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The nonlinear Langevin equation theory of segmental relaxation, elasticity, and mechanical response of
polymer glasses is extended to describe the coupled effects of physical aging, mechanical rejuvenation, and
thermal history. The key structural variable is the amplitude of density fluctuations, and segmental dynamics
proceeds via stress-modified activated barrier hopping on a dynamic free-energy profile. Mechanically gener-
ated disorder �rejuvenation� is quantified by a dissipative work argument and increases the amplitude of density
fluctuations, thereby speeding up relaxation beyond that induced by the landscape tilting mechanism. The
theory makes testable predictions for the time evolution and nonequilibrium steady state of the alpha relaxation
time, density fluctuation amplitude, elastic modulus, and other properties. Model calculations reveal a rich
dependence of these quantities on preaging time, applied stress, and temperature that reflects the highly
nonlinear competition between physical aging and mechanical disordering. Thermal history is “erased” in the
long-time limit, although the nonequilibrium steady state is not the literal “fully rejuvenated” freshly quenched
glass. The present work provides the conceptual foundation for a quantitative treatment of the nonlinear
mechanical response of polymer glasses under a variety of deformation protocols.
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I. INTRODUCTION

Polymer liquids are ubiquitous glass formers due to their
inherently slow kinetics and common inability to crystallize
due to single chain structural disorder quenched in during
chemical synthesis. Many aspects of their local dynamics in
the supercooled melt are qualitatively similar to other glass
formers, although distinctive effects arise associated with
variable chain length and backbone stiffness, and also their
possibility to spontaneously orient �liquid crystals� and me-
chanically deform in a moltenlike state �rubber networks�
�1–5�. The alpha relaxation process occurs on the “statistical
segment” ��nm� scale, which sets the elementary time scale
for a hierarchy of relaxation processes associated with coop-
erative intrachain motions �6�.

Polymers in the amorphous solid state �below Tg� are not
only of scientific interest but also of great practical impor-
tance as engineering plastics �7–10�. Many new phenomena
emerge: �i� the temperature dependence of the alpha time
changes to a simpler Arrhenius form; �ii� physical aging is
pervasive since most polymer glasses are used at tempera-
tures not far below Tg; and �iii� mechanical deformation re-
sults in strain softening, yielding, local plastic flow, and
strain hardening �a uniquely polymeric phenomenon� in a
manner that depends strongly on temperature and strain rate.
At lower strains �“preyield” regime�, aging, thermal history,
and mechanical response are coupled. However, at large
�“postyield”� strains, aging and thermal history are “erased”
and a nonequilibrium steady state is achieved. How such
relaxation and mechanical phenomena can be fundamentally
understood at a segmental level is a major theoretical chal-
lenge.

Recent experiments on polymer glasses have revealed an
intimate coupling between macroscopic nonlinear mechani-
cal response in creep and relaxation on the local segmental
scale �11–15�. A similar conclusion has been drawn from
simulations �16–21�, with segmental dynamics being surpris-
ingly isotropic even under conditions of large strains before
the hardening response emerges. These findings represent
significant simplifications in the quest for a predictive theory
of relaxation and nonlinear mechanics.

Building on a microscopic first-principles theory of acti-
vated barrier hopping, glassy dynamics, and nonlinear vis-
coelasticity of spherical particle liquids and colloidal suspen-
sions �22–25�, we recently proposed and widely applied a
lightly coarse-grained segmental scale statistical mechanical
approach for cold polymer liquids and glasses �26–35�. The
key slow dynamical variable is the experimentally observ-
able collective density fluctuation amplitude on segmental
and beyond length scales. Barrier hopping is described based
on the concept of a local dynamic free energy which is de-
termined by structural properties and thermodynamic state.
Physical aging has been addressed in the absence of me-
chanical deformation �29,30�, and a constitutive equation for
nonlinear mechanical response developed in the absence of
aging and mechanical disordering �“rejuvenation”� �31,32�.
This theoretical work has been recently reviewed �36,37�.

Despite significant successes, a unified nonlinear Lange-
vin equation �NLE� description that simultaneously includes
aging, deformation lowering of activation barriers, and me-
chanical rejuvenation does not exist. Hence, phenomena such
as the “yield stress peak,” “strain softening,” erasure of ag-
ing, and the full nature of the steady state plastic flow regime
have not been addressed. The goal of the present work is to
propose the conceptual generalization of our polymer glass
theories to treat these more complex issues. Given the high
difficulty of this nonequilibrium statistical physics problem,
we are guided by a combination of hints gleaned from ex-*kschweiz@illinois.edu
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periment, simulation and ideas proposed in the context of the
shear transformation zone �STZ� theory of atomic glass plas-
ticity �38�.

Section II recalls relevant aspects of prior work. A quan-
titative model for the combined effects of mechanical disor-
dering, aging, and constitutive response is formulated in Sec.
III. Model calculations are presented in Sec. IV to illustrate
key predicted trends. The paper concludes in Sec. V with a
summary and future outlook.

II. THEORETICAL BACKGROUND

We briefly discuss the prior work that provides the foun-
dation for our extensions. Detailed explanation of both the
theoretical concepts and technical approximations are given
in the literature and two review articles �36,37�.

A. Basics and quiescent supercooled melts

The NLE theory of glassy polymer dynamics is formu-
lated at a lightly coarse-grained statistical segment level �26�.
It is a simpler analytic version of the fully microscopic for-
mulation that has been widely applied to dense particle fluids
and colloidal suspensions �22–25�. Segments represent a col-
lection of a few real monomer units and have a size �
=�C�lb, where lb is the chemical backbone bond length
��0.15 nm� and C��4–10 is the characteristic ratio. Dy-
namical degrees of freedom are separated into two catego-
ries: �i� very local and fast �intrasegment scale� motions
which are treated in an irreversible manner via a friction
constant ��s� or “bare” Arrhenius relaxation time scale,
�0�T���0 exp��A /kBT� ��0�10−14�1 s is a vibrational time
scale, and �A a local activation energy�, and �ii� the slower
segmental scale degrees of freedom which define the alpha
relaxation. Segmental dynamics is described by a stochastic
NLE formulated based on dynamic density functional and
local equilibrium ideas �23,26,36�,

�s
�r��t�

�t
= −

�Fef f�r��t��
�r��t�

+ 	f��t� , �1�

where r��t� is the absolute value of the displacement of seg-
ment � from its initial �t=0� position, the white-noise ran-
dom force satisfies 		f��0�	f��t�
=2kBT�s	�t�, and the “dy-
namic free energy” is the key quantity which describes an
effective force exerted by the surroundings and is given by


Fef f�r� = − 3 ln�r� −� dq�

�2��3�C0
2S�q��1 + S�q��−1


exp�−
q2r2

6
�1 + S−1�q��
 , �2�

where 
��kBT�−1 is the inverse thermal energy. The first
term can be thought of as an ideal entropy like contribution
that favors delocalization �liquid state�, or more accurately
describes a short-time Fickian diffusion process in Eq. �1�
presumed to describe the irreversible highly local dynamics
at small segmental displacements �23,37�. The second “cag-
ing” term describes the effect of interpolymer forces which
favors segmental localization �glass state�. Subnanometer

structural and interaction potential length scales are averaged
over at the statistical segmental scale, resulting in a
site-site direct correlation function C�q�=C�q=0�=C0 and
collective density fluctuation structure factor given by
S−1�q�=S0

−1+ 1
12q2�2. Under equilibrated conditions the latter

are time-independent structural or thermodynamic quantities,
where S0=�kBT�= �−�C0�−1 is the dimensionless isothermal
compressibility that quantifies the amplitude of thermal
density fluctuations on nanometer and beyond scales, �
is the isothermal compressibility, and ��3 is the reduced
segmental density. Theory and experiment suggest that
S0

−1/2=−A+ �B /T�, where A�0 and B correlates with mono-
mer cohesive energy �26�. At the segmental level, Fef f�r� is
determined for long chains by a single material-specific
“coupling constant”

� � ���3S0
3/2�−1, �3�

which increases with cooling or pressure and involves only
measurable equilibrium quantities.

Equations �1�–�3� predict a dynamical crossover at
�c=8.32 where Fef f first acquires a “localized form” with a
minimum �at a localization length, rloc� and barrier �FB�. This
crossover defines a naive mode coupling theory �MCT�
�26,39� “ideal glass transition” at Tc=B�A+ ��c��3�1/3�−1.
The focus of NLE theory is the deeply supercooled regime
where numerical calculations of barriers are well represented
as 
FB�c��−�c��, c�0.4, and ��1.4. Given the complex-
ity of polymeric liquids �including the fast relaxation pro-
cess� and the lightly coarse-grained segmental description
adopted, we do not numerically solve stochastic evolution
equation �1�. Rather, as thoroughly discussed and physically
motivated previously �26,36,37�, we implement a simpler
analytic approach which employs only the dynamic free en-
ergy barrier computed using Eq. �2�. Specifically, a mean
hopping or alpha time, ���T�, is determined in a Kramers-
like manner �26�,

���T� = �0 exp� �A

kBT
�exp�acFB�T�

kBT
� . �4�

The local activation energy is determined by adopting the
recent proposition �40� of a �nearly� universal dynamical
crossover time: �0�Tc���0 exp��A /kBTc��10−7�1 s. Short-
range intrachain correlations due to backbone stiffness are
expected to introduce a cooperativity of the hopping event
which is crudely modeled in Eq. �4� via a material-specific
temperature-independent parameter, ac, which is the number
of dynamically correlated segments along the chain and is
a priori estimated to be ac�1–8 �28�. NLE theory predicts
sensible values for Tc, and also Tg based on the experimental
criterion ���Tg�=10x s, where x=2–4. The glassy elastic
shear modulus G� due to interchain stresses can be calcu-
lated using a standard Green-Kubo formula �34,37�,

G� =
kBT

60�2�
0

�

dq�q2 d

dq
ln�S�q��
2

e−q2rloc
2 /3S�q�. �5�

Young’s modulus follows as E��2.8G� �31�.
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B. Relaxation and physical aging below Tg

Extension of NLE theory to below Tg assumes that the
dimensionless density fluctuation amplitude remains the rel-
evant slow variable and caging constraints are quantified by
its nonequilibrium value which becomes time dependent if
aging occurs �34�. From a potential energy landscape �PEL�
perspective, density fluctuations have two contributions: vi-
brational motions �intrabasin� which remain equilibrated at
temperature T and larger scale structural rearrangements �in-
terbasin� which fall out of equilibrium below Tg �41,42�. Af-
ter a rapid quench, the temperature dependence of S0 changes
and scattering experiments are well represented as �a�
S0�T sufficiently far below Tg as in a harmonic solid and �b�
saturation at a nonzero value as T→0 due to frozen-in den-
sity fluctuations, S0�T→0��bS0�Tg�, where experimentally
b�0.4–0.75. This motivates a minimalist form in the
quenched glass �34�,

S0�T� = bS0�Tg� +
T

Tg
�1 − b�S0�Tg� , �6�

where the second �first� term is the contribution from the fast
�slow� degrees of freedom. In the absence of aging, the
theory predicts an Arrhenius-like temperature dependence of
the segmental relaxation time, in accord with many experi-
ments �34�.

The amplitude of density fluctuations, which is the funda-
mental structural variable that determines the mean segmen-
tal relaxation time, becomes time dependent under nonequi-
librium aging conditions. A first-order kinetic model �29,30�
is employed to describe the time evolution of S0�t� from its
nonequilibrium quenched value �t=0� to the smaller equilib-
rium value, S0,l,

dS0�t�
dt

= −
S0�t� − S0,l

���t�
. �7�

This rate equation actually describes the time evolution
of the slow configurational part of the density fluctuation
amplitude, �S0�t��S0�t�− �T /Tg��1−b�S0�Tg�. The physical
idea is equilibration “down the landscape” proceeds
via activated hopping which is self-consistently
determined by S0�t� via Eqs. �3�, �4�, �6�, and �7�. Only ex-
perimentally measurable quantities enter, and the solution of
Eq. �7� is of an “effective time” form: S0�t�−S0,l
= �S0�0�−S0,l�exp�−�0

t �dt� /���t����. An “effective tempera-
ture” idea is not invoked, but a fictive temperature can be
computed postfacto �29�. On intermediate time scales, the
theory predicts logarithmic aging of thermodynamiclike
properties and apparent power-law aging of the alpha relax-
ation time, ���t�� t��T�, in good agreement with polymer ex-
periments �29,30�. Note that since the relaxation time and S0
are directly coupled via the barrier height, our aging theory
can also be thought of as formulated in terms of an evolution
equation for the segmental relaxation time.

C. Effect of applied stress

External stress is modeled via an instantaneous dynamical
variable analog of the Eyring landscape tilting idea �43–45�.

Stress introduces an anisotropic bias which lowers activation
barriers corresponding to a direct mechanical acceleration of
relaxation. In the spirit of the MCT of rheology �46� and
early soft glassy rheology models �47�, the stress-induced
force is modeled in a spatially isotropic manner. Such a sim-
plification is supported by simulations which find local
glassy relaxation is massively sped up by stress but in a
nearly isotropic fashion �17,19�. This physical picture im-
plies that the dynamic free energy acquires a new term of a
mechanical work form �35,48�,

Fmech�r� = − f · r, f = c�2� , �8�

where � is applied stress and c is a constant of order unity.
Stress reduces the barrier and accelerates relaxation but with
multiple non-Eyring features �35�. The barrier is destroyed at
an “absolute yield stress,” �abs, whence cage escape no
longer requires thermal activation in the manner of an “ather-
mal” or “granular” limit. Stress also increases the localiza-
tion length, thereby reducing the elastic modulus in Eq. �3�.

In this zeroth-order model the coupling constant of Eq. �3�
is assumed to be unmodified by deformation, and thus me-
chanical rejuvenation effects are ignored. The fast relaxation
time scale, �0�T�, is also assumed to be deformation and age
independent. Theoretical predictions for the initial reduction
of �� under moderate stress agree well with experiments and
simulations, but large deviations emerge in the postyield re-
gime associated with the onset of plastic flow and strain
hardening �10,20�.

D. Constitutive equation

Under quenched conditions �no aging or mechanical reju-
venation�, a generalized Maxwell constitutive equation has
been proposed where the only input is the stress-dependent
elastic modulus and mean segmental relaxation time �31�,

��t� = �
0

t

E�t − t���̇�t��dt�, �9�

where �̇�t� is a time-dependent strain rate. The deformation-
dependent modulus obeys

dE�t;��t��
dt

= −
E�t;��t��
�����t��

�10�

and hence

��t� = �
0

t

dt�E����t���exp�− �
t�

t

dt���
−1���t���
�̇�t�� .

�11�

Equation �11�, plus the stressed versions of Eqs. �4� and �5�,
comprises a self-consistent nonlinear description of mechani-
cal response, elasticity, and relaxation. For a constant rate
experiment the strain �= �̇t, and the stress-strain relation is

���� = �
0

�

d��E�����exp�− �
��

�

d����̇�������−1
 . �12�

Plastic flow, as defined by a constant steady-state stress at
large times �strains� in the absence of strain hardening, cor-
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responds to a dynamic yield or plastic flow stress self-
consistently determined by

�y = �̇E���y�����y� . �13�

Detailed calculations of stress-strain curves for polymethyl-
methacrylate �PMMA� show that the experimental deforma-
tion behavior is well described under rapidly quenched con-
ditions �31�. However, if the latter is relaxed, then the theory
does not capture the experimentally observed local maxi-
mum �stress overshoot� and strong preaging effects.

The theory has also been worked out for constant stress
creep experiments �32�, and good agreement is found under
preflow conditions �32�. But, the massive increase of stress
observed in polymer glasses at high strains is not captured. A
successful theory for this nonentropic strain hardening phe-
nomenon has been formulated based on the idea that it is a
consequence of prolongation of �� and increase of flow stress
due to anisotropic chain deformation and packing �33�. How
strain hardening is modified by aging and rejuvenation is not
addressed in this paper.

E. Open issues and theoretical approach

Our prior theoretical work has achieved significant under-
standing of the relaxation and nonlinear mechanical response
under rapidly quenched and no aging conditions �36,37�.
However, the following important physical effects have not
been treated, and addressing them is our present goal. �1�
Incorporation of a quiescent thermal history before a me-
chanical test is performed. What is the role of waiting �pre-
aging� time and quench depth? �2� Inclusion of aging during
a nonlinear mechanical experiment. When is this important?
�3� Formulation of a theory for stress-induced enhancement
of density fluctuations, i.e., mechanical rejuvenation. �4� Re-
lated issues include �i� how deformation modifies aging in
the preyield versus postyield regimes; �ii� how rejuvenation,
aging, and strain rate couple to determine the nonequilibrium
steady state; and �iii� how the latter is related to the quenched
material. Note that mechanical deformation influences the
dynamic free energy in two distinct manners: �a� a “passive”
direct landscape tilting as in Sec. II C, and �b� an active
change via mechanical modification of S0 �rejuvenation�.

Although the full numerical stochastic NLE approach in-
cludes dynamic heterogeneity �DH� effects �23–25�, we
adopt the mean-field framework underlying the analytic
polymer version of theory �26–28,36,37� and do not consider
a relaxation time distribution. This effectively homogenous
view is typical of effective time theories traditionally em-
ployed for polymer glasses �4,8,49�. It can be contrasted with
“defect” models formulated in terms of a small population of
mobile “excitations” �which may �50–52� or may not
�38,53,54� be strictly conserved� embedded in a sea of im-
mobile regions, examples of which include shear transforma-
tion zones �38�, diffusing and dynamically facilitating de-
fects in kinetically constrained models �50–52�, and a
percolation free volume model based on “liquid” and “solid”
cells �55�. The localized defects are not equilibrium objects
but exist in a temporally coarse-grained sense as particle
configurations that cost energy to create which serve as tran-

sition states for relaxation and plasticity. Their concentration
is usually postulated to obey a Boltzmann-like distribution,
and the defects may interact via elastic mediation and/or spa-
tial diffusion in various assumed manners.

Reality is likely intermediate between the homogeneous
and heterogeneous defect pictures. The former view seems
more appropriate not far below Tg �where polymer glasses
are generally studied�, while the latter may be more appro-
priate far below Tg �where metallic glasses are generally
studied�. In both STZ theory and our approach, stress lowers
barriers, enhances mobility or defect concentration, and can
lead to a mechanically induced glass-to-liquid transition. Re-
garding dynamic heterogeneity effects, on the experimental
mean alpha time scale the system is in the process of trans-
forming from a dynamically heterogeneous regime where
mobility is spatially distributed to a dynamically uniform
relaxed material where a spatially homogeneous picture ap-
plies. In other words, the lifetime of dynamic heterogeneity
and mean alpha time are generally believed to comparable,
although this remains a question of active investigation.

III. COUPLED MECHANICAL REJUVENATION
AND PHYSICAL AGING

A deep statistical physics question is how a nonequilib-
rium system dynamically navigates the PEL under the com-
bined action of aging and mechanical agitation. The goal of
approximate theory is to identify a structural variable�s�
which adequately captures such complexity. We present a
minimalist extension of the polymeric NLE theory to include
the combined consequences of aging and rejuvenation on
relaxation and mechanics. A rigorous statistical mechanical
approach is intractable, and we are guided by insights
gleaned from experiment, simulation, and plasticity theories
for atomic materials �38�.

A. Background and motivation

Recent stress-controlled simulations have provided con-
siderable insight to the relevant physics in aging and me-
chanically deformed glasses within the PEL framework
�44,45,56�. Stress not only introduces a tilt to the PEL in the
direction of positive strain but also introduces extra disorder
that enhances mobility, and thus two types of thermally ac-
tivated processes can be identified. �1� In the aging glass,
activated events move the system “down” the PEL. The hop-
ping rate in the presence of stress controls mechanical relax-
ation and is enhanced via tilting of the PEL. �2� At large
enough stresses, activated transitions are more directly
driven mechanically as a consequence of the system being
“pushed up” the PEL. Thermodynamically based effective
temperature models for aging and deformed glasses are being
developed in the context of STZ theory �57�, where the sec-
ond process is interpreted as a “mechanical stirring” effect
corresponding to a stress-induced enhancement of configura-
tional disorder at the inherent structure level resulting in
faster relaxation. Similar, but cruder, physical ideas were in-
voked long ago by Spaepen for metals �53�, Struik for poly-
mers �8�, and others where deformation creates free volume
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and enhances mobility. We adapt the above qualitative pic-
ture in the context of NLE theory, and the central task is how
rejuvenation and aging physics is encoded in the nonequilib-
rium evolution equation for our structural variable, S0�t�.

As relevant background, we first recall how aging and
disorder production is described by Struik �8,52� for poly-
mers within the free volume framework �Vf�,

dVf

dt
= −

Vf − V�

���Vf�
+ Q�Vf� , �14�

where the first term on the right-hand side �RHS� describes
aging to equilibrium and the second term �Q�0� describes
free volume production �58�. The latter is taken to be pro-
portional to the rate of mechanical energy dissipation, and in
practice Q scales as the absolute value of the strain rate to
the first power. Lee and Ediger �15� recently confronted this
description with polymer glass mobility measurements and
found strong deviations. Moreover, Langer �38� emphasized
that a free volume production term linear in strain rate vio-
lates the basic requirement that it is an even function of �̇.
Mechanical-induced disordering has also been studied for a
variety of complex fluids �colloids, pastes, and gels� that
exhibit glasslike dynamics based on a highly phenomeno-
logical evolution equation for a �usually vaguely defined�
structural variable, A�t�, given by �59�

dA

dt
= − ��

−1 + bA�̇ , �15�

where b is a numerical factor. Typically, no precise definition
is given for the system-specific A variable, although free vol-
ume is one example �59�. The first term on the RHS of Eq.
�15� describes a simplified aging model which, as in Eq.
�14�, is based on a quiescent relaxation time. The last term
describes disorder production which scales linearly with
strain rate. One expects that Eq. �15� shares similar limita-
tions as Eq. �14� and is subject to the same Langer criticism.
However, as also done in STZ theory �38�, these phenom-
enological theories both assume that the relaxation time that
enters the aging term does not depend on deformation.

We propose to treat mechanical rejuvenation via an en-
hancement of the density fluctuation amplitude in the dissi-
pated power framework as employed by Langer �38�. States
of larger S0 �more disordered� are accessed via activated
hopping at a stress-dependent rate. There is an “end point” to
this process, corresponding to a “fully rejuvenated state” for
which there is no consensus definition. Our prior work was
implicitly consistent with Langer who defines this state in the
limit of low �̇ and temperature where the competing aging
process is absent, and the limiting reference state is assumed
to be a glass with the degree of structural disorder frozen in
at Tg. Thus, we do not distinguish between the freshly
quenched and fully rejuvenated states �60�. Note that the
literal full rejuvenation hypothesis �8� does not apply at non-
zero temperature or strain rate where aging occurs in parallel
with mechanical stirring. We continue to assume the fast re-
laxation process is unaffected by deformation and aging, so
these degrees of freedom serve as an equilibrated heat bath
for the slow alpha relaxation process.

We conclude this motivation section by noting an impor-
tant polymer glass scattering experiment that measured S0
under deformation and found an increase of the density fluc-
tuation amplitude with stress �61�. This provides direct sup-
port for our use of a mechanically enhanced density fluctua-
tion amplitude as a relevant and experimentally observable
structural variable. Indirect support comes from positron an-
nihilation lifetime spectroscopy experiments which deduce
“free volume” �loosely related to density fluctuations� is en-
hanced upon application of stress �62�. Direct evidence for
mechanical disordering of glass structure is also emerging
for amorphous metals based on measurements of the full
S�q� �63�.

B. Rejuvenation model

We assume that the rate at which density fluctuations are
mechanically enhanced is proportional to the dissipative me-
chanical work and grows linearly with the departure from the
freshly quenched value, S0,g,

dS0

dt
= ��S0,g − S0���̇ , �16�

where � is an of order unity �a priori unknown� numerical
prefactor in units of inverse stress, �kBT /�3�−1. Equation �16�
obeys the minimal constraint that the density fluctuation pro-
duction rate is an even function of deformation rate �38�.
Recall that this equation really describes the evolution of the
slow configurational part of density fluctuations,
�S0�t��S0�t�− �T /Tg��1−b�S0�Tg�, since the fast vibrational
part is equilibrated and unaffected by stress. Formally inte-
grating Eq. �16� yields

S0�t� = S0,g − �S0,g − S0,i�exp�− ��
0

��t�

�d�� , �17�

where S0,i denotes the value of S0 at the start of the mechani-
cal experiment after a preaging time interval. The degree of
rejuvenation depends on the total amount of mechanical
work, �0

��t��d�, a counterintuitive consequence of which is
that recoverable deformation can cause rejuvenation. For ex-
ample, upon applying a step stress, the instantaneous elastic
step strain can induce rejuvenation in Eq. �17�. A physically
motivated solution to this “problem,” consistent with only
the slow configurational part of S0 undergoing nonequilib-
rium dynamics, is to replace the total deformation rate with
its irreversible dissipative plastic analog, which follows
from Eq. �13� as �31�

�̇pl = �/�E���������� , �18�

thereby yielding

dS0

dt
= ��S0,g − S0��2/�E���������� . �19�

The solution of Eq. �19� can be formally written as
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S0�t� = S0,g − �S0,g − S0,i�exp�− ��
0

t

�2/�E����������dt�
 ,

�20�

where stress depends implicitly on time in a constant rate
experiment but is fixed in a creep experiment. Predictions of
Eq. �20� depend on the initial aged state and deformation
details. Our description of rejuvenation is broadly in the
spirit of Langer’s STZ plasticity theory �38� based on flow
defects and an effective temperature, although the latter two
constructs do not enter our spatially homogeneous “effective
relaxation time” approach.

C. Physical aging in the presence of stress

How stress affects aging is a longstanding and controver-
sial question �8,64�. Polymer experiments by McKenna �64�
have shown that under low stress preyield conditions there is
no change of thermodynamic state in the sense that the aging
equilibration time is unperturbed even though the mechanical
relaxation time can be dramatically reduced �presumably via
landscape tilting�. This view is consistent with the recent
experimental findings that increase of the segmental relax-
ation time with aging and decrease with applied stress are
effectively independent or additive processes �15�.

For large deformations little is fundamentally understood.
Phenomenological theories of many types �e.g., Eqs. �14�
and �15�; STZ theory �38�� typically assume such a separa-
tion of aging and mechanical disordering still holds at the
level of the time-evolution equation for the structural vari-
able. The relaxation time that quantifies the rejuvenation pro-
cess involves stress-dependent activated hopping, while ag-
ing is controlled by a barrier characteristic of the quiescent
glass. We adopt this zeroth-order picture, and thus the driv-
ing force for reduction of S0 remains the same as in Eq. �7�,

dS0

dt
= ��S0,g − S0��2/�E���,S0�����,S0�� − �S0 − S0,l�/���0,S0� ,

�21�

where S0�t=0�=S0,i.

D. Nonequilibrium steady state

There remains the question as to what is the nature of the
long time nonequilibrium steady state. We do not assume
that the glass is fully rejuvenated but rather use Eq. �21� to
self-consistently determine the optimum balance of aging
and mechanical disordering. This issue is relevant to the
“viscosity bifurcation” �59� phenomenon in soft glassy ma-
terials. Here, as a function of applied stress and preaging
aging protocol, the question is whether the relaxation time
appears to grow in an unbounded manner at long elapsed
times �“aging wins”� or whether it saturates at a smaller
value than before the deformation was applied �“rejuvenation
wins”�. Which type of steady state occurs depends on system
details: temperature, applied stress level, and length of pre-
aging. The final stationary steady-state value of
S0�t→���S0,� follows from Eq. �21� as

S0,� =
��2���0,S0,��S0,g + E���,S0,������,S0,��S0,l

E���,S0,������,S0,�� + ��2���0,S0,��
.

�22�

This result is independent of the degree of preaging, and
hence thermal history is erased at long times. Equation �22�
is a nonlinear self-consistent equation for S0,� that requires
knowledge of the elastic modulus of Eq. �5�, relaxation time
of Eq. �4�, equilibrium S0 and applied stress, which in turn
follow from the coupling constant � of Eq. �3�, the dynamic
free-energy localization length and barrier, and the constitu-
tive relation of Eq. �11�.

For a constant strain rate experiment, the nonequilibrium
steady state corresponds to a constant plateau flow �or dy-
namic yield� stress, given by the self-consistent relation

�y = �̇E���y,S0,������y,S0,�� , �23�

which is coupled with Eq. �22� and depends on �̇. Equation
�22� then simplifies to

S0,� =
��y�̇���0,S0,��S0,g + S0,l

1 + ��y�̇���0,S0,��
. �24�

Since �y and �̇���0,S0,�� both increase with strain rate �31�,
in a hypothetical high strain rate limit the fully rejuvenation
result is obtained: S0,�→S0,g.

E. Modified constitutive equation

The form of the constitutive equation in Sec. II D is un-
changed. Extra complexity enters only via the effects of ag-
ing and rejuvenation on S0�t� which are nonlinearly coupled
with the stress or strain evolution equation. The molecularly
well-defined parameters that enter the extended NLE theory
are unchanged except for specification of the numerical pref-
actor, �, in Eq. �16�. Under a constant strain rate deforma-
tion, Eq. �12� still applies. For constant stress creep deforma-
tion, our prior Maxwell model theory remains unchanged in
form �32�

��t� = �0 + �
0

t

dt�
�

E���,t������,t��
,

�0 � �
0

�

d��/E����,0� . �25�

The long time viscous flow limit can be characterized by a
limiting strain rate

�̇� →
�

E���,S0,������,S0,��
�

�y

����,S0,��
, �26�

where the last equality defines an apparent yield strain.

IV. MODEL CALCULATIONS

We now present model calculations within a stress-control
framework of fundamental measurable quantities that char-
acterize the nonequilibrium dynamics. Our goal is to show
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representative examples of the predicted rich competition be-
tween aging and rejuvenation with regard to determining the
dynamic evolution and steady state of the density fluctuation
amplitude, relaxation time, flow stress, creep strain rate, and
bifurcation phenomenon. All computations are done for a
single set of material properties previously developed �31� to
describe PMMA glass �65�, with �−1=kBT /�3 in Eq. �16�.
The control parameters are temperature, applied stress, and
preaging time.

We remind the reader that here we focus solely on the
competition between aging and rejuvenation and ignore
strain hardening and chain entanglement effects. Our calcu-
lations are relevant to a plastic flow regime where the stress
is �nearly� constant corresponding to strains beyond a “yield
peak” �typically �5–10 % strain� but below the onset of
chain deformation and hardening at much higher strains
�9,10�.

A. Dynamic evolution of density fluctuation amplitude
and alpha time

The nonequilibrium evolution of the density fluctuation
amplitude and relaxation time depend on the preaging time
and applied stress. Results are shown in Figs. 1–4 as a func-
tion of stress for two temperature quenches �shallow,
�T�Tg−T=10 K, and deep, �T�Tg−T=50 K� and two
preaging times �short, tage=1000 s, and long, tage=105 s�.
All curves are sigmoidal-like. The relaxation time can either
strongly increase with elapsed time �t− tage� or decrease with
time and saturate, depending on the stress, quench depth, and
preaging time. The shape of the curves is reminiscent of the
down versus up jump asymmetric quiescent aging behavior
discussed previously �29�. For example, when S0 ���� de-
creases �increases� with elapsed time, typically a logarithmic
�effective power law� form applies on intermediate time
scales. On the other hand, when S0 ���� grows �decreases�
with elapsed time, the dynamical evolution is much more

abrupt and does not follow any simple power law or loga-
rithmic scaling.

We now discuss the results in detail. Consider first the two
shallow quench cases �Figs. 1 and 2�. With increasing stress,
�� and S0 monotonically decrease and increase, respectively,
and the nonequilibrium steady state �saturation of the curves�
is attained at shorter elapsed times. Note the remarkably
small changes in S0 relative to the many orders of magnitude
change of the relaxation time. This is a hallmark of the glass
problem where small structural changes have very large dy-
namical consequences. Now, in the low stress regime for the
short preaging time �Fig. 1�, S0 is essentially unchanged by
deformation even though �� is significantly decreased and
follows an intermediate time power-law growth with an ap-
parent exponent that is essentially independent of stress. This
corresponds to an Eyring-like behavior discussed previously
�31,35� where rejuvenation effects are unimportant and
physical aging is dominant. Beyond a critical stress, which is
lower for longer tage �Fig. 2�, the time-evolution curves
qualitatively change signaling a crossover to a regime where
mechanically induced disorder “wins.” This crossover de-

FIG. 1. �Color online� Time evolution of �a� density fluctuation
amplitude, S0�t�, and �b� mean relaxation time �in seconds�, ���t�,
under the indicated constant stresses which increase �decrease� from
bottom to top for S0�t� ����t�� and for fixed T=Tg−10 K �shallow
quench� and preaging time tage=103 s �short�.

FIG. 2. �Color online� Same as Fig. 1 but for T=Tg−10 K
�shallow quench� and tage=105 s �long�.

FIG. 3. �Color online� Same as Fig. 1 but for T=Tg−50 K
�deep quench� and tage=103 s �short�.
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fines a dynamic yield stress or bifurcation of the nonequilib-
rium dynamics, where the bifurcation stress is smaller for the
longer preaged systems. At high stresses, the steady-state
value of S0 approaches, but is not exactly equal to, the
quenched glass value that defines the fully rejuvenated state.
Qualitatively, the evolution with stress of the relaxation time
and bifurcation signatures agree with experiments on glassy
complex fluids �59�. However, note that in the low stress
regime the relaxation time does not literally diverge but
rather simply becomes too long to be experimentally observ-
able; there are no finite temperature divergent relaxation
times in our theoretical approach.

Figures 3 and 4 show analogous results for a much deeper
temperature quench. At fixed preaging time, note the signifi-
cant quantitative differences compared to the shallow quench
behavior in Figs. 1 and 2. However, globally the type of
dynamical behaviors that occur as stress and preaging time
are varied is similar.

B. Dynamic yield or bifurcation stress

A dynamic yield stress, �dy, can be precisely defined as
the critical stress that separates the “aging wins” versus “re-
juvenation wins” time evolution of the relaxation time. Cal-
culations of this quantity as a function of quench depth for
five experimentally relevant preaging times are shown in Fig.
5. Note that an apparent threshold temperature is required to
observe dynamic yielding, which increases with tage. Glo-
bally, all curves have the same shape and exhibit three re-
gimes: �i� roughly linear growth for small values of
�T�Tg−T, �ii� crossover to a slowly varying dependence at
intermediate values of �T, and �iii� upturn at large quench
depths.

The magnitudes of �dy are much smaller than the linear
elastic modulus ��GPa� and of the same order of magnitude
found in our prior work for the plastic flow stress of PMMA
glass under constant strain rate conditions in the absence of
aging and rejuvenation �31,35�. However, the temperature
dependence of the plastic flow stress is very different than
�dy which is relevant to a long-time creep experiment.

C. Nonequilibrium steady state

The nonequilibrium steady state �t→�� is rigorously in-
dependent of preaging time and thermal history and reflects a
competition between aging and stress-induced disordering.
Figure 6 shows steady-state values of the density fluctuation
amplitude �S0,�� and relaxation time ���,�� as a function of
stress. The stress dependence of S0,� is sigmoidal for all
temperatures. The intermediate stress transition region that
separates the zero stress plateau �equilibrium value� and high
stress steady-state nonequilibrium value is roughly indepen-
dent of temperature despite the fact the two limiting density
fluctuation amplitudes are increasingly different as the glass
becomes colder. The percentage change in S0 due to me-
chanical driving varies from �6% at the highest temperature
to �50% at the lowest temperature. The steady-state relax-
ation time has also a roughly sigmoidal dependence on
stress, but the absolute changes are massively larger. In the
low and high stress regimes the relaxation time is roughly an
exponentially decreasing function of stress, with a higher
apparent slope in the low stress regime.

D. Time-dependent creep

Calculations of the time-dependent strain under fixed pre-
aging and temperature but variable constant stress, and fixed

FIG. 4. �Color online� Same as Fig. 1 but for T=Tg−50 K
�deep quench� and tage=105 s �long�.

FIG. 5. �Color online� Dynamic yield stress �MPa� as a function
of quench depth for five preaging times.

∞

∞

FIG. 6. �Color online� Stress dependence of the steady-state
values of �a� the density fluctuation amplitude, S0,�, and �b� mean
relaxation time, ��,����. Temperature increases from top to bottom
in �a� and from bottom to top in �b�.
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stress and temperature but variable preaging time, are shown
in Figs. 7 and 8, respectively. As stress increases, the tempo-
ral evolution of strain in Fig. 7 qualitatively changes from
concave down with a quasiplateau, to nearly linear, to
strongly concave up. These different behaviors reflect, re-
spectively, dominance of aging, balance of aging and rejuve-
nation, and dominance of mechanical disordering �stress-
induced flow�. An analogous three-regime behavior is
predicted for the segmental relaxation time �Fig. 4�b��. The
constant stress but variable preaging time results in Fig. 8
show a similar qualitative evolution of strain and ��, with
aging dominant at short preaging times and mechanical reju-
venation dominant at long preaging times.

The creep strain rate under long time steady-state viscous
flow conditions is shown in Fig. 9 as a function of stress for
several quench depths. The limiting strain rate becomes

smaller as the glass becomes colder. The overall shape of the
log-linear plot in Fig. 9�a� consists of two regimes: a steep
increase from very small values �̇� at low stresses where the
glass has a very high viscosity, which then changes to an
exponential growth to large �eventually unbounded corre-
sponding to flow� values with a high stress slope that gently
decreases with cooling. Note that the crossover becomes
broader as the glass becomes colder. Figure 9�b� shows the
same results in a linear-linear format. At high strain rates, an
exponential stress dependence describes the computations
well: �̇��exp�� /�n�. The characteristic stress, �n, deduced
from fitting our numerical calculations grows roughly lin-
early with cooling �inset of Fig. 9�b��, as predicted previ-
ously for the linear modulus and dynamic and absolute yield
stresses in a constant rate experiment �31,34,35�. The mag-
nitude of �n is modest, of order 5–10 MPa, far below the
linear modulus and also generally smaller than the yield
stresses that characterize constant rate experiments �31,35�.

V. DISCUSSION

We have extended our previous statistical mechanical
theories of polymer glasses based on activated hopping
�29–37� to describe the coupled effects of physical aging,
mechanical rejuvenation and thermal history on segmental
relaxation, density fluctuations, and nonlinear mechanics. A
number of bold approximations have been made, but no new
parameters have been introduced relative to our prior predic-
tive approach except for the one numerical prefactor in Eq.
�16�. The theory makes testable predictions for the time evo-
lution and nonequilibrium steady-state values of the segmen-
tal relaxation time, density fluctuation amplitude, elastic
modulus, etc. A rich dependence on preaging time, applied
stress, and temperature occurs that reflects the nonlinear
competition between aging and mechanical disordering.

FIG. 7. �Color online� Dynamic strain creep curves as a function
of elapsed time for four stresses and a fixed quench depth of
Tg−T=50 K and preaging time tage=105 s. The x and y axes of the
concave-down curve is on the top and right, respectively. Corre-
sponding time-evolution curves of the mean relaxation time can be
found in Fig. 4�b�.

FIG. 8. �Color online� �a� Creep curves at four different pre-
aging times for Tg−T=10 K and a stress �=14 MPa. The corre-
sponding time-evolution curves of relaxation time are shown in �b�.
The black horizontal curve is the nonequilibrium steady state alpha
time, ��,����.

�

�

∞

∞

FIG. 9. �Color online� �a� Log-linear and �b� linear-linear plots
of the steady state strain rate as a function of stress for
T=Tg−10 K, Tg−20 K, Tg−30 K, Tg−50 K, and Tg−60 K from
left to right �red to orange�. The black line in �b� shows an expo-
nential fit for Tg−30 K, i.e., �̇��exp�� /�n�. The inset of �b� shows
the temperature dependence of the fitting parameter �n.

THEORY OF AGING, REJUVENATION, AND THE … PHYSICAL REVIEW E 82, 041804 �2010�

041804-9



Thermal history �preaging� is erased in the nonequilibrium
steady state, although the properties of the latter do not cor-
respond to a literal “fully rejuvenated” freshly quenched
glass.

We briefly comment on several issues not addressed in
detail in this paper that are of great interest in polymer
glasses and which relate to some of our prior and present
work. A hallmark of polymer glass phenomenology is “time-
aging time” superposition of the dynamical shift factor as
deduced from creep compliance measurements �8�. We have
previously shown that this behavior is predicted by our
theory in the context of the stress relaxation modulus
�29,30�. We also showed that our theory of nonlinear creep in
the absence of aging predicts collapse of compliance curves
via horizontal shifting along the log-time axis �32�. Studying
this question for creep with aging remains to be done, but we
suspect such a superposition will be predicted. A second
rather mysterious phenomenon, observed in both experiment
and simulation, is the stress dependence of the apparent ag-
ing exponent measured in creep deformations, an effect
sometimes called rejuvenation �8,17�. Specifically, the aging
exponent decreases with applied stress. This phenomenon
will be studied in depth in future work, but our results in
insets B of Figs. 1–4 are of qualitative relevance. Note that
the theory does predict that the effective aging exponent, �,
can decrease with applied stress. For example, in Fig. 1�b�,
��0.68, 0.64, and 0.57 for applied stresses of 0, 0.8, and 12
MPa, respectively. Also, the aging exponent does go to zero
at what we call the “bifurcation stress.” Moreover, � can
even become negative at larger stresses where mechanical
disordering wins in determining the long-time nonequilib-
rium steady state. Perhaps this latter behavior is related to a
phenomenon called “overaging” or “stress aging” where seg-
mental mobility is enhanced under deformation, typically at
rather low temperatures �66�.

The present work provides the foundation for a quantita-
tive treatment of both constant strain rate and constant stress
�creep� polymer glass experiments. As will be reported in
future articles, how preaging, aging during deformation, and
mechanical disordering combine to determine the experi-
mental yield stress �overshoot or peak in the stress versus
strain curve�, the strain softening phenomenon, plastic flow
stress, and large strain upturn in creep can now be deter-
mined. Our preliminary results do capture the overshoot
�yield peak� phenomenon often observed for a constant strain
rate deformation, which emerges as a consequence of the
competition between aging and mechanical rejuvenation.
The detailed behavior of this yield peak depends on the pre-
aging time, temperature quench depth, and strain rate in a
manner that is consistent with experiment. Upon extension of
the theory to include strain hardening in the presence of ag-
ing and rejuvenation, the remarkably rich experimental ob-
servations of Lee and co-workers �11–15� can be fully un-
derstood.

Finally, we mention a few other open problems and limi-
tations of the present theory. There remains the question of
the role of dynamic heterogeneity �67� as manifested, for
example, by a relaxation time distribution, and how such
heterogeneity is modified in a stressed and/or aging glass.
Although polymer glass experiments find that postyield de-
formation strongly reduces heterogeneity as indicated by a
narrowing of the relaxation time spectrum �11,14�, computer
simulations �14,17–19� that do not capture this aspect never-
theless account very well for essentially all the other obser-
vations. This raises the nontrivial question, of general inter-
est above and below Tg, of how important dynamic
heterogeneity is for understanding specific relaxation and
mechanical phenomena. Within the NLE approach, two
sources of dynamic heterogeneity �DH� have been previously
discussed and analyzed for colloidal suspensions and hard-
sphere fluids �24,25,36,68�. The first arises even when the
dynamic free energy is uniquely defined since activated bar-
rier hopping is a noise driven process. The latter results in
“temporal” DH and a Poissonian distribution of alpha relax-
ation times �24�. A second possible origin of DH is based on
a commonly employed quasistatic domain model which rec-
ognizes that the amplitude of density fluctuations �the key
structural variable, S0� is a distributed quantity on any finite
length scale relevant to an activated dynamical process �68�.
This “static disorder” is a structural mechanism for DH via
fluctuations of the barrier height, again resulting in a relax-
ation time distribution. Exploring the consequences of these
two DH mechanisms for the nonlinear mechanical and aging
response of polymer glasses is an important problem for fu-
ture study.

Finally, one can ask, “What are the limitations of using
only one structural order parameter �S0� in the stressed and
aging glass?” It appears that an understanding of the Kovacs
“memory effect” �69� associated with subjecting a glass to a
complex thermal history requires at least one more dynamic
order parameter, e.g., a dynamic effective temperature as in
the recent work of Bouchbinder and Langer �70� or a distri-
bution of relaxation times �8�. This issue needs careful future
study within the NLE approach.
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