated evolution of individual modes as a
function of I0 is close to measured values. In experiment the
probability of appearance of mode 4:1 between I0 / It=1.2 and
1.3 remains in the range 0.06–0.08, which agrees well with
Fig. 4 for I0 between 18 and 22 �A /cm2. The published
experimental runs �12� contain 80–100 output spikes for se-
lected data points. On the basis of this data set we can con-
clude that the frequency of participation of the low-order
modes is approximately reproduced in simulations. Above

FIG. 2. The calculated average firing rate at Ti=7 ms without
noise.

FIG. 3. The bifurcation diagram in the Ti-I0 plane, showing the
main mode-locked states in the model without noise. The unmarked
intrusion in the upper left corner is the 5:1 state. The bottom part of
the figure is occupied by the silent state. In the firing part of the
diagram there are two solutions below the dotted line �see, e.g., the
tip of the 3:1 and 4:1 states�. Here, the limit cycle coexists with the
fixed point. The average firing rate is a continuous function of I0 at
the excitation threshold between 4 and 5 ms and between 7.2 and 9
ms. The average firing rate is a continuous function of I0. Full
squares show the location of the minima of the firing rate. The
borders of states below Ti=4.5 ms are shown in an approximate
form. The detailed picture is less regular and somewhat more
complex.

FIG. 4. The relative frequency of occurrence of low-order even
�upper� and odd �lower� modes for the parameter set of Fig. 2.
Numbers 2 ,3 , . . . indicate modes 2:1 ,3 :1 , . . ., respectively. The
vertical line marks the position of the minimum of the firing rate.
Odd modes disappear below approximately I0=17.5 �A /cm2.
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the multimodal transition the experimental firing rate near
the threshold rises linearly with the stimulus amplitude �see
Fig. 5�. The dependence of fo / f i on I0 is well reproduced in
Fig. 6, except in the vicinity of the 2:1 plateau, where an
addition of a small amount of noise would improve the fit.

We now consider the model with a Gaussian white noise:

C
dV

dt
= − INa − IK − IL + Iapp + C��t� , �2�

where ��i�t��=0, ���t���t���=2D��t− t��, and D is expressed
in mV2 /ms. The HH equations are integrated using the
second-order stochastic Runge-Kutta algorithm �24�. The
simulations are again carried out with the time step of 0.001
ms and are run for 400 s, discarding the initial 4 s.

There is a tendency to assume that biological systems,
including neurons, should always be treated as noisy sys-
tems. While the neuron is sensitive to noise, it is not obvious
that single neuron dynamics should always include stochastic
terms. Figure 7 shows the quick disappearance of the
fo / f i=0.4 plateau in Fig. 2 with increasing noise. Comparing
with the experimental data in Fig. 1 we conclude that calcu-
lations reproduce experimental data only for D�10−4. Cer-
tainly more experiments are needed to understand the role of
noise in neurons.

The odd-all transition is preserved under small levels of
noise. Figure 8 shows the relative participation of the lowest
modes for the current amplitude range from Fig. 4. The his-
tograms of higher-order modes near the transition are
smoothed out, but their edges and maxima remain almost
unchanged.

Figure 9 �upper� presents the firing rate as a function of D
for three parameter sets from the 3:1 plateau of Fig. 2. On the
deterministic response diagram in Fig. 3 these points are lo-
cated above the dotted line. For small noise fo / f i drops
quickly below 1/3 over an entire plateau, with the biggest
drop near the edges. This behavior should be contrasted with
the resonant regime where the central part of each plateau
maintains phase locking over much larger range of noise
intensities, and D�1 is needed to lower the firing rate of an
entire plateau below the D=0 value �9�. Another difference
is the direction of frequency changes at the plateau edges. In
the resonant state the frequency below �above� the plateau
midpoint is lowered �increased� �9�. In the antiresonant limit
the entire plateau is unstable to a small noise which slows
down the system considerably.

CV as a function of D has a maximum for the same pa-
rameter set �see lower diagram of Fig. 9�. The increased
variability is associated with increased participation of
higher-order modes and may be called a stochastic coherence
antiresonance.

A maximum of CV was found earlier in a leaky integrate-
and-fire model with an absolute refractory period for suprath-
reshold base current �25�. A small local maximum of CV at
intermediate noise level was also found by Luccioli et al. �5�
in a HH model driven by a dc current, where the neuron was
stimulated by a large number of stochastic inhibitory and
excitatory postsynaptic potentials. It was pointed out that the
stochastic antiresonance may exist in regions of bistability
�22�, when the stable limit cycle coexists with other attrac-

TABLE I. Frequency of occurrence of the six lowest modes at
the minimum of the firing rate. The upper row is based on Fig. 13�e�
from the experimental data of Takahashi et al. �12�. The bottom row
is the result of calculations, assuming Ti=7 ms and
I0=18 �A /cm2 �see Fig. 4�.

Mode

2 3 4 5 6 7

0 0.66 0.04 0.12 0.09 0.04

0.002 0.74 0.07 0.11 0.04 0.02

FIG. 5. The linear relation of the firing rate vs the stimulus
amplitude above the multimodal transition point at Ti=4 ms. These
are experimental results of Takahashi et al. �12�.

FIG. 6. Calculated average firing rate vs stimulus amplitude
above the multimodal transition for three values of Ti. The current
pulse width is 0.6 ms.

FIG. 7. Sensitivity of the fo / f i=0.4 plateau from Fig. 2 to noise.
The location of the minimum of the firing rate remains almost un-
changed up to D	10−2.
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tors. This typically occurs in the vicinity of a bifurcation
when the value of the bifurcation parameter slightly exceeds
the critical value. In the HH model near the multimodal tran-
sition there are many competing limit cycles. Noise enhances
trajectory switching and may even stop the firing entirely. A
decrease in the firing rate and an increase in incoherence may
occur along much of the excitation threshold, where the de-
terministic system is bistable or responds irregularly �9�.

In conclusion, numerical solutions of the deterministic
HH equations show that the minimum of the firing rate ob-
served by Takahashi et al. �12� is due to the multimodal
transition �10�. The statistics of the experimental spike trains
confirm that below the transition only odd modes remain.
Even modes are present at the minimum of fo / f i, in agree-
ment with theoretical calculations �10�. The calculated fre-
quencies of occurrence of the most common modes are close
to experimental values. Also the location of the minimum of
fo / f i in the vicinity of the 3:1 state is consistent with the
simulations. The linear rise of the output frequency as a
function of the stimulus strength above the multimodal tran-
sition was also confirmed. The excitation threshold in the
antiresonant limit is higher by about a factor of 2 compared
to the resonant regime. The rise of threshold for frequencies
of current pulses exceeding the resonant frequency was ob-
served experimentally by Kaplan et al. �26�.

Further support for the significance of the parity of the
modes comes from the experiment of Paydarfar et al. �19�,
who found that the quiescent periods between highly regular
bursts were always equal to even multiples of the resonant
period. An ISI histogram with odd modes was obtained by
Racicot and Longtin �27� in a chaotically forced FitzHugh-

Nagumo �FHN� model. FHN equations are often used as a
substitute for the full HH model. It would therefore be useful
to investigate whether the main features of the odd-all ISI
transition are reproduced in the FHN model with determin-
istic and stochastic drives.

Perturbing the system with noise changes significantly the
f vs I0 dependence, eliminating the local minima. However
the deepest minimum of this curve survives up to D	10−2.
In the regime below the multimodal transition the 3:1 plateau
disappears rapidly for small noise. The firing rate has a mini-
mum and CV has a maximum as a function of the noise
intensity. These predictions are expected to be valid for short
stimuli of different shapes and can be tested experimentally.
The multimodal transition and the accompanying stochastic
antiresonance are important for the understanding of excit-
able systems. The intermediate minimum of the firing rate in
the Hodgkin-Huxley model is due to the competition of
modes of opposite parities. Similar effects may occur in
other dynamical systems with a well-defined resonance.

Computations were performed in the Computer Center of
the Tri-city Academic Computer Network in Gdansk.

FIG. 8. The relative frequency of occurrence of low-order even
�upper� and odd �lower� modes for the parameter set of Fig. 2 and in
the presence of small Gaussian noise, D=0.001.

FIG. 9. The firing rate �upper� and the coefficient of variation
�lower� as functions of the noise intensity at Ti=7 ms. The middle
curve in the upper diagram was obtained for I0=15 �A /cm2. At
D=0 all three curves start in the 3:1 mode. The maximum of the
coefficient of variation as a function of the noise intensity is a
property of the stochastic coherence antiresonance. The maximum
of CV and the minimum of the firing rate occur at different noise
levels. The irregularity of the I0=14 �A /cm2 curve is a conse-
quence of proximity to the excitation threshold.
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