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On the microscale, migration, proliferation and death are crucial in the development, homeostasis and repair
of an organism; on the macroscale, such effects are important in the sustainability of a population in its
environment. Dependent on the relative rates of migration, proliferation and death, spatial heterogeneity may
arise within an initially uniform field; this leads to the formation of spatial correlations and can have a negative
impact upon population growth. Usually, such effects are neglected in modeling studies and simple phenom-
enological descriptions, such as the logistic model, are used to model population growth. In this work we
outline some methods for analyzing exclusion processes which include agent proliferation, death and motility
in two and three spatial dimensions with spatially homogeneous initial conditions. The mean-field description
for these types of processes is of logistic form; we show that, under certain parameter conditions, such systems
may display large deviations from the mean field, and suggest computationally tractable methods to correct the
logistic-type description.
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I. INTRODUCTION

Cell motility, proliferation and death play critical roles in
the development and repair of organisms �1�. In combination,
these cell-level processes can ultimately determine the fate of
cell populations. For example, a reduction in cell motility
can lead to crowding effects and suppressed growth. This
was demonstrated by Barrandon and co-workers �2� who
showed that small colonies of cells undergo exponential
growth, but that this growth becomes linear as the colony
becomes larger and crowding effects become important �Fig.
1�. Addition of epidermal growth factor �EGF� and trans-
forming growth factor � �TGF-�� increased the growth rates
substantially, with colonies becoming 30–50 times larger.
The enhanced growth of the population was attributed to the
ability of these chemicals to increase the rate of cell migra-
tion. This demonstrates that the net growth of a cell popula-
tion is determined by a complicated interaction between cell
motility and cell proliferation owing to cell-cell contact and
cell crowding effects. Similarly, several tumor cell lines dis-
play unregulated cell motility �3,4�, and it has been sug-
gested that altering tumor cell movement can disrupt epithe-
lial homeostasis, leading to excessive growth of the
population �5�.

Several models have been proposed to study the com-
bined effects of cell motility, proliferation and death, and we
outline a subset of these here. The Eden model �6� is a
lattice-based model that can be used to investigate how a
single cell can proliferate to form a cluster of cells, and to
determine conditions required for the formation of symmet-
ric or asymmetric clusters. Zygourakis and co-workers �7,8�
consider a lattice gas cellular automata model in three di-
mensions. Their model accounted for cell movements, direc-

tional changes and the pauses in movement associated with
cell-cell collisions. They show that cell migration is gener-
ally sufficient to overcome the adverse effects of contact in-
hibition on growth, and that increased migration speed leads
to enhanced tissue growth. Further, they demonstrate that
population growth rates depend crucially on the initial seed-
ing cell density and location. However, due to the complex
nature of the model they were unable to derive any analytical
results and relied on simulation results alone. Hernández-

*ruth.baker@maths.ox.ac.uk

Time (min)
0 60 120 180

0.01

0.00

0.07

0.06

0.05

0.04

0.03

0.02

In
cr
ea
se

in
co
lo
ny

ra
di
us

(m
m
)

FIG. 1. Experimental data described by Barrandon and Green
�2� illustrate the complicated relationship between cell motility and
cell proliferation. Three colonies are shown after 24 days’ incuba-
tion. The top colony �black circles� was supplied with TGF-�, the
middle colony �open circles� was supplied with EGF and the bottom
colony �open triangles� was supplied with neither chemical. These
chemicals upregulate cell motility and we see that the increase in
motility leads to dramatic population growth over a period of 24
days. Reprinted from �2� with permission from Elsevier.
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García and López �9� considered a “Brownian Bug” model in
which both birth and death are first order events: they discuss
the deviation from mean-field due to the development of
spatial correlations and analyze the formation of spatial pat-
terning. This previous work introduces a simple mechanism
for cell-cell interactions for the birth and death processes,
however, the cell migration mechanism does not include any
cell-cell contact or contact inhibition of migration effects.
Sander and co-workers consider a lattice-based exclusion
process model to study cell migration and proliferation in the
context of epidermal wound healing �10�. Their models rep-
licate traveling-wave-like invasive fronts, the speed of these
fronts matches the mean-field theory for small proliferation
rates. Simpson and co-workers �11–14� have investigated a
number of aspects of exclusion processes, including the con-
nection between cell and population scales, the presence of
multiple species, biased movement rates and different motil-
ity mechanisms and Codling and co-workers provide a thor-
ough review of discrete motility mechanisms applied to cell
biology problems in �16�.

It has been well documented that the relative rates of mi-
gration, proliferation and death control whether spatial het-
erogeneity arises from an initially uniform field. This spatial
heterogeneity is associated with the formation of spatial cor-
relations which can retard population growth. These effects
are typically neglected in modeling studies and simple phe-
nomenological models, such as the logistic growth model or
generalizations thereof, are used to represent population
growth �17,18�. One important reason for the widespread use
of these phenomenological models is that, to the best of our
knowledge, there is no standard approach for incorporating
the effects of correlations into models in a simple and com-
putationally efficient manner. We seek to address this issue
here, using an analytically tractable model of a birth-death-
movement process to determine when these correlations ef-
fects become important, and demonstrate numerical tech-
niques for dealing with them.

We address the issue of incorporating correlation effects
by proposing a simple lattice-based exclusion process model
that includes abstracted descriptions of cell motility, prolif-
eration and death. The focus of this work is to study the

growth of the population on a lattice that is initially popu-
lated such that the agents are distributed uniformly. We are
motivated to study this problem as it is a standard experi-
ment used to determine the growth rates of cells �18�. For
example, Fig. 2 shows two images from an experiment used
to measure the proliferation rate of a population of fibroblast
cells in vitro. Initially, a small number of cells was placed
uniformly into a two-dimensional culture medium �Fig.
2�a��. Cells migrate and proliferate, and the number of cells
present in the system increases with time �Fig. 2�b��. The
experimental growth curve is fitted to a logistic model and an
estimate of the growth rate is obtained �Fig. 2�c��. Similar
experimental approaches have been used to understand how
keratinocyte cells can be applied to burn wounds using aero-
sol delivery techniques �19�. The aerosol delivery results in
an even distribution of cells onto the wound area, subse-
quently the cells migrate and proliferate to help restore nor-
mal tissue. In this work we model these kinds of experiments
on two and three dimensional lattices and consider two dis-
tinct cases. Case 1 involves simulating cell motility and pro-
liferation only. This is appropriate for some cell biology sys-
tems where there is a complete absence of cell death �20,21�.
Case 2 involves simulating cell motility, proliferation and
death which is appropriate for other cell biology systems
where the cell death is thought to be important �22,23�. Our
simulations and analysis show that there are important dif-
ferences between these two cases. In both cases there can be
large deviations from the mean-field approximation and we
show how these mean-field approximations can be corrected.
Several extensions of this work are also outlined.

A. Outline of the problem

We consider an exclusion processes on a fixed, square
lattice of dimension d. Each lattice site may be occupied by
at most one agent and at any time the agent has a transition
rate Pm per unit time of moving to another lattice site, a
proliferation rate Pp per unit time of giving rise to another
agent, and a death rate Pd per unit time. Each of the pro-
cesses of movement and proliferation may only take place if
the target site is unoccupied. In each case we consider a
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FIG. 2. Experiments performed by Tremel et al. �18� were used to estimate the proliferation rate of a population of fibroblast cells in
vitro. Motile and proliferative fibroblast cells were placed uniformly in two-dimensional culture and the number of cells in the system was
observed at regular intervals of time, for example, at �a� 54–60 and �b� 96–102 h after initial seeding. The growth in cell numbers was fitted
to a logistic growth model �c�. Reprinted from �18� with permission from Elsevier.
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square lattice with fixed spacing �x in each direction, such
that grid points are identified by their index, for example,
�i , j ,k� where i� �1,2 , . . . ,Nx� and j� �1,2 , . . . ,Ny� and k
� �1,2 , . . . ,Nz�. Periodic boundary conditions and uniform
random initial conditions are imposed, and we denote the
number of agents on the lattice at time t by Q�t�. Throughout
this report we suppose that both proliferation and movement
can only take place to the z=2d nearest neighbor sites,
though all analysis is extendable to other cases.

B. Aims for this work

As we show, the mean-field field prediction of this model,
for initially uniformly seeded lattices, is that the population
size grows logistically over time, with growth for different
proliferation and death rates, Pp and Pd, comparable on a
time scale t̄= �Pp− Pd�t. However, as Fig. 3 demonstrates,
there may be a large deviation from the predicted mean-field
growth rate as Pp and Pd are increased relative to Pm. Intu-
itively, we see that this comes about because correlations
arise between the occupancy of lattice sites.

In order to tackle this problem, we outline a method for
considering growth of the population with inclusion of the
occupancy correlations between pairs of lattice sites. We be-
gin by constructing expressions for evolution of the one- and
two-point distribution functions describing the occupancy of
lattice sites, where at each level there is dependence on
higher-level distribution functions. We then outline an ap-
proximation that may be used in order to close our system at
second order and compare our results with the mean-field
and individual-based results. Finally, we demonstrate that
our systems of equations may be simplified, rendering them

efficient for numerical computation. We conclude our work
with a short discussion our results and possible avenues for
future research.

II. CORRELATION ANALYSIS

In this section we outline the derivation of equations for
the evolution of agent density, along with the occupancy cor-
relations between lattice sites at all distances. For simplicity
we consider only the following “reactions” between nearest
neighbor lattice sites,

A + 0→
Pp

A + A , �1�

A + 0→
Pm

0 + A , �2�

A→
Pd

0, �3�

where the first “reaction” describes proliferation at rate Pp,
the second movement at rate Pm, and the third death at rate
Pd, all per unit time. All results are easily extendable to
include different types of reaction, for example, where pro-
liferation takes place to sites other than the nearest neighbor,
or the proliferation or movement rates depend on local agent
density �13�. Our aim is to accurately describe the evolution
of the total number of agents over time. In order to realize
this aim, we study the k-point distribution functions �24,25�,
��k� �k=1,2 , . . .�, for agents on the lattice in order to gain
information about the correlations between occupancy of dif-
ferent lattice sites—it is this which leads to deviation from
the traditional logistic model. In essence the ��k� are multi-
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FIG. 3. �Color online� The influence of motility on proliferation patterns in two �left� and three �right� spatial dimensions for different
initial conditions. The top plots show the evolution of density over time with �a� and �b� showing 2D results and �c� and �d� showing 3D
results. The red �gray� lines show the solution of the logistic equation as a function of rescaled time, t̄= �Pp− Pd�t, and the black lines the
discrete results averaged over 40 realizations for Pm=1.0, Pd=0.0 and Pp=0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, again as a function of
rescaled time. Agreement with the logistic equation becomes worse as Pp is increased relative to Pm. The bottom plots show snapshots of the
density at different time points for Pp=0.5 and illustrate the spatial correlations �clusters� that arise: �e� 2D simulation at rescaled time t
=4; �f� 2D simulation at rescaled time t=7; �g� 3D simulation at rescaled time t=2; �g� 3D simulation at rescaled time t=3.
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variate probability distribution functions describing the occu-
pancy of k-tuplets of lattice sites.

We define l, m, and n to be vectors that point to sites on
the lattice, �l� �0,A� to be the lattice variable which de-
scribes the state of lattice site l, and z=2d to be the lattice
constant �the number of “nearest neighbors” of each site�.

For k=1 the distribution function does not depend on l
and we may write

��1��Al� = cA, ��1��0l� = c0 = 1 − cA, �4�

where ci is the �total� density of agents of type i, in this case
either agents of “type” A or empty sites, 0. In other words,
��1��Al� is the probability of finding an agent at site l.

For k=2 the distribution function depends only on �l−m�
due to translational invariance of the lattice. We define the
correlation functions �24,25� to be

F�,���l − m�� =
��2���l,�m�

��1���l���1���m�
=

��2���l,�m�
c�c�

, �5�

for �l−m��0, and F�,��0�=0. Note that, throughout, � de-
notes the state of site l and � the state of site m, and that
F�,���l−m�� implicitly depends on t.

As an asymptotic condition we have independence of the
sites,

lim
�l−m�→�

��2���l,�m� = ��1���l���1���m� , �6�

in other words that the occupancy of distant sites is uncorre-
lated. This gives

lim
�l−m�→�

F�,���l − m�� = 1. �7�

By summing over the lattice states we have

�
�m

��2���l,�m� = ��1���l� , �8�

i.e.,

��2��Al,Am� + ��2��Al,0m� = ��1��Al� , �9�

��2��0l,Am� + ��2��0l,0m� = ��1��0l� . �10�

Using this fact we see that the correlation functions are not
independent,

cA = cA
2FA,A��l − m�� + cA�1 − cA�FA,0��l − m�� , �11�

and

�1 − cA� = cA�1 − cA�F0,A��l − m�� + �1 − cA�2F0,0��l − m�� ,

�12�

give

FA,0��l − m�� =
1 − cAFA,A��l − m��

�1 − cA�
, �13�

and

F0,0��l − m�� =
1 − 2cA + cA

2FA,A��l − m��
�1 − cA�2 . �14�

In order to write down equations describing evolution of
the two-point distributions/correlation functions, we require
the three-point distribution functions, ��3�, which satisfy a
similar conservation rule,

�
�n

��3���l,�m,�n� = ��2���l,�m� . �15�

With one last piece of notation to define the nearest neigh-
bors,

�n,l = 	1 if n and l are nearest neighbors,

0 otherwise,

 �16�

we are in a position to write down expressions for the one-
and two-point distribution functions.

A. One-point distribution functions

For the one-point distribution functions we have

d��1��Al�
dt

= Pm�
n

�n,l

z
���2��0l,An� − ��2��Al,0n��

+ Pp�
n

�n,l

z
��2��0l,An� − Pd��1��Al� ,

which gives, upon simplification,

dcA

dt
= PpcA�1 − cA�F0,A�1� − PdcA

=PpcA�1 − FA,A�1�cA� − PdcA. �17�

It is immediately obvious that, upon the assumption that
neighboring sites are independent, and FA,A�1��1, the sys-
tem reduces to the well-known logistic equation �17�. We
rescale the logistic equation, using

c̄A = �Pp − Pd

Pp

cA ⇒

dc̄A

dt
= rc̄A�1 − c̄A� , �18�

with solution

c̄A�t� =
c̄A�0�ert

1 + c̄A�0��ert − 1�
, �19�

where r= �Pp− Pd� and c̄A�0�= �Pp− Pd� / PpcA�0�. Moreover,
rescaling time using t̄= �Pp− Pd�t allows comparison of dif-
ferent parameter regimes,

c̄A�t̄� =
c̄A�0�et̄

1 + c̄A�0��et̄ − 1�
. �20�

Throughout this work we focus on the case where r= �Pp
− Pd��0 and we see net population growth, though all analy-
sis is the same for r	0 were we expect eventual population
extinction.

We would like to point out that assuming that F�1 is a
standard assumption made by us �12,14� and others �15�.
While it is attractive to make this assumption to arrive at a
simple mean-field model, this assumption is questionable,
and without any analytical or computational tools to check
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the validity of this assumption we have no way of assessing
how good this assumption is. In comparison, here we have
developed computational and analytical tools which allow us
to relax this assumption so that we can quantify the effect of
ignoring correlations.

Figure 3 compares the mean-field logistic approximation
to the results of discrete simulations of the system, for d
=2,3 where each lattice site is initially randomly occupied
with probability 1% and 5%, without agent death. We see
immediately that the logistic description becomes less accu-
rate as Pp is increased relative to Pm and this can be under-
stood intuitively by reasoning that agents disperse further
between “birth” events when Pp is small, allowing more of
the agents space to proliferate. We also see that �i� the logis-
tic description is less accurate with smaller initial seedings as
correlations arise at lower population levels and �ii� the ex-
tent to which the logistic equation approximates the discrete
simulation results increases as d, the number of spatial di-
mensions, increases �simulations in 1D �not shown� also cor-
roborate this result�.

B. Two-point distribution functions

For the two-point distribution functions we have

d��2��Al,Am�
dt

= Pm�
n�l

�n,m

z
���3��Al,0m,An� − ��3��Al,Am,0n��

+ Pm �
n�m

�n,l

z
���3��0l,Am,An� − ��3��Al,Am,0n��

+ Pp��
n�l

�n,m

z
��3��Al,0m,An� + �

n�m

�n,l

z


��3��0l,Am,An�� + Pp
�l,m

z
���2��Al,0m�

+ ��2��0l,Am�� − 2Pd��2��Al,Am� , �21�

where the first term on the last row describes the prolifera-
tion events taking place when l and m are nearest neighbors.
The movement terms simplify using the conservation rule,
for example,

��3��Al,0m,An� + ��3��Al,Am,An� = ��2��Al,An� , �22�

��3��Al,Am,0n� + ��3��Al,Am,An� = ��2��Al,Am� , �23�

while translational invariance of the lattice implies that terms
centered around site l are equivalent to those centered around
site m. This gives

d��2��Al,Am�
dt

= 2Pm�
n�l

�n,m

z
���2��Al,An� − ��2��Al,Am��

− 2Pd��2��Al,Am� + Pp
�l,m

z
���2��Al,0m�

+ ��2��0l,Am�� + 2Pp�
n�l

�n,m

z
��3��Al,0m,An� .

�24�

We now rewrite these equations in terms of the correlation
functions,

��2���l,�m� = c�c�F�,���l − m�� , �25�

gives

d��2���l,�m�
dt

= c�c�

dF�,�

dt
��l − m��

+ �c�

dc�

dt
+ c�

dc�

dt

F�,���m − l�� , �26�

i.e., in our case

d��2��Al,Am�
dt

= cA
2 dFA,A

dt
��l − m�� + 2cA

dcA

dt
FA,A��l − m��

=cA
2 dFA,A

dt
��l − m�� + 2PpcA

2�1 − cAFA,A�1��


FA,A��l − m�� − 2PdcA
2FA,A��l − m�� . �27�

Therefore at each distance, �l−m�, the correlation functions
evolve according to the equation

dFA,A

dt
��l − m�� =

Pm

d
�
n�l

�n,m�FA,A��l − n�� − FA,A��l − m���

− 2Pp�1 − cAFA,A�1��FA,A��l − m��

+
Pp

dcA
�l,m�1 − cAFA,A�1�� +

Pp

d2 �
n�l

�n,m


��3��Al,0m,An� . �28�

We note first that the only places in which we need to close
the system are those where there are terms involving prolif-
eration at rate Pp; the movement terms can all be reduced by
considering the “conservation law.” Second, we note that
death does not explicitly feature in the evolution of the two-
point distribution function as it is a first order “reaction.”
Finally, we recognize the first term, involving Pm, as a dis-
crete lattice Laplacian �24,25�,

F̂A,A��l − m�� = �
n�l

�n,m�FA,A��l − n�� − FA,A��l − m��� .

�29�

C. Closure approximation

The infinite chain of master equations cannot be closed to
obtain a finite system of nonlinear ordinary differential equa-
tions �ODEs� without approximation, and it is the derivation
of a suitable closure approximation that will concern the
analysis here. As we have seen earlier, the only terms that
require closure approximations are those that describe prolif-
eration events and, as such, they are of the form

��3��Al,0m,An� , �30�

where m and n are nearest neighbor sites. We now give a
heuristic derivation of our choice of moment closure ap-
proximation, following �26�. We choose a symmetric, third
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order closure approximation; testing of several, lower order,
closure approximations found in the literature �27–29� gave
less accurate approximations.

Supposing that sites l and m are independent we have

��2��0l,Am� = ��1��0l���1��Am� . �31�

Using Bayes’ Theorem we may write

��3��Al,0m,An� = ��3��0m�Al,An���2��Al,An�

=��2��0m�An���2��Al,An�

=
��2��0m,An�

��1��An�
��2��Al,An� . �32�

We then use Eq. �31� to write

��2��0l,Am�
��1��0l���1��Am�

= 1. �33�

Multiplying both sides of Eq. �32� by Eq. �33� gives the
Kirkwood superposition approximation �KSA�,

��3��0l,Am,An� =
��2��0l,An���2��0l,Am���2��Am,An�

��1��0l���1��Am���1��An�
,

�34�

and hence

��3��0l,Am,An� = cA
2�1 − cA�F0,A��l − m��FA,A��m − n��


F0,A��n − l�� . �35�

The KSA has been rigorously derived and shown to maxi-
mize entropy for some physical applications �26�.

The system of correlation equations then becomes

dFA,A

dt
��l − m�� =

Pm

d
F̂A,A��l − m�� − 2Pp�1 − cAFA,A�1��


FA,A��l − m�� +
Pp

�1 − cA�
�l,m�1 − cAFA,A�1��

+
Pp

d�1 − cA�
�1 − cAFA,A�1��


�1 − cAFA,A��l − m����F̂A,A��l − m��

+ �
n�l

�n,mFA,A��l − m��� . �36�

While these approximations were made under the as-
sumption that, at least, sites l and m are independent, this is
not generally the case. Particularly in this work as we are
describing proliferation events in which agents deposit their
progeny onto nearest neighbor sites. We will use numerical
simulation, for a range of values of Pp and Pd, to test the
validity of this closure approximation, and we detail our re-
sults in the next sections.

III. NUMERICAL METHODS

Here we outline the specific numerical methods used to
solve the systems of closure equations and to generate the

discrete results. In each case we use a regular, square lattice
of size Nx
Ny =100
100 in two dimensions �2D� and Nx

Ny 
Nz=20
20
20 in three dimensions �3D�, giving
approximately the same number of sites in each simulation.
We use periodic boundary conditions, random initial condi-
tions, and average over 40 identically prepared realizations
of our discrete system to compare to our closure approxima-
tion. Without loss of generality, we take Pm=1.0 throughout,
varying both Pp and Pd relative to the motility rate. We
present all results �unless otherwise stated� for a uniform
initial seeding of 5%; extensive numerical simulations show
that results are very similar for other initial seedings, with
the KSA performing better �worse� for greater �smaller� ini-
tial seedings, as illustrated in Fig. 3. All results are plotted as
a function of rescaled time, t̄= �Pp− Pd�t, and rescaled den-
sity, c̄A= �Pp− Pd� / PpcA.

A. Closure approximation

In order to compare the validity of our various closure
approximations, we solve the systems of coupled ODEs aris-
ing from correlation analysis numerically in MATLAB using a
standard fourth-order Runge-Kutta method with a constant
time step of �t=0.01. In 2D/3D things are slightly compli-
cated because of the requirement to include an equation for
each distance �l−m� on the grid—this becomes numerically
expensive for large grids. In practice, we evaluate each dis-
tance up to the threshold �l−m�=5 individually, and then
move to a regular grid using a 2D/3D Laplacian with radial/
spherical symmetry to approximate the lattice Laplacian
terms up to a distance �x��Nx

2+Ny
2+Nz

2� /2 �24,25�. We will
show, in later results, that truncating at r=5 gives an accurate
approximation of the full system of equations. Remembering
to scale the discrete Laplacian we have, in 2D, 2��x�2

= ��r�2 and

�2f�r� =
�2f

�r2 +
1

r

� f

�r
�37�

�
f�ri−1� − 2f�ri� + f�ri+1�

��r�2 +
1

ri

f�ri+1� − f�ri−1�
2�r

, �38�

and in 3D, 3��x�2= ��r�2 and

�2f�r� =
�2f

�r2 +
2

r

� f

�r
�

f�ri−1� − 2f�ri� + f�ri+1�
��r�2

+
1

ri

f�ri+1� − f�ri−1�
�r

. �39�

Initial conditions. A random initial seeding of the lattice
ensures that all sites are uncorrelated and therefore that
FA,A�r�=1, ∀r at t=0.

Boundary conditions. By definition, FA,A�r�→1 as r→�
so we set FA,A�rmax��1 �assuming that our domain is large
enough to accommodate this approximation�.

B. Discrete simulations

We use a modified Gillespie approach �30� to update the
discrete model. The system is updated at discrete time steps
using the following algorithm:
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Step 1. Set t=0 and initialize the lattice by placing agents
at the required lattice sites. Let Q�t� be the number of agents.

Step 2. Calculate the total propensity function a0= �Pm
+ Pp+ Pd�Q�t�. Let �= �1 /a0�log�1 /r1

u� where r1
u is a uniform

random number in the interval �0,1�.
Step 3. Decide whether movement, proliferation or death

occurs, according to the following: calculate R=a0r2
u where

r2
u is a uniform random number in the interval �0,1�.

�i� If R� �0, PmQ�t�� execute a movement event. Choose
an agent at random and a target site for movement from the
nearest neighbors �of which there are four in 2D and six in
3D�. If the target site is empty then move the agent into that
site. If not, abort the movement event.

�ii� If R� �PmQ�t� , �Pm+ Pp�Q�t�� execute a proliferation
event. Choose an agent at random and a target site for pro-
liferation from the nearest neighbors �of which there are four
in 2D and six in 3D�. If the target site is empty then let the
agent proliferate by placing a new agent in the target site and
let Q�t��Q�t�+1, a0�a0+ �Pm+ Pp+ Pd�. If not, abort the
proliferation event.

�iii� If R� ��Pm+ Pp�Q�t� , �Pm+ Pp+ Pd�Q�t�� execute a
death event. Choose an agent at random and remove it from
the system. Let Q�t��Q�t�−1 and a0�a0− �Pm+ Pp+ Pd�.

Step 4. Update time by letting t� t+�.
Step 5. If t� tfinal exit, otherwise return to Step 2.

IV. RESULTS

To get a good understanding of the effects of changing
various parameter values and the number of spatial dimen-
sions, we solved our systems numerically for a wide range of
parameter values, with different initial seedings and in 2D/
3D. We present a representative subset of these results in this
section.

A. Case 1: Without agent death

In the first instance we consider only birth and movement
processes—though we have seen that on the mean-field level

we can incorporate death by a simple rescaling, things are
not so simple with correlations included, and hence we start
by considering the simplest problem. Figure 4 shows results
obtained with a variety of different values of Pp: we compare
results from our discrete simulations, the mean-field �logis-
tic� and KSA results.

The initial results are intuitive and simple to interpret. The
KSA offers clear improvements upon the mean-field approxi-
mation in all cases. For almost all parameter regimes in 2D
and 3D the KSA provides an accurate method for closing the
systems of correlation equations. Although the results of the
KSA are not always completely accurate in 2D they provide
better estimates than the mean-field model. In particular, for
0.1
 Pp / Pm
0.5 the results are encouraging. Results in 3D
are excellent, but suggest that we only need take correlations
into account in a specific range of parameter space, where
motility is highly restricted relative to proliferation.

B. Case 2: Including agent death

We now consider the effect of agent death. In each case
we take Pp� Pd in order to ensure that the mean-field model
predicts a positive growth rate, and a nonzero steady popu-
lation density. Intuitively, we expect the inclusion of death to
decrease correlations between neighboring lattice sites,
thereby making the mean-field model more accurate. Results
from simulations with a range of parameter values are shown
in Fig. 5: we compare results from our discrete simulations
with the mean-field and KSA results.

We see that the inclusion of agent death has somewhat
counterintuitive effects on the accuracy of the KSA. One
might expect death to decrease correlations, opening up gaps
in crowded areas allowing agent movement, so that the
mean-field approximation would fair better. However, this is
not the case, as we see from Fig. 5 where the discrepancies
between the simulation data and the mean-field model are
much larger than comparable results in Fig. 4 without agent
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FIG. 4. �Color online� The influence of motility on proliferation patterns in 2D �top row� and 3D �bottom row�. In each case, the red �dark
gray� line shows the solution of the logistic equation, the black line the averaged discrete results and the green �light gray� line the results
given by the inclusion of correlations. In most cases, the KSA results �green/light gray� are visually indistinguishable from the simulation
results �black�.
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death. While the KSA results in 2D are encouraging, particu-
larly for proliferation rates up to approximately Pp=0.5, in
3D they are more so, with excellent agreement observed over
all parameter regimes explored.

It should be noted that the most remarkable effect of in-
cluding agent death is the deviation of the steady state popu-
lation density from its predicted mean-field value: for ex-
ample, we see up to a 10–20 % decrease in steady state
population density when Pd= Pp /2. The KSA system cor-
rectly predicts this result; inclusion of the KSA is vital in
order that these effects are properly captured. While one may
have argued from initial results that inclusion of the correla-
tions is not necessary in 3D, this deviation demonstrates why
this is not the case. Intuitively we can understand this effect
by reasoning that correlations impact only on proliferation
rates and not on death rates because proliferation rates are
aborted increasingly often as site occupancy becomes more
correlated. So, by increasing the proliferation rate, and hence
neighboring site correlations, we are effectively increasing
the contribution of death relative to that of proliferation,
leading to a suppression in steady state population numbers.

V. ANALYZING THE EXTENT OF CORRELATION

The results of the previous section show that the KSA
outperforms the mean-field equation at approximating agent
density in both 2D and 3D. However, it can be time consum-
ing to derive the exact equations to be solved �see the supple-
mentary information �31� for more details� and also to de-
velop code to solve them numerically. In order to simplify
such systems, it is important to analyze the extent to which
correlations are important in the model, and at what distance
they become negligible. We carried out numerical simula-
tions to investigate, and present our results in Fig. 6. In each
case we show the correlation function at distances r
=1,2 , . . . ,5. The results in Fig. 6 also confirm that the inclu-
sion of agent death increases the effects of correlations. We

see that the maximum values of FA,A�1� is greater when we
include agent death.

Overall, as one might expect, the correlations can be quite
significant, especially between neighboring lattice sites.
However, such effects quickly diminish with correlations
rapidly tending to unity both in space and time. Moreover, as
outlined in the previous section, it is now obvious that the
inclusion of agent death increases intersite correlations, es-
pecially at r=1,2. In summary, our results suggest that, al-
though correlations are at times quite large, we can truncate
our system of correlation equations, without compromising
accuracy, and it is to this we direct our attention in the fol-
lowing section.

Reducing the system of correlation equations

Our analysis of the extent of correlations suggests that
effects die off rapidly as the distance between lattice sites
increases. Therefore we investigated the extent to which it
is possible to truncate the system of correlation equations,
solving for a range of distances less than rmax

=�x��Nx
2+Ny

2+Nz
2� /2 and using FA,A�rmax�=1. Results for

simulations with a range of parameter values and truncating
the system of correlation equations at different distances are
shown in Fig. 7.

Our results suggest that one can often truncate at rela-
tively short distances without sacrificing accuracy. In 2D we
can easily truncate at r=3 without changing the results ap-
preciably. This involves considering seven equations in total
�for cA and distances r=1,�2,2 ,�5,�8,3�. It is quick to
solve such systems numerically, for example, using the stan-
dard Runge-Kutta fourth-order solver. As expected, results in
3D are even more encouraging, suggesting that r=2 is a
suitable cutoff, and that even r=1 works well enough in
some parameter regimes �see, for example, results with Pp
=1.0, Pd=0.5, and Ps=0.05 in 3D�. We conclude that trun-
cation of the correlation functions on the nonuniform grid at
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FIG. 5. �Color online� The influence of motility on proliferation patterns with the inclusion of agent death in 2D �top row� and 3D
�bottom row�. In each case, the red �dark gray� line shows the solution of the logistic equation, the black line the averaged discrete results
and the green �light gray� line the results given by the inclusion of correlations.
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r�3 provides a good method for efficient computation of
population sizes with both birth and death included; we de-
tail the equations to be solved in these cases in the Supple-
mentary Information �31�.

VI. DISCUSSION AND CONCLUSIONS

This work has been concerned with analyzing the extent
to which spatial correlations affect the rates of population
growth in a birth-death-movement exclusion process. Start-
ing from a description of the probability of occupation of
groups of lattice sites, we used a well-known closure ap-
proximation to reduce our system to one describing the total

population numbers and pairwise correlations between lattice
sites. Numerical results show that our approximation pro-
vides a vast improvement over the standard logistic approxi-
mation when birth rates become comparable to movement
rates. Moreover, this approach can predict the decreases in
steady state density that are observed when agent death is
also included. Analysis of the pairwise correlations revealed
that one may truncate the system of correlation equations at
a distance r=3 lattice sites which leads to a computationally
efficient and viable method of accurately predicting popula-
tion growth rates in such systems.

Throughout this work we have made use of the KSA to
truncate our system of k-point distribution functions at k=2.
We note that, while a variety of different closure methods
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FIG. 6. Investigation of the correlation at different distances in 2D �top row� and 3D �bottom row�. The results show
FA,A�1� ,FA,A�2� , . . . ,FA,A�5� �decaying as the distance increases�.
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FIG. 7. �Color online� Investigating truncation of the correlation equations at different distances in 2D �top row� and 3D �bottom row�.
Mean field �red/dark gray� and simulation �black� results are presented together with a suite of solutions of the correlation equations
�green/light gray�. In each case, four solutions of the correlation equations are given with the most accurate representing the full system of
correlations. The remaining three solutions of the correlation equations correspond to truncating the system at r=1,2 ,3 with the accuracy
decreasing as r decreasing.

CORRECTING MEAN-FIELD APPROXIMATIONS FOR … PHYSICAL REVIEW E 82, 041905 �2010�

041905-9



can be found within the ecology literature �see, for example,
�29� for a substantial list�, the KSA provides the best ap-
proximation for our system �results not shown�. We note also
that, as a possible simplification of our system, we could
solve our correlation equations on a regular spatial mesh,
allowing one to avoid the time-consuming job of calculating
the equations at each possible site separation. However, nu-
merical results carried out to test this hypothesis were, in
general, disappointing. Except for a mesh with spacing �r
=0.5, corresponding reasonably well to the lattice distances
1, �2, and 2, a great deal of accuracy was lost. We conclude
from our studies that the simple KSA gives an excellent
method for closing the system of distribution equations, and
that truncating the system at distance r=3 is sufficiently ac-
curate for most purposes.

The inclusion of biased motility may simply be taken into
account in our equations, as may other possible proliferation
mechanisms, such as those where agents are deposited out-
side the set of nearest neighbor sites �14� �results not shown�.
Those mechanisms which involve more than two lattice sites
for proliferation require higher order KSA approximations in
order to truncate at k=2 and the analysis is an extension of
that presented here. Similarly, the extension to multiple in-
teracting or noninteracting cell populations is easy to include
and for that reason we do not detail results here. Another
obvious extension to this work is to consider systems which
have nonhomogeneous initial conditions, or other types of
boundary condition, as here the translational invariance of
the lattice is lost and we must retain equations for the corre-
lations at each individual lattice site. While it would be time
consuming to write down such a system, our analysis for the
homogeneous case suggests that some similar approximation
may also be made in the nonhomogeneous case. Although
this will still entail solving large systems of ODEs, we do
now have the computing power to tackle such problems.

A. Correcting the KSA

We considered a number of improvements to the KSA, in
order that it may better enable us to predict population
growth. First, we considered correcting the KSA in order that
it satisfies the conservation laws described in this work �Eqs.
�8� and �15��, as outlined in �24,25�. However, these correc-
tions gave no noticeable improvements �results not shown�
while adding to the algebraic complexity of the model. Sec-
ond, we considered the suggestion of several authors
�32–34�, that the KSA can be corrected by incorporating a
power series in the density, cA, of the form

��3��Al,0m,An� = cA
2�1 − cA�F0,A��l − m��F0,A��m − n��


FA,A��n − l���1 + �
i=1

�

�icA
i � . �40�

This suggests that we may close the system of two-point
distribution equations more accurately if we are able to de-
rive the coefficients of the expansion. We expect the �i to
depend on Pp and Pd and we test this hypothesis numerically
in 2D. We begin our investigation by truncating the power
series and using the MATLAB function lsqnonlin to determine

the �i for our simulation data: in each case we use time series
data for agent density over a complete simulation, until the
lattice is at least 99% full, and use the lsqnonlin function to
determine the coefficients that give the best fit to this data.
We calculate only a first order correction �i.e., finding only
�1� as the KSA is already reasonably accurate for most pa-
rameter regimes.

Figure 8 shows the results of our analysis for birth-only
simulations with both 1% and 5% initial seedings. We see
that there is a clear relationship between the �i, Pp and the
initial seeding and highlight inclusion of this correction term
as important for future research in the area.

B. Parameter estimation

The big question that arises from inclusion of correlation
data is whether we can use such information when consider-
ing the inverse problem: given density and/or correlation
data to what extent may parameters be recovered using op-
timization techniques? For example, how would predictions
made by Tremel and co-workers �18� �Fig. 2� change if cor-
relation information was included? To this end we consid-
ered fitting 2D simulation results to data using the MATLAB

routine lsqnonlin, requiring the solver to minimize either

�
i=0

N

�cAi

data − cAi

sim�2, �41�

or

�
i=0

N

��cAi

data − cAi

sim�2 + �FA,Ai

data�1� − FA,Ai

sim �1��2� , �42�

depending on the amount of experimental data available: in
principle, it should be possible to determine at least nearest
neighbor correlations given snapshots of the population at
each time point, though more research needs to be carried
out to determine the extent to which this is possible. Without
loss of generality, in each case we set Pm=1.0 and estimate
Pp and Pd. Note that we are able to do this as the equations
may simply be rescaled, and that as a result we are only able
to predict Pp and Pd relative to Pm.

Figure 9 shows the results of our analysis. The top row
shows plots of fitting simulation data with Pd=0.0. Results
are very promising: in particular, we see a large gain in the
accuracy of our approximation compared estimation of the
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FIG. 8. Calculating the coefficient �1 for the correction of the
KSA with birth only and a 1% and 5% initial seedings. Note that a
significantly larger correction is required for 1% seeding compared
to 5% seeding.
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parameter using the logistic model, with accurate prediction
of the parameter values even when Pp�1. We also note that,
without death, similar results are gained when fitting either
solely to density data or to both density and nearest neighbor
correlation data. With a nonzero death rate we see that the
inclusion of correlations is vital for accurate prediction of the
parameters �compare with the mean-field results�. However,
we note that the accuracy of estimation, even with correla-
tion data included, decreases as Pp and Pd increase.

We note that one may be able to increase the accuracy of
parameter estimation with careful consideration of the opti-
mization function. For example, assuming Pm=1.0, one may
estimate the birth rate using correlation data alone �as Pd
does not appear in the correlation equations�. Then one may
estimate the net birth rate �r= Pm− Pd� from density data,
which then gives enough information to determine both Pm
and Pd. Other obvious methods include weighting the con-
tributions from density and correlation data, dependent on
whether one data source is more accurately measurable.

In summary, we conclude that including the effects of
correlations can assist in determining the relative rates of

movement, proliferation and death from experimental data.
When death is negligible fitting to density-only data gives
excellent results, however, when death is significant the data
must be fitted using both density and correlation information.

C. Outlook

The results presented here provide a simple, computation-
ally efficient method for taking into account the effects of
spatial correlations when considering populations undergo-
ing birth-death-movement processes. With the enormous in-
creases in computing power over the last decade we are now
easily in a position to include correlations into general popu-
lation models as standard. Moreover, our results show that
the inclusion of correlations is vital in the recovery/
estimation of biological parameters.
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FIG. 9. �Color online� Estimation of parameter values with and without inclusion of the correlations. The top row shows the results of
fitting with Pd=0.0. The left-hand figure shows the results of fitting density data only for Pp=0.8, Pd=0.0 with agent density shown in black,
results from fitting with the inclusion of nearest neighbor correlations in green �light gray�, and fitting the logistic curve in red �dark gray�.
The predicted values of Pp, Pd are Pp=0.76, Pd=0.02 �correlations included� and Pp=0.60, Pd=0.02 �correlations not included�. The center
and right-hand figures compare the predicted birth rates given by fitting with the logistic curve �red/dark gray� and with the inclusion of
nearest neighbor correlations �green/light gray�. The center plot shows results from fitting density data only and the right-hand plot fitting
with both density and correlation data. The bottom row shows results of fitting using both the density and nearest neighbor correlation data
when death is nonzero. Details are as above, with the center plot showing the predicted birth rate and the right-hand plot the predicted death
rate. The predicted values of Pp and Pd on the left-hand plot are Pp=0.64, Pd=0.33 �correlations included� and Pp=0.07, Pd=0.04
�correlations not included�.
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