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Perfect spike-to-spike synchrony is studied in all-to-all coupled networks of identical excitatory, current-
based, integrate-and-fire neurons with delta-impulse coupling currents and Poisson spike-train external drive.
This synchrony is induced by repeated cascading “total firing events,” during which all neurons fire at once. In
this regime, the network exhibits nearly periodic dynamics, switching between an effectively uncoupled state
and a cascade-coupled total firing state. The probability of cascading total firing events occurring in the
network is computed through a combinatorial analysis conditioned upon the random time when the first neuron
fires and using the probability distribution of the subthreshold membrane potentials for the remaining neurons
in the network. The probability distribution of the former is found from a first-passage-time problem described
by a Fokker-Planck equation, which is solved analytically via an eigenfunction expansion. The latter is found
using a central limit argument via a calculation of the cumulants of a single neuronal voltage. The influence of
additional physiological effects that hinder or eliminate cascade-induced synchrony are also investigated.
Conditions for the validity of the approximations made in the analytical derivations are discussed and verified
via direct numerical simulations.
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I. INTRODUCTION

Synchronous neuronal-network oscillations are a ubiqui-
tous phenomenon, occurring in diverse areas of the brain,
with great complexity of manifestations, a multitude of fre-
quency ranges, a host of presumed underlying physiological
mechanisms reflecting an intricate interplay among short-
and long-range, excitatory, and inhibitory interneuronal con-
nections, and often involving large numbers of neurons
�1–6�. While the role of synchronous oscillations in various
brain functions is not yet well understood, they are believed
to serve as clocks and means of information encoding �6,7�.

One broad type of neuronal-network oscillations is a col-
lective phenomenon in which only the membrane potentials
and spiking averaged over an entire network of neurons ex-
hibit oscillations, whereas the individual neuronal potential
and spiking may not appear oscillatory �8–13�. Such oscilla-
tions can be detected for example, by measuring the local
field potential, i.e., the average neuronal membrane potential
in a patch of cortical tissue, which reflects the overall neu-
ronal activity in this patch �14–18�.

A different type of neuronal-network oscillations involves
primarily excitatory neurons, firing in bursts, such as in de-
veloping networks �19–23�. These bursts emerge from a qui-
escent state and are believed to be suppressed by refractori-
ness caused by either synaptic depression �22� or an
adaptation current �21,23�.

Due to the large numbers of neurons involved, network
models used in computational studies of various types of
synchronous oscillations frequently consist of simplified
point neurons of integrate-and-fire type. The model networks

have been either all-to-all coupled �24� or sparse �25–27�,
composed of excitatory �22,23,28�, inhibitory �29–35� or
both types of neurons �36–41�, homogeneous �42�, or hetero-
geneous �43,44�, and driven deterministically �24� or ran-
domly �13�, and thus have yielded a great variety of network
mechanisms responsible for synchronous behavior and ways
to compute the respective oscillation frequencies.

Considering very basic point-neuron and neuronal-
network models is important because they often produce the
clearest and most sharply delineated network mechanisms
responsible for a given type of network dynamics. Among
the most basic is the current-based, all-to-all coupled, exci-
tatory, integrate-and-fire �IF� model �45–47�. Under constant
drive sufficiently strong to push the neuronal voltages over
the firing threshold, i.e., superthreshold drive, this network is
known to synchronize for almost all initial conditions and
exhibit time-periodic total firing events, during which all the
neurons fire at once �24�. This synchrony is induced by the
attraction in the phase dynamics of the neurons in the net-
work. Small randomness in the coupling �48� and other
model parameters �49� does not destroy this synchrony.

In this paper, we consider a fully stochastic version of this
classic model, in which we replace the �nearly� constant ex-
ternal drive by a noisy drive, with each neuron driven by an
independent Poisson spike train. We reveal a different
mechanism for the perfect spike-to-spike synchrony, namely,
cascading total firing events which drive the network to syn-
chrony after a period of effectively zero coupling. Under
certain parameter regimes, the network exhibits nearly peri-
odic dynamics, switching between effectively totally un-
coupled states and cascading states when all neurons fire
together. This cascade mechanism of synchrony can operate
both in the superthreshold regime when the average of the
external drive is sufficiently strong to push the neuronal volt-
ages over the firing threshold, and, more importantly, in the*cai@cims.nyu.edu

PHYSICAL REVIEW E 82, 041903 �2010�

1539-3755/2010/82�4�/041903�17� ©2010 The American Physical Society041903-1

http://dx.doi.org/10.1103/PhysRevE.82.041903


subthreshold regime when it is not, and the neuronal firing is
driven by fluctuations in the external drive. In both regimes,
cascading total firing events are separated by random time
intervals, but with a well-defined mean frequency. We should
emphasize that these total firing events differ from their de-
terministic counterparts in that the individual neuronal-
voltage trajectories are now not identical but instead differ
from neuron to neuron. Therefore, total firing events occur
not because of complete synchrony of the voltage trajecto-
ries, as in the deterministic case, but rather as cascading
events during which the firing of one neuron pushes the next
neuron’s voltage over threshold, and so on, when the neu-
ronal voltages are not spread too far apart.

After presenting numerical evidence of persistent syn-
chronous cascading total firing events in the network, we
derive the average time-period between pairs of neighboring
total firing events using a first-passage-time approach
�50–55� and solving the associated Fokker-Planck equation
via an eigenfunction expansion. What makes this approach
possible is the above-mentioned fact that, between cascading
total firing events, no neurons fire, and thus the network is
effectively decoupled. The approach works for both sub-
threshold and superthreshold external drives. In addition, we
develop a Gaussian approximation to describe the spreading
of the neuronal voltages between total firing events, and use
it for an alternative derivation of the average oscillation fre-
quency in the regime of superthreshold driving. In this
framework, we moreover develop a combinatorial argument
to calculate the probability of observing repeated cascading
total firing events.

Finally, we discuss how additional physiological effects
affect the synchrony of firing events. These include synaptic
failure, sparsity of synaptic connections, random transmis-
sion delays, and finite rise and decay times for the neuronal
conductances. We see that the first two effects act in a similar
fashion. They preserve cascading total firing events, but re-
duce the probability of observing these events in succession,
proportionally to the average reduction of network connec-
tivity. The last two effects destroy cascading total firing
events and turn them into approximate synchrony, provided
the transmission delays or conductance time scales are not
too long. In particular, we give numerical evidence that all
neurons still fire within short, approximately periodic time-
intervals, interspersed with longer quiescent periods.

The remainder of the paper is organized as follows. We
discuss the current-based integrate-and-fire model in Sec. II
along with a brief description of the event-driven algorithm
used for numerical simulation. In Sec. III, we begin our dis-
cussion of the synchronous dynamics present in this model.
We proceed with analysis of the completely synchronous
state in Sec. IV by deriving the mean time between total
firing events, and an approximation to this time, based on the
Gaussian approximation of a single neuronal-voltage distri-
bution derived in Sec. IV B 1. These results are compared to
the results from numerical simulation in Sec. IV C. To com-
plete the discussion of the synchronous dynamics, in Sec. V
we compute the probability of finding repeated total firing
events, and obtain excellent agreement with the correspond-
ing numerical simulation results. Using this measure of syn-
chrony, we investigate how effective additional physiological

effects are at reducing synchronous behavior in Sec. V C.
Conclusions are presented in Sec. VI. Further details of the
analysis are presented in the Appendix.

II. MODEL

We consider a model neuronal network of N all-to-all
coupled, current-based, excitatory, integrate-and-fire �IF�,
point neurons �45,46�, governed by the system of equations

dv j

dt
= − gL�v j − VR� + Ij�t�, j = 1, . . . ,N , �1a�

where v j is the membrane potential of the jth neuron, gL is
the leakage conductance, and VR is the leakage/reset voltage.
The voltage, v j, evolves according to Eq. �1a� while it re-
mains below the firing threshold, VT. The synaptic current,
Ij�t�, is modeled by the pulse train

Ij�t� = f�
l

��t − sjl� +
S

N
�
i�j

�
k

��t − �ik� , �1b�

where �� · � is the Dirac delta function. The first term in Eq.
�1b� corresponds to the currents arriving from the external
input. Each neuron’s external input is modeled by an inde-
pendent Poisson train of current spikes with rate �. At the lth
spike time, t=sjl, the jth neuron’s voltage jumps by an
amount f . The second term in Eq. �1b� corresponds to the
currents arriving from within the network. At time � jk, when
v j reaches the threshold VT, the jth neuron fires a spike. The
voltage v j is set to the reset voltage, which is assumed to be
VR here, and immediately becomes governed by Eq. �1a�
again. At the same time, impulse currents are injected into all
other neurons, increasing each neuron’s voltage by an
amount S /N. The scaling by N, the number of neurons in the
network, ensures the average network input to any neuron
remains bounded as N→�.

We point out that in this model, a neuron’s voltage is only
increased at a time when it receives a spike from either the
network or the external drive, and decays otherwise. There-
fore, a neuron can only fire a spike at a time some neuron in
the network receives a spike from the external drive.

In our model we incorporate an idealized refractory pe-
riod by holding a neuron’s voltage at the reset value after it
has fired even if other neurons fire at the same time. This is
in line with the discussion in �24�, but prevents any neuron
from firing more than once at any given time and thus the
occurrence of bursts such as those described in �21–23�.

In view of the properties described above, our numerical
simulation method is event-driven, similar to the one dis-
cussed in Sec. 2.4.1 of �56�. This event-driven algorithm al-
lows us to simulate our IF dynamics up to machine accuracy.
We use the nondimensional values gL=1, VR=0, and VT=1
in numerical simulations.

The effect on the network �Eq. �1a�� from an external
Poisson spike train with rate � and spike strength f is the
same as from a constant current of strength f� in the limit as
f →0 and �→� while f��O�1�. We will refer to this limit
as the zero-fluctuation limit. Most results presented below are
for the situation near this limit when f is small, and � large,
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with f��O�1�, which we refer to as the small-fluctuation
regime. As mentioned in the introduction, the zero-
fluctuation limit for a single neuron also defines the sub-
threshold regime, in which f��gL�VT−VR�, and the super-
threshold regime, in which f��gL�VT−VR�.

III. SYNCHRONY

In the deterministic version of the pulse-coupled, all-to-all
model �1�, with constant external drive of strength f�, the
evolution of the neuronal voltages is known to be rapidly
attracted to a synchronous, time-periodic state �24�. In this
state, all neuronal voltages evolve identically and produce
periodic total firing events, during which all neurons fire at
once, as already mentioned in Sec. I. The period �̂ between
two subsequent total firing events can be obtained exactly in
terms of a single neuron’s voltage, which is governed during
this time by the equation dv /dt=−gL�v−VR�+ f� and satis-
fies the initial condition v=VR immediately after the first of
the two firing events. In the superthreshold regime, it is easy
to show that the period �̂ satisfies

�̂ =
1

gL
ln� f�

f� − gL�VT − VR�� . �2�

In the subthreshold regime, f��gL�VT−VR�, so the voltage
never reaches VT and no neuron in the network ever fires.

Under Poisson-train driving, for sufficiently large values
of the Poisson rate � and network coupling strength S, simu-
lations of the network �Eq. �1�� reveal synchronous firing in
a variety of forms. The raster plots shown in Fig. 1, where
dots indicate which neuron fired at what time, show ex-
amples of synchronous dynamics of the network: partial syn-
chrony �Fig. 1�a��, during which firing events occur that in-
clude a majority, but not all, of the network neurons;
imperfect synchrony �Fig. 1�b��, during which firing events
including all of the neurons are punctuated by occasional
firings of individual neurons; and perfect synchrony �Fig.
1�c��, characterized by cascading total firing events during
which all neurons fire in unison. Over a broad range of pa-
rameters in our simulations, not only does the network cou-
pling sustain synchrony in the network dynamics, but it
drives a network into a synchronous state. We note that the
network coupling strength, while sufficiently large for
achieving synchrony, is typically still weak in that it requires
many incoming spikes from other neurons to cause a neuron
to fire, that is, S /N�VT−VR.

We emphasize the tendency of the network �Eq. �1�� to
synchronize over a broad range of parameters by plotting the
average number of neurons firing instantaneously in a cas-
cading event in Fig. 2. Complete asynchrony corresponds to
an average of one neuron firing per cascade �black�, while
perfect synchrony corresponds to an average of all neurons
firing in repeated total firing events �white�. In both the sub-
threshold �Fig. 2 top� and superthreshold �Fig. 2 bottom�
driving regimes, the asynchronous dynamics are stable only
in a very narrow region. Although cascades including half or
a quarter of the network on average could still be considered
synchronous dynamics, we will restrict ourselves to classify-

ing synchrony in terms of cascading total firing events �white
areas of Fig. 2� in the remainder of this paper.

As already mentioned in the introduction, the mechanism
underlying the cascading total firing events in a Poisson-
train-driven network differs from its deterministic counter-
part in that individual neuronal trajectories are not identical
and in fact spread apart between such events. Consequently,
as we will see below, the average time between total firing
events in the stochastically driven network is smaller than
the period �̂ given by Eq. �2�, but approaches �̂ as the fluc-
tuations in the external driving current vanish.

During cascading total firing events, all neurons in the
network fire simultaneously, and all neuronal voltages, v j,
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FIG. 1. �Color online� Raster plots of firing times for the system
of N=1000 neurons �only 100 shown� with initial voltages chosen
randomly between VR and VT. For the synchronizable network �c�,
with f =0.0002, f�=1.2 and S=10.0, one total firing event is fol-
lowed by another total firing event with high probability, P�C�
=0.952. The other two systems, �a� with f =0.01, f�=1.2 and S
=0.5, and �b� with f =0.02, f�=1.2, and S=1.0, do not satisfy our
stringent definition of synchronizability.
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are reset to VR at the same time. The voltages then rise
probabilistically, due to the stochastic external driving, until
the first neuron fires and pushes all other neuron voltages
upward and possibly above threshold. When the first neuron
fires, the voltages of the remaining neurons are classified as
cascade-susceptible if a total firing event ensues. We classify
the network as synchronizable if the probability, P�C�, of
neuronal voltages to be cascade-susceptible is sufficiently
large. In the numerical examples presented below, we take
the cutoff value to be P�C�=0.85. By this definition the net-
works �a� and �b� in Fig. 1 are not synchronizable, as other
firing events frequently appear which are not part of the total
firing events; they might be considered synchronous by some
other less stringent characterization.

IV. SYNCHRONOUS FIRING RATE

In this section, we analyze the firing dynamics of the per-
fectly synchronous network. First, we study its mean firing
rate in Sec. IV A using the probability density function �pdf�
for the time between total firing events by relating it to the
pdf of the time between firing events of a single uncoupled
neuron. This analysis is carried out via a first-exit-time ap-
proach and is valid in both the subthreshold and superthresh-
old regimes. In Sec. IV B, we then use a central-limit argu-
ment to derive an approximate Gaussian pdf for the voltage
of a neuron that has not yet fired. In addition to being im-
portant in its own right, the knowledge of this pdf also al-

lows for a particularly simple alternative method to obtain
the mean time between total firing events in the superthresh-
old driving regime. The pdfs derived in this section will also
be used later in Sec. V in computing the probability of find-
ing repeated total firing events. The analysis in this section is
based on the assumption that total firing events are seen in
succession without extraneous neurons firing in between, so
that the spiking rate of a neuron in the network is the inverse
of the expected time between total firing events.

A. Distribution of the times between cascading
total firing events

Here, we derive the firing rate of the network in terms of
the firing rate of a single uncoupled neuron driven by a Pois-
son spike train with rate � and spike strength f . In particular,
since between cascading total firing events the neurons are
effectively uncoupled, we can consider the N independent
times that each of these neurons would take to spike if influ-
enced by only its own external drive. We focus on the short-
est of these times: the inverse of its average is used to obtain
the network firing rate. In turn, the pdf for the spike time of
a single uncoupled neuron is determined by solving the first-
exit-time problem for the voltage crossing the firing thresh-
old, VT. As we will see below, in the small-fluctuation limit,
this problem is described by a Fokker-Planck equation �FPE�
with appropriate boundary conditions, which is solved ana-
lytically using an eigenfunction expansion.

We compute the pdf, pT
�1��t�, of the minimum exit time,

T�1�, of the N neurons in terms of the pdf, pT�t�, of a single
neuron’s exit time �the time at which the neuronal voltage
exits the domain VR�v�VT through VT� via the equation

pT
�1��t� = NpT�t��1 − FT�t��N−1, �3�

where FT�t�=	0
t pT�t��dt� is the cumulative distribution func-

tion �cdf� of the exit time for a single neuron �57�. The ex-
pected time between total firing events is then deduced from
Eq. �3� as


T�1�� = �
0

�

tpT
�1��t�dt . �4�

To approximate the single-neuron exit time distribution,
pT�t�, we remove the neuron from the system when its volt-
age reaches threshold, meaning that the neuron’s voltage is
“absorbed” at VT rather than being reset back to VR. Then,
the probability that at time t this neuron has not yet fired �it
will fire at a later time T� is the probability that it is still in
the domain, VR�x�VT. This probability is

P�T 	 t� = 1 − FT�t� = �
VR

VT

pv�x,t�dx , �5�

where x parameterizes the neuronal voltage whose pdf,
pv�x , t�, satisfies the Kolmogorov forward equation �KFE�
for a single Poisson-spike-train-driven, IF neuron with an
absorbing barrier at VT �50,52,53,58,59�. The KFE may be
thought of as expressing the conservation of probability den-
sity, and reads
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FIG. 2. Average cascade size per firing event as a function of
spike strength, f , and coupling strength, S, for a network of N
=100 neurons with initial voltages chosen randomly between VR

and VT. �top� Subthreshold regime, f�=0.9 and �bottom� super-
threshold regime, f�=1.2. If no firing events were detected during
the t=400 run, the cascade size was assigned to be zero.
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�

�t
pv�x,t� =

�

�x
�gL�x − VR�pv�x,t�� + ��pv�x − f ,t� − pv�x,t�� ,

�6�

where incoming spikes are modeled by a Poisson spike train
with rate � and strength f .

A heuristic derivation of Eq. �6� proceeds as follows. The
first term on the right-hand side of Eq. �6� represents the
difference in the probability flux, gL�x−VR�pv�x , t�, through
the voltage values x and x+dx due to the smooth streaming
of phase points under the relaxation dynamics in Eq. �1a�.
The second term on the right-hand side of Eq. �6� reflects the
fact that, with every incoming external spike, the neuron’s
voltage jumps by the amount f , and that these spikes arrive at
the rate �. A more detailed derivation of Eq. �6� can be found
in �58�. Note that the pdf, pv�x , t�, is defective in the sense
that its integral over the domain VR�x�VT does not equal
unity for all times: the difference is exactly the probability
that the neuron has reached threshold, VT, and therefore been
removed from further consideration.

A diffusion approximation to the KFE �Eq. �6�� can be
obtained by considering f small, at least f �VT−VR, so that a
large number of incoming spikes is needed to bring the neu-
ronal voltage from reset to threshold. We Taylor expand the
function pv�x− f , t� for small f , and keep the first three terms
in this expansion, reducing Eq. �6� to the Fokker-Planck
form

�

�t
pv�x,t� =

�

�x
�gL�x − VR� − f��pv�x,t� +

f2�

2

�

�x
pv�x,t�� .

�7�

Here, the difference terms have been replaced by drift and
diffusion terms. Note that the FPE �Eq. �7�� can be written in
the conservation form

�

�t
pv�x,t� +

�

�x
J�pv��x,t� = 0

with the probability flux J�pv��x , t� given by

J�pv��x,t� = − �gL�x − VR� − f��pv�x,t� −
f2�

2

�

�x
pv�x,t� .

�8�

The appropriate initial condition for Eq. �7� is

pv�x,0� = ��x − VR� , �9�

as the neuronal voltage always starts at the reset voltage, VR,
after a total firing event.

The FPE �Eq. �7�� requires two boundary conditions. In
particular, a reflecting boundary condition is imposed at
x=VR because the actual neuronal voltage cannot dip below
VR, nor are any neuronal voltages injected into the network at
x=VR, due to the fact that firing neurons are removed from
the system rather than having their voltages reset to VR, as
discussed above. This reflecting boundary condition requires
the probability flux, J�pv��x , t�, in Eq. �8� to vanish at
x=VR �60,61�,

J�pv��VR,t� = 0. �10a�

In addition, the approximation that the neurons are removed
from the network when their voltages reach the threshold VT
is encoded in the absorbing boundary condition at VT:

pv�VT,t� = 0. �10b�

Solving Eq. �7� with initial condition �9� and boundary
conditions �10a� and �10b� is carried out in terms of an
eigenfunction expansion involving confluent hypergeometric
functions �see Appendix A for details�. The dependence of
the solution pv�x , t� on the voltage x for several moments of
time t is depicted in Fig. 3. The probability that at time t the
given neuron has not yet fired, P�T	 t�, as calculated from
pv�x , t� using Eq. �5�, is shown in the inset.

From Eqs. �5�, �7�, �8�, and �10a�, we derive that the pdf
of the first exit time is the flux of probability that leaves
through the upper boundary �62,63�,

pT�t� = J�pv��VT,t� . �11�

The flux on the right-hand side can be calculated using the
above-mentioned eigenfunction expansion to obtain pT�t�,
and the corresponding cdf, FT�t�, is likewise calculated using
Eq. �5�, together yielding the pdf, pT

�1��t�, of the minimum
exit time T�1� via Eq. �3�. Equation �4� then gives the ex-
pected time between synchronous firing events, and the net-
work firing rate is obtained as the inverse of this expected
time.

While the above derivation of the firing rate in the per-
fectly synchronous regime of the network �Eq. �1�� is ana-
lytical, and both its main ingredients—the pdf and cdf of the
first passage time of a single uncoupled neuron—are given in
terms of eigenfunction expansions, the numerical evaluation
of the expected minimum exit time 
T�1�� by this method can
become difficult when its pdf is concentrated at small times.
This is because, at these small times, the proximity to the
delta function initial condition for the voltage pdf �Eq. �9��
calls for the evaluation of an excessive number of terms in
the eigenfunction series. Moreover, each term in the eigen-
function series requires evaluating confluent hypergeometric
functions at large values of their arguments where their

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

voltage (x)

P
D

F

t=1.65
t=6.66
t=8.33
t=10.00

0 5 10
0

0.5

1

1.5

time (t)

C
D

F

FIG. 3. �Color online� The relation between the probability,
P�T� t� in Eq. �5�, of a single neuron to have not yet fired �inset�
and the solution, pv�x , t�, to the Fokker-Planck equation �Eq. �7�� at
the indicated points in time with f =0.01 and f�=0.95.
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power series representations converge poorly and various
asymptotic representations need to be used instead. The ini-
tial condition �9� also makes solving Eq. �7� numerically
difficult. Therefore, we present an alternative approach to
obtain the pdf of the first exit time and solve it numerically.

To circumvent the convergence problems at small times
associated with the delta-function initial condition �9�, we
consider an alternative equation describing the evolution of
the function G�x , t�, the probability that a neuron’s voltage
has not yet crossed threshold given that it started at position
x at time t=0. The cdf for the first exit time we are interest
in, FT�t�, is expressed as FT�t�=1−G�VR , t�. The function
G�x , t� satisfies the equation adjoint to the FPE �64�

�

�t
G�x,t� = �− gL�x − VR� + f��

�

�x
G�x,t� +

f2�

2

�2

�x2G�x,t� ,

�12a�

with the boundary conditions

�

�x
G�x,t��x=VR

= 0 and G�VT,t� = 0. �12b�

The initial condition for G�x , t� is

G�x,0� = 1, �12c�

in contrast to the delta-function initial condition for pv�x , t�.
We solve the parabolic partial differential equation �12a�

with the boundary and initial conditions �12b� and �12c� nu-
merically with the Crank-Nicolson scheme �65�. We then
compute the pdf pT�t� using a finite difference approximation
for the derivative of the cdf FT�t�=1−G�VR , t�, both of
which are then used to compute the pdf, pT

�1��t�, for the mini-
mum exit time of all the N voltages via Eq. �3�. The average
of this time is then computed by integrating numerically the
right-hand side of Eq. �4�, and the network firing rate is again
obtained as its inverse. Sample pdfs for pT�t� and pT

�1��t� ob-
tained in this way are shown in Fig. 4 which compare well

with the results obtained from the full numerical simulation
of the original IF dynamics �Eq. �1��.

Results depicting the dependence of the network firing
rate on the driving strength f� are presented in Sec. IV C.
The approximate theories described in this Section and Sec.
IV B 2 are also verified against numerical simulations of the
network �Eq. �1��.

B. Firing rate via average maximal voltage

The Fokker-Planck approximation �7� restricts us to con-
sider the network dynamics in the small-fluctuation regime,
f →0, �→�, and f��O�1�. In this regime, after a cascading
total firing event during which all the neuronal voltages are
reset to zero, it is natural to expect that the spread of the
voltages stays small relative to their mean during the subse-
quent time evolution, and thus that the voltage dynamics can
be described in a simple, explicit fashion. Here, we quantify
such an approximation using a central-limit argument in
which we neglect the reset upon crossing threshold VT, and
simply allow the neuronal voltages to evolve freely accord-
ing to Eq. �1�. Such an approximation is of course only ap-
propriate until the first neuron fires again after a total firing
event. In addition to being used in Sec. V for computing the
probability of the network to be cascade-susceptible, this pdf
also allows for a simple approximation to the time between
total firing events that is valid in the superthreshold regime.
In particular, in this regime, the time for the first neuron to
cross threshold can be approximated by the time it takes the
average maximal voltage to reach threshold, as described in
Sec. IV B 2.

1. Gaussian approximation of voltage distribution

In this section, we describe how the pdf for a typical
neuron voltage in the synchronized network evolves at times
between total firing events. During these times, the voltage
of each neuron can be expressed as a random sum, and in the
small-fluctuation regime, we use a central-limit argument to
show that their pdfs can be well approximated by indepen-
dent Gaussian distributions. We outline the main steps here,
and present the details in Appendix B.

When the network is in the perfectly synchronous state,
no neurons fire during the time period between cascading
total firing events, thus all the input to a given neuron is
generated by the external spike train. Moreover, since the
Poisson point process defining the incoming spike times, sjl,
has constant rate, the time can be reset to zero and the initial
conditions v j�0�=VR, j=1, . . . ,N, can be assigned after any
total firing event. The solution to Eq. �1� during this time
period is

v j�t� = VR + �
l=1

M�t�

fe−gL�t−sjl�, �13�

as we are not considering the reset mechanism when the
voltage reaches threshold. The number, M�t�, of external
spikes arriving at the jth neuron before the time t is random
and Poisson distributed with mean �t. We remark that be-
cause the number M�t� of terms in the sum in Eq. �13� is
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FIG. 4. �Color online� The pdf, pT�t�, for the first exit time of a
single, uncoupled, neuron �Eq. �11�, solid line, blue online� and the
pdf, pT

�1��t�, for the first exit time of N=500 neurons �Eq. �3�, dashed
line, red online� are compared to the results from 2000 numerical
simulations of the single neuron and a network of 500 neurons
�triangles and circles, respectively�. The values f =0.001 and f�
=1.0 are used.
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random, the standard central-limit theorem does not directly
apply to deriving the pdf of the voltage in Eq. �13� for large
M�t�. Below we therefore construct a modification of the
argument used to establish the central limit theorem, tailored
to this random sum.

We restrict our discussion to the small-fluctuation regime
and to times large compared to the inverse Poisson rate of
the incoming external spike train, 1 /�. In this case, the volt-
age in Eq. �13� is a sum of a large, random number of inde-
pendent random variables. Using a central-limit argument,
we compute the cumulants of the corresponding voltage pdf
and show in Appendix B that those of order 3 and higher are
negligible for the voltage v j�t� in Eq. �13�. This implies that,
under the conditions f �gL�VT−VR� and �
gL while f�
�O�1�, the pdf of the neuronal voltage, v j�t�, which is not
reset to VR when it reaches threshold, is well approximated
by the Gaussian distribution,

pv�x,t� �
1

�2���t�
exp�−

�x − �t��2

2�2�t� � , �14a�

with the average voltage

�t� = VR +
f�

gL
�1 − e−gLt� , �14b�

and the voltage variance

�2�t� =
f2�

2gL
�1 − e−2gLt� , �14c�

both of which are derived in Appendix B. Note that, as time
increases, both the mean and the variance of the voltage
grow, as consistent with intuition, and asymptotically ap-
proach the values VR+ f� /gL and f2� /2gL, respectively.
Later, the cdf of the voltage will also be needed, which is
given by

Fv�x,t� �
1

21 + erf� x − �t�
�2��t�

�� , �14d�

where

erf�z� =
2

��
�

0

z

e−t2dt �15�

is the error function. We compare the approximate voltage
distribution in Eq. �14a� to that obtained from numerical
simulation of the network �Eq. �1�� in Fig. 5.

2. Approximation for mean time between cascading
total firing events

Using the approximate voltage distribution �Eq. �14a��,
and the fact that the voltages of the neurons are effectively
uncoupled and driven by independent spike trains between
total firing events, we now calculate the average maximum

voltage from among these non-reset voltages at time t. The
inverse of the time at which this average maximal voltage
equals threshold voltage is then used to approximate the fir-
ing rate of the synchronous network in the superthreshold
regime. Note that this approach cannot be used in the sub-
threshold regime because the average maximum voltage may
never reach threshold; the network firing in that regime is
driven essentially by the voltage fluctuations.

For the synchronous network, the distribution of the
maximal of the N voltages in the network is given by

pv
�N��x,t� = Npv�x,t�Fv�x,t�N−1. �16�

In the superthreshold regime, in which the standard deviation
of the maximal neuronal voltage is small in comparison to
the mean of its distribution, the time � when the first neuron
crosses threshold can be approximated by the deterministic
time it takes for the average of the maximal voltage to reach
threshold, i.e.,

VT = �
−�

�

xpv
�N��x,��dx . �17�

Solving Eq. �17� for �, we obtain the firing rate of the net-
work as �−1.

We can simplify the calculation of the time the first neu-
ron crosses threshold considerably if we properly nondimen-
sionalize Eq. �17�. In particular, from Eqs. �14a� and �14d� it
is clear that the maximal-voltage distribution, pv

�N��x , t�, in
Eq. �16� can be written in terms of the normalized dimen-
sionless variable

y = y�x,t� =
x − �t�

��t�
. �18�

Thus, we obtain pv
�N��x , t�=g�N��y�x , t�� /��t�, with
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FIG. 5. �Color online� Gaussian approximation for the pdf,
pv�x , t� in Eq. �14a�, of the voltage of a typical neuron �dark gray,
blue online�, and the pdf, pv

�N��x , t� in Eq. �16�, of the maximum
voltage of a set of N=500 neurons �gray, green online� at time t
=1.5, compared with results from Monte Carlo simulations of the
network �Eq. �1��. The values f =0.001 and f�=1.0 are used.
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g�N��y� =
Ne−y2/2

2N−1/2��
�1 + erf�y/�2��N−1 �19�

being the pdf for the maximal of N independent random
variables distributed according to the standard Gaussian dis-
tribution. Equation �17� can now be rewritten as

VT = ��t�N + �t� , �20�

N = �
−�

�

yg�N��y�dy �21�

is now a universal quantity which only depends on the net-
work size N. Using Eqs. �14b� and �14c�, we can derive the
explicit dependence of the time, �N, when the first of the N
neurons crosses threshold, on N, the external-drive spike
strength f , and Poisson rate � as

�N =
1

gL
ln� f��2� + gLN

2 �

2��f� − gL�VT − VR�� + gLN
�f2�2N

2 + 4f�2�VT − VR� − 2gL��VT − VR�2� . �22�

The value of N in Eq. �21� can be obtained via numerical
integration for each network size N; its graph is shown in
Fig. 6. The first neuron crossing time �N can then be obtained
from Eq. �22�. Note that in the zero-fluctuation limit, f →0,
f�=O�1�, the time �N in Eq. �22� reduces to the deterministic
oscillation period �̂ in Eq. �2� as

�N = �̂ −
N

��VT − VR��2f� − gL�VT − VR��
�2f��f� − gL�VT − VR��

�f + O�f� .

�23�

Note also that the time �N approaches infinity as the driving
strength f� approaches the value

f� = gLVT − VR +
1

4
�fN

2 − N
�8f�VT − VR� + f2N

2 ��
from above, for any given external-drive spike strength f and
network size N. The term gL�VT−VR� corresponds to the
zero-fluctuation limit, while the remaining terms give correc-
tions for finite-size fluctuations.

As an alternative to numerical integration of Eq. �21�,
since the pdf g�N��y� in Eq. �19� is narrow for large network
size N, we can approximate its mean N by its mode, i.e., the
value ymax�N� at which the pdf is maximized. The depen-
dence of ymax�N� on the network size N can again only be
obtained numerically �see Fig. 6�. However, for large N, the
value ymax�N� is well approximated by the expression

ymax�N� ��ln
N2

2�
− ln�ln

N2

2�
� . �24�

The derivation of this asymptotic expression is given in Ap-
pendix C.

In Fig. 6, we present the plots of the quantities N,
ymax�N�, and the asymptotic expression in Eq. �24� as func-
tions of the network size N. They agree with each other
reasonably well for N�O�10�. However, the curve ymax�N�
and its approximation in Eq. �24� produce a slight under-
shoot. This is because the width of g�N��y� scales only as
�ln N, so the approximation of its mean N by its mode
ymax�N� will have a logarithmically slowly decaying error.
The network firing rates obtained using the approximations
devised in this section will be discussed in the next section,
where they will also be compared with the firing rates ob-
tained using the more sophisticated first-passage-time
method of Sec. IV A and those computed using numerical
simulations.

C. Validity of firing-rate approximations

In this section, we discuss the results obtained from the
two theoretical solutions discussed in Secs. IV A and IV B 2.
These results are presented in the form of gain curves depict-
ing the frequency of the synchronized oscillations �i.e., the
average network firing rate� versus the average external cur-
rent f�, shown in Fig. 7 along with the corresponding gain
curves computed via numerical simulation of the network
�Eq. �1��. The comparison with the numerically computed
gain curves is presented in order to check the validity of the
assumptions used in the theoretical calculation of the firing
rates.
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FIG. 6. �Color online� The dependence of the solutions N in
Eq. �21� �dash-dotted line, red online� and ymax�N� �dashed black
line�, along with its approximation in Eq. �24� �gray line, green
online� on the network size, N. The approximation in Eq. �24� is
derived assuming N
1.
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As seen in Fig. 7�a�, the synchronized network fires more
frequently than a single neuron driven by a deterministic
constant current �Eq. �2��, indicating a dependence on the
size of the fluctuations of the neuronal voltages about the
average network voltage. Both Figs. 7�a� and 7�b� indicate
that the simpler maximal-voltage theory of Sec. IV B 2 de-
scribes the gain curves well in the superthreshold regime, but
the more involved first-passage-time theory of Sec. IV A is
needed to accurately describe the subthreshold regime, in
particular, for larger values of f , i.e., larger fluctuations.

As either f , the strength of the external driving spikes, or
N, the size of the network, increases, it becomes more likely
to find one neuronal voltage further from the mean; this volt-
age reaches threshold faster and causes a total firing event.
To understand the dependence of spike rate, m, on f and N,
we first note that the size of the standard deviation, the

square root of the expression in Eq. �14c�, of the voltage pdf
pv�x , t� scales as �f for fixed f�. Decreasing f within the
small-fluctuation regime tightens the pdf pv�x , t� of the neu-
ronal voltages, thereby extending the amount of time needed
for some neuron to reach threshold, and slowing the firing
rate. We obtain this same scaling for m−1 / �̂, where �̂ is
the deterministic oscillation period in Eq. �2�, by taking
m=1 /�N from Eq. �22� and using the expansion in Eq. �23�.
The size of the network N has a weaker effect on the firing
rate since the typical deviation of the maximal neuronal volt-
age from the mean neuronal voltage in a population of N
neurons grows approximately logarithmically with N. This is
seen through the large-N �i.e., large-N� asymptotics of Eq.
�22�, which give m� f2�N

2 / �VT−VR�2+O�1�, and replacing
the mean N by the expression in Eq. �24�. We have verified
through full simulations of system �Eq. �1�� that the firing
rate depends on the square root of the spike strength f for
small f near the deterministic oscillation period �̂, and loga-
rithmically on the network size N for large N, under fixed
superthreshold external driving strength f�, as shown in the
insets in Fig. 7.

V. PROBABILITY TO BE CASCADE-SUSCEPTIBLE

In this section, we investigate in which parameter regimes
the neuronal network �Eq. �1�� exhibits perfect synchronous
behavior, manifested through cascading total firing events.
As we recall from Secs. III and IV, during such an event, the
firing of one neuron causes all subsequent neurons to fire in
immediate succession. To determine if the network is ex-
pected to exhibit this type of synchrony, we follow the evo-
lution of neuronal voltages initially set at the reset value VR,
and compute the probability that, when the first neuron fires,
all the other neurons are in a configuration that allows for a
cascading total firing event. This is precisely the probability
for the network to be cascade-susceptible. We further inves-
tigate this probability in situations when additional physi-
ological effects that can impede or break synchrony are in-
corporated into the model.

A. Theoretical calculation

A cascading total firing event occurs if, for any given
neuron, the total input current from neurons with greater
voltage, firing previously in the cascade-firing event, is suf-
ficiently large to bring this neuron’s voltage above threshold,
and therefore fire. In other words, the cascade-firing event is
being perpetuated until all neurons fire. If we order the neu-
ronal voltages so that V�k��V�j� for k� j at the time the first
neuron fires, T�1�, then the above consideration can be sum-
marized as an intersection of events in the cascade-
susceptibility condition

C = �
k=1

N−1

Ck, �25�

where Ck denotes the event
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FIG. 7. �Color online� The firing rates determined by the meth-
ods in Sec. IV A �solid lines� and Sec. IV B �dashed lines� are
compared with those obtained from numerical simulations �open
circles� of the system �Eq. �1�� for 300 time units, as a function of
f�. In �a� the gain curves for the indicated values of f while N
=100 and S=10 show the synchronized stochastic network fires at a
rate faster than �̂−1, the synchronized deterministic network firing
rate in Eq. �2� �black line�. In �b� the gain curves are plotted for the
indicated values of N while f =0.01 and S=20. The inset in �a�
compares the results of simulations �symbols� to the first term in the
expansion of 1 /�N−1 / �̂ about f =0, indicating a square root depen-
dence of the firing rate, m, on the size of the fluctuations, f , for
constant f�=1.20, N=100 and S=10. The inset in �b� compares the
results of simulations �symbols� to 1 /�N−1 / �̂ computed with N

from Eq. �21� �solid line� and N=ymax�N�, using the approximation
in Eq. �24� �dash-dot line�, indicating a logarithmic dependence
of the firing rate, m, on the size of the network, N, for constant
f�=1.2, f =0.01, and S=20.

CASCADE-INDUCED SYNCHRONY IN STOCHASTICALLY… PHYSICAL REVIEW E 82, 041903 �2010�

041903-9



Ck:VT − V�k� � �N − k�
S

N
, �26�

with S being the coupling strength among the N neurons in
the network. The probability P�C� of the event C is com-
puted in terms of the distribution of the neuronal voltages.

We compute the probability of condition �25� being satis-
fied by integrating over the conditional probability of the
random time T�1� at which the first neuron fires,

P�C� = �
0

�

P�C�T�1� = t�pT
�1��t�dt . �27�

Here, the pdf for the exit time of the first of N neurons,
pT

�1��t�, is given in Eq. �3�. We simplify the computation by
approximating the conditional probability distribution in the
integrand of Eq. �27� as if each neuronal voltage were inde-
pendently distributed according to its freely evolving �with-
out reset� probability distribution pv�· , t� evaluated at the
specified time t, subject to the condition that the neuron with
maximum voltage is at that moment of time exactly at
threshold,

P�C�T�1� = t� � P�C�V�N��t� = VT� . �28�

The conditions expressed on the two sides of Eq. �28� are
not quite equivalent because the condition T�1�= t implies
also that no neuron’s voltage ever reached threshold before
time t, whereas the approximating condition V�N��t�=VT
makes no reference to the properties of the voltages at times
previous to t. The error in this approximation is expected to
be small because the neuronal voltages are rising on average
so the condition that the neuron with maximal voltage is at
threshold at the end of the interval �0, t� makes it rather
unlikely that any of the neurons crossed threshold much ear-
lier.

Under the approximation in Eq. �28�, in the small-
fluctuation regime, we use the Gaussian approximation �14a�
for the freely evolving single-neuron voltage distribution,
truncated at VR and VT and renormalized to unit integral over
the voltage interval VR�x�VT, to obtain the pdf of the volt-
ages for the neurons which have not yet fired at time t,

p̃v�x,t� =
pv�x,t�

�
VR

VT

pv�x�,t�dx�

, VR � x � VT. �29�

The accuracy of the approximation in Eq. �28� was verified
by measuring the distance between the proposed theoretical
cdf derived from the pdf in Eq. �29� and the sample cdf taken
from full numerical simulations of the system �Eq. �1�� using
the Kolmogorov-Smirnoff test �with significance level �
=0.05�.

To compute the conditional probability in Eq. �27� we will
instead subtract from unity the probability of the comple-
ment of event C, i.e., the probability that the firing event fails
to include all neurons, which is easier to compute explicitly.
The cascade-susceptibility condition �25� is not fulfilled
if it contains at least one value of k for which condition �26�
fails. We divide up the complement of event C into the mu-

tually exclusive events Aj, each requiring condition �26� to
be satisfied for k=N−1 to k=N− j+1 and to have failed for
k=N− j. The total probability of cascade failure is the sum of
the probabilities to fail first at each step,

P�C�V�N��t� = VT� = 1 − �
j=1

N−1

P�Aj�V�N��t� = VT� . �30�

To determine the probability of event Aj, we divide the
voltage interval VR�x�VT into bins of width S /N starting
at VT, so that the first bin is VT−S /N�x�VT. The probabil-
ity pk�t� for a neuron’s voltage to be in the kth bin is given by
the formula

pk�t� = �
VT−kS/N

VT−�k−1�S/N

p̃v�x,t�dx , �31�

with the pdf p̃v�x , t� as in Eq. �29�. For the cascade to fail
precisely at the jth neuron, one neuronal voltage must be in
the first bin, two in the first two bins, three in the first three
bins, and so forth, until j−1 are in the first j−1st bins, none
are in the jth bin, and the remainder fall below the jth bin.
We sum over all configurations of the unordered neuronal
voltages consistent with this description of event Aj, result-
ing in

P„Aj�V�N��t� = VT… = � �N − 1�!
n1!n2! . . . nj−1!�N − j�!

p1�t�n1

�p2�t�n2 . . . pj−1�t�nj−11 − �
i=1

j

pi�t��N−j

�32�

where nk denotes the number of neurons with voltage in the
kth bin, �k=1

j−1nk= j−1, and pk is defined in Eq. �31�.
The remaining problem is to evaluate the terms in Eq.

�30� since enumerating the configurations of neuronal volt-
ages is time consuming for large j. The first few terms domi-
nate this sum, as simulations show that the cascading event is
very unlikely to fail after the first four or five neurons fire.
When evaluating the probability P�C�, the sum in Eq. �30� is
terminated when terms are less than 10−4. With this toler-
ance, two to nine terms are included depending on the pa-
rameter values. In the next section, we compare this method
of computing P�C� to the result of direct numerical simula-
tions and discuss the dependence on the network parameters.

B. Parameter dependence of synchrony

The previous section analyzed a mechanism for the net-
work �Eq. �1�� to maintain a self-consistent state of syn-
chrony by calculating the probability to see repeated cascad-
ing total firing events. Using numerical simulations, we
calculate the probability to be cascade-susceptible by repeat-
edly starting all neurons at reset voltage, which is the state
after a previous cascading total firing event, and simulating
the network dynamics until the first neuron fires; the prob-
ability to be cascade-susceptible is the fraction of the total
number of simulations represented by those that lead to the
firing of all N neurons in the network. The theoretical char-
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acterization, P�C� as discussed in Sec. V A, of the network
synchronizability in terms of its governing parameters agrees
well with results from numerical simulations, as illustrated in
Fig. 8, and therefore allows for a quantitative analysis of
how the network synchrony depends on the model param-
eters, f , N, S, and f�.

The synchronizability as characterized by P�C� has
smooth dependence on parameters �Figs. 8 and 9�. The sys-
tem becomes more synchronizable as P�C� becomes steeper
for smaller spike strength f with the driving strength f� held
constant. Larger values of f correspond to larger fluctuations
spreading the neuronal voltages apart, requiring larger net-
work coupling strengths for the cascade-susceptibility condi-
tion �25� to hold with high probability. From Fig. 8, the
synchronizability appears to depend at most weakly on the
network size N, apart from the dependence on the scaled
coupling strength S /N.

The network becomes less synchronizable for subthresh-
old driving �Fig. 9�. As the average neuronal voltages fall
further below threshold, it is less likely a neuronal voltage is
S /N from threshold when the first neuron fires, thus it is less
likely for the cascading event to begin. The smooth param-
eter dependence of the synchronizability characterized by
P�C� develops a sharp transition which approaches a thresh-
old, f�=1, as the fluctuations decrease, i.e., f decreases for
fixed f�. The network in the zero-fluctuation regime, in
which all the neurons in the network are driven with constant
current of strength f�, would have a sharp transition at

f�=1 from no firing �P�C�=0� to synchronous firing
�P�C�=1�, as depicted in the inset of Fig. 9.

C. Additional physiological effects

A number of physiological effects as yet not included in
the model �1� are likely to reduce the probability of total
firing events or eliminate them altogether. These effects in-
clude network sparsity, synaptic failure, random transmission
delays, and finite current rise and decay times. We add them
one at a time to the model and investigate how they affect the
synchrony by comparing corresponding raster plots qualita-
tively and calculating the probability to be cascade-
susceptible both theoretically and from numerical simula-
tions.

Spikes from one neuron in the network are prevented
from affecting another neuron in two possible ways: perma-
nently, if no synaptic connection exists between the two neu-
rons, or occasionally, if the synaptic transmission fails at
random. To model the first case, we construct a random
sparse network from an all-to-all coupled network by remov-
ing each connection independently with probability pc. Thus,
a single neuron will be connected to �1− pc�N other neurons
on average. We take 1− pc sufficiently large so that the net-
work is likely to have only one connected component, oth-
erwise a total firing event would be impossible. The second
case, random synaptic transmission failure, is modeled by
preventing each spike within the network from reaching any
one of its target neurons with probability pf. This is done by
replacing the current driving the jth neuron in Eq. �1b� with
a current of the form

Ij�t� = f�
l

��t − sjl� +
S

N
�
i�j

�
k

� jik��t − �ik� ,

where � jik=0 with probability pf, and 1 with probability
1− pf. In effect, each neuron behaves as though it is con-
nected to �1− pf�N other neurons on average. In both cases,
the number of input spikes a neuron receives from the other
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FIG. 8. �Color online� Probability that condition �25� holds,
P�C�, vs network coupling strength scaled by network size, S /N,
computed with the method in Sec. V A �lines� and from numerical
Monte Carlo simulation of system �1� �symbols�, averaged over 500
simulations. Top: for the indicated values of f , N=100 and f�
=1.2. Bottom: for the indicated values of N, f�=1.2 and f =0.001.
Inset: same data plotted vs S.
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FIG. 9. �Color online� Probability that condition �25� holds,
P�C�, vs mean external current, f�, computed with the method in
Sec. V A �solid lines� and from Monte Carlo numerical simulation
of system �1� �symbols�, averaged over 500 samples. For each curve
with the indicated values of f , N=100 and S=1.5. Inset: Value of f�
at the location of the transition �where P�C�=0.5� between asyn-
chronous and synchronous behavior as a function of fluctuation
size, f .
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neurons in the network is reduced. In statistical mechanics
terms, synaptic failure is an annealed disorder in which the
randomness of connections between neurons keeps fluctuat-
ing, while the random sparsity in the network is a quenched
disorder as the randomness of connections between neurons
is frozen from the start of the simulation.

Synaptic failure and network sparsity affect the probabil-
ity to be cascade-susceptible in a statistically identical fash-
ion. The transition from synchronous to asynchronous behav-
ior remains smooth as either pf or pc is increased �Fig. 10�.
We implement a rough modification for our theoretical cal-
culation of P�C� to account for either. When considering the
arrangement of the subthreshold neurons, not only must con-
dition �26� be satisfied for appropriate values of k, but the
neuron must receive each spike either by being connected to
the spiking neuron �with probability 1− pc� or having suc-
cessful transmission �with probability 1− pf�. We modify the
calculation of P�C� by multiplying the voltage distribution
given in Eq. �29� used in calculating P(Aj �V�N��t�=VT) in Eq.
�30� by either 1− pc or 1− pf. This modification is rather
crude, in that each neuron is assumed to receive or not re-
ceive every potential incoming spike according to whether or
not it received the first potential incoming spike. Still, this
agrees approximately with the results from numerical simu-
lations �Fig. 10�. Unlike in the discrete model discussed in
�66�, we do not see the persistence of both a synchronous
and asynchronous state for the same parameter values.

Although both synaptic failure and network sparsity are
equally effective at reducing synchrony in terms of the prob-
ability to be cascade-susceptible, neither is effective at com-
pletely removing the coherent structure of cascading events
with many neurons in the network firing at the same time, as
shown in the raster plots in Fig. 10. These cascading events
are a product of the instantaneous coupling between the neu-
rons in the network, and can be eliminated by adding random

delay times to the transmission of spikes, or by incorporating
finite rise and decay times in the synaptic current model,
effectively imposing a transmission delay.

Random delays between the time a neuron spikes and the
times the other neurons in the network receive these spikes,
modeling the variable speed of transmission or axon length
�67–69�, can be described by replacing the current in Eq.
�1b� with

Ij�t� = f�
l

��t − sjl� +
S

N
�
i�j

�
k

��t − �ik − Tjik� , �33�

where each Tjik is a non-negative random variable. For sim-
plicity, we take Tjik to be exponentially distributed with com-
mon mean.

Incorporating finite current rise and decay times in the
network �Eq. �1�� amounts to replacing the instantaneous,
delta-function currents in Eq. �1b� by �-function type cur-
rents, where we take

��t� = ��t�
t

�E
2 e−t/�E, �34�

with �E being the decay time and ��t� the Heaviside func-
tion. �The rise time is defined as the time when ��t� reaches
its maximum.� As the model currents are now continuous in
time, a neuron can spike at times later than those at which it
receives spikes. Thus, while the differential equation �1a�
with this type of continuous current can still be solved ex-
plicitly, the spike times must be found numerically. Alterna-
tively, we numerically simulate the network �Eq. �1a�� with
the delta-function currents in Eq. �1b� replaced by �-type
currents �Eq. �34��, using a modified version of the algorithm
developed in �70�.

Networks with synaptic transmission delays are always
asynchronous by our definition �Fig. 11�, as transmission de-
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FIG. 10. �Color online� Behav-
ior of the network �Eq. �1�� with
the addition of �top� synaptic fail-
ure and �bottom� sparse random
network connections. Theoretical
computation with modification to
Eq. �30� �solid lines� is compared
to results from numerical Monte
Carlo simulations �circles with er-
ror bars�, averaged over 500 simu-
lations and �bottom� 10 networks.
The values f =0.001, f�=1.2,
S=2.0, and �right� the indicated
values of pf and pc, �top left�
pf =0.90, �bottom left� pc=0.90
are used.
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lays make total firing events impossible �P�C�=0�. However,
the firing of the network is still synchronous in a broader
sense as there are smaller intervals of high firing rate and
larger intervals during which no neurons fire. A relatively
large delay time relative to the time between the periods of
high firing rate is needed to completely desynchronize the
network.

Finite current rise times effectively act as �fixed� synaptic
delay times since, upon receiving a spike, a neuron’s voltage
does not increase instantaneously and so a neuron is not
likely to spike immediately. Therefore, synchronous total fir-
ing events are again impossible �Fig. 12� in networks incor-
porating finite current rise and decay times, and thus P�C�
=0. Similarly to the random delay times, this network with
finite current rise times maintains synchrony in a broader
sense as described in the preceding paragraph. Long rise and
decay times are needed to completely eliminate this broader
synchronous firing.

VI. CONCLUSIONS

Oscillatory dynamics involving cascading total firing
events in Poisson-train-driven, all-to-all coupled, excitatory,
integrate-and-fire neuronal networks with instantaneous spik-
ing appear to be natural attracting states of such networks, at
least in the small-fluctation regime �66,71�. Our own numeri-
cal simulations have confirmed that the basin of attraction for
such oscillatory dynamics is quite large, unlike for the asyn-
chronous dynamics, for which this basin becomes smaller
and smaller as the size of the external-drive fluctuations de-
creases �58,71�. As we show in Sec. V B, the sharp threshold
separating no firing in the subthreshold driving case and pe-
riodic cascading total firing events in the superthreshold
driving case, which exists when the external driving is deter-
ministic �24�, gives way to a continuous probability distribu-
tion of total firing events, depending on the external driving
strength and other network parameters, when the network is
Poisson-train-driven.
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FIG. 11. �Color online� Raster plots demonstrating the behavior
of the network with random transmission delay. N=100, f =0.001,
f�=1.2, S=0.1; �top� no delay �middle� average delay 0.002 �bot-
tom� average delay 0.2
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FIG. 12. �Color online� Raster plots for the network with the
delta functions in Eq. �1b� replaced by t2 /�E

2 exp�−t /�E�. N=1000,
f =0.001, f�=1.2, S=0.1; �top� �E=3�10−6 �middle� �E=3�10−2

�bottom� �E=3�10−1
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The notion of synchronizability as defined in this work
and with it the probability P�C� of a network to be cascade-
susceptible are rather stringent in requiring all neurons to fire
together in cascading total firing events. In particular, the
assumption of infinitely short and instantaneously transmit-
ted spikes is crucial for the perfect synchrony described here,
and thus also the relevance of the probability P�C�. As we
have seen in Sec. V C, the inclusion of either delay times or
finite current rise times immediately destroys perfect syn-
chrony. Nevertheless, a statistical type of synchrony survives
provided these times are not too long, and a proper statistical
description of it is a challenging open problem. Our firing-
rate approximations developed in Secs. IV A and IV B 2
should still be at least approximately applicable under the
conditions of imperfect synchrony when a few neurons fire
out of step �Fig. 13�.

The work presented in this paper was in part motivated by
the desire to understand the attractor states of different IF-
type neuronal networks. For all-to-all coupled Hodgkin-
Huxley networks, three types of attractor states were found
numerically using a generalization of Lyapunov exponents
for dynamical systems with discontinuities: periodic, chaotic,
and quasiperiodic �72,73�. If IF-type systems are to give
truly useful approximate descriptions of neuronal-network
dynamics, they should be able to reproduce the same dy-
namical regimes. That this is indeed the case was confirmed
for all-to-all coupled conductance-based IF networks with
finite conductance rise and decay times �74�. On the other
hand, the model network with instantaneous response dis-
cussed here cannot exhibit chaotic dynamics �58�. The dis-
cussion in Sec. III shows that spike-to-spike synchrony via
total firing events appears to be one of the prevalent attract-
ing states of the network even under random, Poisson-train
external drive. This is one of the reasons why we have un-
dertaken a thorough, analytical investigation of this syn-
chrony.

The network dynamics we have discussed in this paper
could be modified to include a highly idealized, instanta-
neous version of the bursts that occur in all-excitatory net-
works, as described in �19–23�. This modification would

consist of allowing a neuron’s voltage to jump up in the
course of a cascading firing event even after this neuron has
fired. Thus, every neuron would have the potential to spike
several, if not infinitely many, times during one such an
event. The resulting instantaneous bursts could therefore in
principle contain infinitely many spikes; for this not to hap-
pen, one should include refractory effects such as synaptic
depression consisting of either an increased probability of
transmission failure or some attentuation mechanism for the
size of voltage jumps due to a spike as the burst proceeds.

Finally, in Sec. V C we also addressed the question of
how network architecture affects perfect synchrony in the
case of a sparse network with randomly chosen missing in-
terneuronal connections. For more general network architec-
ture types, this question is still open. We are in the process of
addressing it in the case of scale-free networks �75�.
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APPENDIX A: SOLUTION TO THE FPE

To solve Eq. �7�, we develop a series expansion of the
form �64�

pv�x,t� = ps�x��
n=0

�

AnQn�x�e−�nt, �A1�

where Qn�x� and �n are the eigenfunctions and eigenvalues
of the adjoint problem

�− gL�x − VR� + f��
d

dx
Qn�x� +

f2�

2

d2

dx2Qn�x� + �nQn�x� = 0,

�A2a�

with boundary conditions

d

dx
Qn�x��x=VR

= 0 �A2b�

and

Qn�VT� = 0. �A2c�

The function

ps�x� = exp�−
�gL�x − VR� − f��2

f2�gL
� �A3�

is the stationary solution for the related problem of Eq. �7�
but with reflecting boundary conditions at both ends �zero
flux�. The constants An are determined from the initial con-
dition �9� via the equation
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FIG. 13. �Color online� Gain curve comparison between the
theory �solid line� derived in Sec. IV A and full numerical simula-
tions of the system �Eq. �1�� �symbols� when P�C��0.85, our cut-
off for classifying the network as synchronous. For the two values
of internal coupling, we keep N=100 and f =0.001 constant. Inset:
the value of P�C� obtained from Monte Carlo numerical simula-
tions �500 samples� for both values of S as a function of f�.
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�
VR

VT

��x − VR�Qn�x�dx = An�
VR

VT

ps�x�Qn
2�x�dx ,

for which the �-function resides inside the interval, as it rep-
resents the initial probability density and must integrate to
unity, so that

An =
Qn�VR�

�
VR

VT

ps�x�Qn
2�x�dx

. �A4�

The solution to Eq. �A2a� is obtained through two trans-
formations of variables. First, we shift and rescale the vari-
able x so that

z =
gL�x − VR� − f�

f�gL�
.

The system is now driven to z=0 by the average drift, and
has essentially been rescaled by the standard deviation,
which is O�f���. Taking another transformation, �=z2, Eq.
�A2a� for Qn�x� becomes the equation for the transformed

solution Q̂n���,

�Q̂n���� + �1

2
− ��Q̂n���� +

�n

2gL
Q̂n��� = 0, �A5�

where Qn�x�= Q̂n��(z�x�)�.
Equation �A5� is a subcase of the confluent hypergeomet-

ric equation

�
d2w���

d�2 + �b − ��
dw���

d�
− aw��� = 0. �A6�

Its solutions are linear combinations of the Kummer function
�76�,

1F1�a,b,�� = �
n=0

�
�a�n�n

�b�nn!
, �A7a�

and either

�1−b
1F1�1 − a,2 − b,�� �A7b�

or the associated Kummer function

U�a,b,�� =
�

sin �b
 1F1�b − a,b,��

��1 + a − b���b�

−
�1−b

1F1�1 − a,2 − b,��
��a���2 − b� � . �A7c�

Here �c�0=1, �c�n=c�c+1��c+2� . . . �c+n−1� is the Poch-
hammer symbol �77�.

For our Eq. �A2�, the first solution in terms of the variable
z, where the replacement �=z2 has been made, is

1F1�−
�n

2gL
,
1

2
,z2� . �A8a�

The second linearly independent solution can be written as
either

�z� 1F1�−
�n

2gL
+

1

2
,
3

2
,z2� �A8b�

or

U�−
�n

2gL
,
1

2
,z2� . �A8c�

We choose those forms of the second solution at different
stages of the calculation to best reduce numerical error.

The two functions in formulas �A8b� and �A8c� are not
smooth at z=0 because the mapping of z→� is 2–1 rather

than 1–1. Since the solutions, Q̂(��z�), must be continuously
differentiable at z=0, two different linear combinations must
be taken for z�0 and z�0, with function and derivative
matching at z=0. The resulting 4�4 system of equations for
determining the eigenvalues reduces to a single equation,

�1��n� + �2��n� = 0, �A9�

where for any given basis of y1�z� from Eq. �A8a� and y2�z�
chosen from Eqs. �A8b� and �A8c�, we define �1��n�
= �dy2�zR� /dz� / �dy1�zR� /dz� and �2��n�=y2�zT� /y1�zT�.
Equation �A9� is solved numerically for the eigenvalues, �n.
The solution, pv�x , t�, to Eq. �7� is obtained by numerically
evaluating a sufficiently large number of terms in Eq. �A1�.

APPENDIX B: CUMULANTS OF THE SUBTHRESHOLD
VOLTAGE PDF

In this appendix, we compute the cumulants of the neu-
ronal voltage v j�t� given by Eq. �13�, which were used in the
argument presented in Sec. IV B 1.

We revisit the neuronal voltage v j�t� in Eq. �13�, which
was derived from the differential equation �1� for the time
period between total firing events. Since the external drive to
any neuron is given by a Poisson spike train, at any given
time t�0, the number M�t� of the spike times sjl that have
arrived at the neuron by this time is Poisson distributed with
mean �t, and their locations can be considered as generated
independently from the uniform distribution over the time
interval 0�s� t �78�. Therefore, for statistical purposes,
we can rewrite Eq. �13� as

v�t� = VR + �
l=1

M�t�

fe−gL�t−Ul�t��, �B1�

where the random variables Ul�t�, l=1, . . . ,M�t�, are inde-
pendent and uniformly distributed between 0 and t. Equiva-
lently, v�t� is the sum of a random number, M�t�, of indepen-
dent random variables, each identically distributed over the
r-interval fe−gLt�r� f with the pdf 1 /rgLt.

We next find the cumulants of v�t� in Eq. �B1� by repeated
differentiation of the cumulant generating function, �v�k�
=ln
eikv�t�� �78�. For the sum in Eq. �B1� of a random number
of independent and identically distributed random variables,
the characteristic function 
eikv�t�� is the composition of the
probability generating function 
sM�t��=exp(�t�s−1�) of the
Poisson-distributed number of spikes and the characteristic
function of each term in the sum �78�, and equals
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�v�k� = ikVR + �t 1

gLt
�

fe−gLt

f eikr

r
dr − 1� . �B2�

The nth cumulant cn�v�t�� of the voltage in Eq. �B1� is given
by the expression

cn�v�t�� = �− i�n�dn�v�k�
dkn �

k=0
,

which gives the mean voltage c1�v�t�� as in Eq. �14b�, and

cn�v�t�� =
fn�

ngL
�1 − e−ngLt� �B3�

for n	2. In particular, the voltage variance is given by Eq.
�14c�.

We find, in particular, that the nth cumulant of the voltage
is of order O��fn�. �The O�fn� dependence of the cumulants
follows simply from the appearance of the spike strength, f ,
as a multiplicative constant in the random terms of the sum
in Eq. �13��. In the small-fluctuation regime, we demand that
f�=O�1� while taking f �gL�VT−VR� and �
gL, and so we
find that the mean voltage is O�1� and its standard deviation
is O���f�. Therefore, the nth order cumulants of the pdf of

the voltage in Eq. �13�, normalized with respect to its stan-
dard deviation, will scale as ��fn� / ���f�n�O��1−n/2�, which
is indeed negligible for n	3.

APPENDIX C: ASYMPTOTIC FOR APPROXIMATION
OF AVERAGE MAXIMAL VOLTAGE

Here, we derive the approximate formula �24� for the
maximal value ymax�N� of the pdf g�N��y� in Eq. �19�. From
the definition of the function erf� · � in Eq. �15�, we find
that ymax�N� solves the equation ��y /�2�1+erf�y /�2��
= �N−1�e−y2/2. For y	0, the left-hand side of this equation is
an increasing function of y, beginning with zero value at y
=0, while the right-hand side is a decaying function of y.
Therefore, this equation has a unique solution. As the left-
hand side is clearly smaller than the right-hand side for
y=O�1� and N
1, we know that the solution must satisfy
y
1. Using the large-z asymptotic expansion erf�z�
�1−e−z2

/��z+O�e−z2
/z3�, we consequently derive the ap-

proximate equation �2�y=Ne−y2/2+O�Ne−y2/2 /y2�, valid for
large N and y. At the leading order, this equation can be
rewritten as y2=ln�N2 /2��−ln y2, and two iterations produce
the approximation in Eq. �24�.
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