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The existence of uniaxial liquid crystals comprising polar molecules, with all the dipoles aligned in a parallel
pattern, is classically ruled out. Generally, there are two different avenues to a mean-field theory for liquid
crystals: one is based on short-range, repulsive, steric forces, and the other is based on long-range, globally
attractive, dispersion forces. Purely polar steric interactions have been shown to have the potential of inducing
unexpected orientationally ordered states. In real molecules, anisotropies both in shape and in polarizability
coexist; it has been shown that dispersion forces interaction can be combined with hard-core repulsion in a
formal theory, based on a steric tensor. Starting from this, we build an interaction Hamiltonian featuring the
average electric dipolar energy exchanged between molecules with the same excluded region. Under the
assumption that the molecular shape is spheroidal, we propose a mean-field model for polar nematic liquid
crystals which can exhibit both uniaxial and biaxial polar phases. By means of a numerical bifurcation analysis,
we discuss the stability of the equilibrium against the choice of two model parameters, one describing the
degree of molecular shape biaxiality and the other describing the relative orientation of the electric dipole
within each molecule. We find only uniaxial stable phases, which are effectively characterized by a single
scalar order parameter.

DOI: 10.1103/PhysRevE.82.041709 PACS number�s�: 61.30.Cz, 61.30.Dk

I. INTRODUCTION

The role played by electric dipolar forces in the structure
of classical fluids has long been explored; a fairly complete
review can be found in �1,2� �see also �3� for a shorter ac-
count on liquid crystals and �4� for one on computer simula-
tions with Gay-Berne mesogens�. Though we are here con-
cerned solely with nematic liquid crystals, we broaden our
perspective and see how the possible dipolar nature of mol-
ecules has been incorporated in other model fluids. In this
short account, we shall not follow a historical approach, but
we shall rather report a few essential findings, especially
relevant to the occurrence of orientationally ordered phases,
which form the main subject of our work.

Wei and Patey �5–7� studied by molecular dynamics
simulations a fluid of spherical particles interacting through a
pair potential that at short distances is isotropically repulsive
and at long distances retains the anisotropy induced by point
permanent dipoles sitting in the molecules’ centers �strongly
interacting dipolar soft spheres�. It was shown that at suffi-
ciently large densities such a fluid undergoes a phase transi-
tion, becoming nematic and polar when the density exceeds a
critical value. The same scenario was essentially confirmed
by computer simulations in �8,9� for dipolar hard spheres,
which interact through the dipolar pair-potential subject to
the constraint that the interacting point dipoles be kept at a
distance larger than the molecular diameter. Such a nematic
ferroelectric phase was also explored analytically within den-
sity functional theory �10� and again numerically under the
action of an external electric field �11� which, at sufficiently
large densities, induces a transition from a ferroelectric nem-

atic phase to a ferroelectric columnar phase, even for small
field strengths.

Further simulation studies on polar hard spheres also per-
formed at low densities �12–14� revealed that no vapor-liquid
transition exists when the density is sufficiently low, but in-
stead particles organize themselves in chains where adjacent
spheres, which are nearly in contact, have their dipoles in the
parallel �head-tail� configuration. Chains are then arranged in
such a way that no total dipolar moment is associated with
the phases they form, which thus fail to be ferroelectric.

Such a surprising result was also found in �15�, where the
more general question was asked as to whether dipolar inter-
actions are sufficient to stabilize a liquid phase. In �15� this
question was addressed by simulating a system of particles
interacting through a pair potential where the dipolar poten-
tial was supplemented by the repulsive potential typical of
soft spheres �diverging like 1 /r12 for small interparticle dis-
tances r� and an attractive potential typical of van der Waals
interactions �decaying like −1 /r6 for large r�. In the com-
puter simulations of �15�, the latter attractive potential was
balanced against the former repulsive potential by a multipli-
cative parameter �; below a certain value of � no vapor-
liquid coexistence could be observed, while particles were
seen to arrange themselves in chains with parallel adjacent
dipoles. The case where �=1 is of special interest, and the
corresponding model fluid is named after Stockmayer. The
ferroelectricity of this fluid at sufficiently large densities was
confirmed within the zero-density approximation to the den-
sity functional theory in �16–18�.

A vast theoretical literature is devoted to the study of
chain formation in dipolar classical fluids; in particular, we
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refer the interested reader to the papers �19–22� which em-
ploy analytical methods. In these studies, chains of dipolar
particles are treated as polymers, in which the individual
particles play the role of monomers. It was shown in �21�
that ferroelectric ordering in a fluid of chains formed by di-
polar hard spheres can indeed occur, but under the assump-
tion that the chains retain their individuality in the ordered
phase, an assumption which is not borne out by simulations.
On the contrary, as also shown in �21�, dipolar hard spheres
at sufficiently high density give rise to a ferroelectric phase
whose ultimate constituents are the individual spheres, as
chains are no longer distinguishable. However, the critical
density at which such a transition occurs is at least one order
of magnitude lower than that computed by simulation.

Here we are interested in ferroelectric nematic phases,
possibly exhibited by elongated molecules bearing a perma-
nent electric dipole. Our digression above into the realm of
ferroelectricity arising in condensed phases of dipolar spheri-
cal molecules simply shows that ferroelectricity, or phase
polarity, which here we regard as its synonym, is not neces-
sarily related to the anisotropy of short-range interactions: as
first shown in �5�, a ferroelectric phase also arises from di-
polar spherical molecules as a result of the anisotropy in the
long-range interactions. A criticism of the theories attempt-
ing to explain the mechanism underlying the assembling in
chains in the low density regime is that they ignore com-
pletely any short-range anisotropic correlations �see p. R424
of �1��. If such an omission may already be the main obstacle
in the way to a satisfactory theory of polar classical fluids,
whose molecules can be treated as being spherical in shape,
it is expected to be more so when polar nematic liquid crys-
tals are at issue, as their molecules are elongated in shape.
Here the interplay between the anisotropy in long- and short-
range interactions is central to the formation of a polar phase.

This is the problem tackled in our paper: to combine the
anisotropy of the short-range repulsive interactions and the
anisotropy of the long-range dipolar interactions. We explore
the occurrence of a polar nematic phase, possibly biaxial,
when either the molecular shape is biaxial or the molecular
dipole moment is at an angle with the symmetry axis of a
uniaxial molecule.

Touching upon the dipolar nature of liquid crystal mol-
ecules evokes necessarily the early explanation that was at-
tempted by Born �23,24� for the condensation of a liquid
crystal phase. The hypothesis that liquid crystal aggregation
would result from dipolar interactions is now known to be
incorrect, despite the fact that most liquid crystal molecules
possess a permanent dipole moment. Since the seminal
works of Onsager �25� and Maier and Saupe �26�, it is widely
accepted that both anisotropic short-range repulsive forces of
a steric nature and anisotropic long-range attractive forces of
a dispersive nature can promote the condensation of a nem-
atic phase: the crucial feature both mechanisms have in com-
mon is the anisotropy of the molecular shape, which must be
sufficiently elongated in one direction for a nematic liquid
crystal phase to arise.

For elongated molecules endowed with a permanent di-
pole moment, the dipolar interaction energy may reveal a
varied scenario. For spherical molecules with a point dipole
in their centers the dipolar interaction energy Udip is mini-

mized when two spheres touch each other and their dipoles
are in the parallel configuration, whereas Udip only attains a
relative minimum when the dipoles of the interacting spheres
in contact are in the antiparallel configuration. For elongated
molecules the dependence of Udip on the distance between
the point dipoles, which is immaterial for spherical mol-
ecules, may be responsible for making Udip attain its mini-
mum in the antiparallel configuration, with both dipole mo-
ments orthogonal to the line joining the point dipoles,
provided in this configuration the point dipoles can approach
one another at a smaller distance than in the parallel configu-
ration with both dipole moments parallel to the line joining
the point dipoles.

A vast literature is devoted to the effect of adding a dipole
moment to the model molecules of a nematic phase; we are
especially interested in the contributions concerned with the
possibility that such an addition results in making the nem-
atic phase ferroelectric. Nematic molecules were treated as
hard axisymmetric ellipsoids in �27�, for which it was shown
that an additional dipole moment aligned with the molecule’s
symmetry axis may affect the transition temperature, mostly
reducing it, but it is not capable of inducing any macroscopic
polarity, a conclusion also confirmed in �28�. A consistent
molecular theory to explain the effect on the nematic-to-
isotropic transition temperature of a central longitudinal di-
pole embedded in elongated molecules subject to the classi-
cal Maier-Saupe interaction was proposed in �29�, which
showed how dimerization of molecules with dipoles in the
antiparallel configuration can also reduce the nematic-to-
isotropic transition temperature upon increasing the strength
of the molecular dipole moment. As shown in �30�, moving a
point dipole along the symmetry axis of a hard spherocylin-
der, so as to bring it away from the molecular center of
inversion, while keeping the dipole moment parallel to the
symmetry axis, may destabilize the nematic phase, possibly
determining a reentrant isotropic phase, but again it cannot
induce ferroelectricity.

Polar nematic phases were instead predicted in �31,32� for
both ellipsoids of revolution and spherocylinders endowed
with a dipole moment along the molecular axis of symmetry.
These studies are based on the density functional theory that
attempts to treat more accurately the long-range dipolar in-
teraction; this might explain the different prediction on the
existence of a polar nematic phase obtained there. An inde-
pendent confirmation of this state of affairs came from �33�,
where a system of hard spherocylinders endowed with a per-
manent point dipole with dipole moment along the particle’s
symmetry axis is treated within the Onsager formalism: be-
sides the usual nonpolar nematic phase, a polar nematic
phase is formed, into which the isotropic phase can also con-
dense directly.

More general models have also been proposed, in which
an effective pair potential is posited that does not derive from
a specific molecular model, but possesses instead the sym-
metry properties common to all interactions compatible with
a polar molecular interaction. Such an effective pair potential
is treated through different methods: a classical mean-field
theory in �34,35� �see also �36� for an extension to a nonex-
tensive statistics�, and a two-site cluster method in �37�. The
advantage with such a general approach is that the molecular
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mechanism behind the polar component of the interaction
need not be specified, and could in principle even be unre-
lated to dipole-dipole interactions; the disadvantage lies cor-
respondingly in the difficulty to relate the parameters of the
general pair potential to the characteristics of a specific mol-
ecule.

Subtle arguments were employed in �34� to establish the
sign of parameters in the expression posited for the pair po-
tential, starting from some properties of the molecules, in-
cluding the ability to interact through their permanent di-
poles. As a result of such a molecular characterization, the
mean-field analysis of �34� established that a ferroelectric
nematic phase is favored for oblate, disklike molecules, that
is, for molecules with a dipole moment orthogonal to the
direction along which they are elongated.

When molecules are elongated in one direction, but their
shape is not invariant under central inversion, that is, when
molecules exhibit a shape polarity, this latter may interfere
with the molecular electric dipole, and possibly even contrast
the growth of a ferroelectric phase. It has indeed been shown
�38� that molecular shape dipoles tend to orient themselves
in the antiparallel configuration if the mutual excluded vol-
ume is to be minimized �see also �34� for some anticipating
remarks to this effect�. Whether electric dipoles would ex-
hibit the same tendency or not should result from a subtle
interplay between the relative orientation of shape and elec-
tric dipoles in an individual molecule and the details of the
molecular shape. Explaining this interplay is indeed the main
purpose of our present endeavor, which we start to present in
this paper.

Allowing for the shape and electric dipoles to differ in
orientation within a single molecule or, more simply, allow-
ing the electric dipole to be oriented differently than the mol-
ecule’s symmetry axis, brings in naturally the question
whether the condensed nematic phase could also be biaxial,
besides being ferroelectric. Simulations with disklike mol-
ecules endowed with a transverse electric dipole �39� have
ruled out phase biaxiality, though local biaxial order was
indeed found. More recently, experimental evidence for a
biaxial ferroelectric phase has been provided through second
harmonic generation measures on a commercially available
polymer �Vectra� capable of forming nematic liquid crystals
�40�. This polymer exhibits a permanent electric dipole skew
to the direction of the main molecular chain.

We pursue our program by combining in a mean-field
model both steric short-range repulsive forces which reflect
the molecular shape, possibly including its polarity, and
long-range attractive forces, prevailingly due to the interac-
tion of permanent electric dipoles. Following the ideas dis-
cussed in �41� to describe the average steric alterations of
dispersion forces interactions, we introduce a steric tensor
appropriate to account for molecular hindrance within the
mean-field approximation. The definition of this tensor and
its role in arriving at an effective interaction Hamiltonian
suitable to a mean-field treatment are presented in Sec. II. In
Sec. III, we describe the general class of molecular shapes
for which we are able to compute analytically the steric ten-
sor for dipolar interactions: these are biaxial spheroids, per-
turbations of a sphere for which the shape dipole vanishes at
the degree of approximation we can handle analytically.

Though lacking shape polarity, the molecules we consider
exhibit two independent sources of biaxiality: one coming
from their shape, the other coming from the arbitrary orien-
tation of the electric dipole relative to the molecular symme-
try axes. In Sec. IV, we illustrate the analysis of the mean-
field free energy stemming from the effective Hamiltonian
described in Sec. III. Since the Hamiltonian is partly repul-
sive, as are many in Straley’s general family for nonpolar
biaxial nematic liquid crystals �42,43�, we resort to a mini-
max principle that characterizes all phases that can compete
for the best mean-field equilibrium �44�. The condensed
phases and their polarity are found, for varying temperature,
through a bifurcation analysis. We eventually find polar
phases, but these fail to be biaxial. In Sec. V, we summarize
the conclusions of our study and we comment upon the is-
sues it could not resolve. Finally, the paper is closed by three
appendices with several mathematical details of our analysis.

II. STERIC TENSOR FOR DIPOLAR INTERACTIONS

In this section, we construct the pair potential on which
we shall build in Sec. IV our mean-field analysis. We ideally
decompose the interaction between dipolar molecules in a
long-range component and a short-range component. We as-
sume that the former component is dominated by the inter-
action between permanent molecular dipole moments, while
the latter component is mainly of a steric nature. Both these
components are separately described below.

A. Dipolar interaction

Consider two electric point dipoles with dipole moments
p and p�, occupying the positions p0 and p0� in space. Their
interaction energy Udip can be written as

Udip =
1

4��0r3 �p · p� − 3�p · er��p� · er��

=
1

4��0r3p · �I − 3er � er�p�, �1�

where �0 is the dielectric constant in vacuum, I is the identity
tensor, r is the distance between p0 and p0�, and er is the unit
vector along the straight line joining these points; in formu-
las,

r ª �p0� − p0� and er ª
1

r
�p0� − p0� . �2�

It is easily seen that, for given p0 and p0�, Udip attains its
absolute minimum in the parallel configuration, that is, for
p=p� and p �er, while Udip attains a local minimum in the
antiparallel configuration, that is, for p�=−p and p�er.

B. Effective pair potential

Udip is a potential energy of soft forces. For polar mol-
ecules, it is the first term in a multipole expansion, valid only
if p0 and p0� are sufficiently far apart. These long-range forces
are complemented by short-range, hard forces which repre-
sent the steric hindrance to molecular interactions. While di-
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polar forces are attractive, as are most long-range forces,
hard steric forces are repulsive. We imagine a simple picture
to describe these latter: we think of the points p0 and p0� as
surrounded by three-dimensional regions, R and R�, respec-
tively, which represent the ranges of the repulsive hard
forces. These essentially make R and R� impenetrable to
one another, while they lie dormant whenever R and R� are
not in contact. R and R�, which we call the van der Waals
regions for the two interacting molecules, reflect the molecu-
lar shapes, though they need not coincide with them.

Molecular interactions are ultimately responsible for the
mesogenic behavior of some molecules which, unlike others,
tend to form ordered phases. Often, a theoretical understand-
ing of these ordering transitions is achieved within the mean-
field approximation, as in the celebrated Maier-Saupe theory
�26�. Replacing a space-dependent energy like Udip with a
space-independent one is crucial to the success of any such
theory �45�. This is achieved by assuming that molecules
sharing one and the same relative orientation are isotropi-
cally distributed in space around any given probe molecule
and by computing an effective interaction energy between
the probe and all other molecules, which are assumed to be
immersed in a vacuum.

The interaction energy �Eq. �1�� depends via er on the
relative position of the two molecules and via p and p� on
their relative orientation. The relative hindrance of the van
der Waals regions introduces in the effective intermolecular
forces a dependence upon the relative molecular orientation
subtler than the one explicitly appearing in Eq. �1�. Follow-
ing �41�, we now make this idea more precise. As shown in
Fig. 1, for given R and R�, there is a region R� in space,
depending on R and R�, inaccessible to the point dipole in
p0� if R and R� are mutually impenetrable. We call R� the
excluded region. As suggested by Fig. 1, the boundary �R�

of the excluded region is traced by p0� while �R� glides with-
out rolling over �R. Similarly, the region inaccessible to p0
by the impenetrability of R� is traced by all possible trajec-
tories described by p0 while �R glides without rolling over
�R�. Since in both cases the relative motion between R and
R�, regarded as rigid bodies, is purely translational, the ex-
cluded regions obtained in these two ways simply differ by a
translation.

We are not concerned here with smectic phases, and so no
positional order will possibly be conceived to arise among

molecules. The molecular distribution in space will be taken
to be homogeneous. This allows us to define the effective
dipolar pair potential Hdip as the average dipolar energy ex-
changed between two molecules with a given relative orien-
tation, while their relative position varies freely in space.
Any two such molecules share the same excluded region R�.
To account effectively for the presence of more than a pair of
molecules in the system, we imagine that an infinite number
of molecules, all equally oriented, are uniformly distributed
in space so that the same number of molecules, Nmac, would
be present in the same macroscopic volume Vmac. Let a probe
molecule wander about the molecules of this system, while
keeping its orientation unchanged. For any given molecule in
the system, the total energy exchanged with the probe mol-
ecule can be computed by imagining this latter exploring an
influence ball Bi with radius Ri around the given molecule
and then taking the limit as Ri→�. Repeating this argument
for each molecule in the system reproduces the same result,
given the homogeneity of the molecular distribution, and so
the average energy is finally estimated by multiplying the
total energy exchanged between a single molecule and its
probe companion by the number density �ªNmac /Vmac.

Such an averaging, typical of mean-field treatments, is
bound to remove from our model the collective behaviors
characteristic of long-range dipolar interactions, such as the
dependence of the phase diagrams upon the shape of the
sample for ferroelectric dipolar fluids �16� and the equilib-
rium spatially nonuniform, orientationally ordered structures,
including the vortices and domain walls predicted in �46,47�.

Making precise the above definition for Hdip, we obtain
from Eq. �1� that

Hdip ª
�

4��0
p · 	 lim

Ri→�



Bi\R�

1

r3 �I − 3er � er�dV�p�, �3�

where V is the volume measure in the three-dimensional Eu-
clidean space E. Differently said, Eq. �3� can be obtained
from integrating over all admissible space the interaction in
Eq. �1� multiplied by the probability of finding an interacting
molecule at any given point in space, that is, the number
density �.

In principle, R� can be defined for two arbitrary regions
R and R�, as in Fig. 1. However, in our case the two inter-
acting molecules are identical so that R and R� differ only
by a rigid rotation R, as do correspondingly p and p�=Rp.
Thus, Hdip ultimately depends on R: explicitly through p�,
and implicitly through R�.

C. Steric tensor

Normally, the excluded region R� will be star-shaped,
that is, it can be represented as

R� = �p0� � E:�p0� − p0� � u��er�� . �4�

Here the shape function u� is defined in such a way that the
mapping er�u��er�er maps the unit sphere S2 around p0 into
�R�. In this case, the radial integration in Eq. �3� can be
performed explicitly, and one finds that

R′

R
∂R∗

ν∗

ν

ν ′
p0 �

�

p′0

er
p

p′

FIG. 1. The van der Waals regions R and R� surrounding the
point dipoles p and p� placed at positions p0 and p0� in space. The
unit vector er is directed from p0 to p0�; � and �� are the unit outer
normals to R and R�, respectively. The boundary �R� of the ex-
cluded region R� is the set of all points that p0� can reach while �R�
glides without rolling over �R. The unit vector �� is the outer
normal to �R�.
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Hdip =
�

4��0
lim

Ri→�



S2
dA�er�


u��er�

Ri 1

r
p · �I − 3er � er�p�dr

=
�

�0
p · SR�p�, �5�

where S2 is the unit sphere and A the area measure over it. In
Eq. �5� we have introduced the second-rank tensor SR� de-
fined as

SR� ª lim
Ri→�


–
S2

ln� Ri

u��er�
�I − 3er � er�dA�er� , �6�

where �–S2dAª

1
4��S2dA denotes the average over S2. We call

SR� the steric tensor because it depends only on the shape of
the excluded region and can in principle be computed once
u��er� is known.

A simple mathematical property of SR� is worth noting, as
it simplifies computing the limit in Eq. �6� and it has an
interesting physical consequence. Since, as can easily be
shown �see, for example, Appendix A of �41��,


–
S2

�I − 3er � er�dA�er� = 0 , �7�

it follows from Eq. �4� that SR� is invariant under rescaling
of R�: changing the shape function u� into �u�, for any �
�0, leaves SR� unchanged. In particular, the integral in the
definition of SR� is thus also independent of Ri, and the limit
trivial. For convenience, we hereafter replace Ri in Eq. �6� by
the average molecular radius R, which yields

SR� =
–
S2

ln� R

u��er�
�I − 3er � er�dA�er� . �8�

Put differently, the inner integral in Eq. �5� taken over any
spherical shell of inner radius Ru�maxS2�u�� vanishes. All
contributions to Hdip then come from the inner boundary of
the integral, �R�: we could indeed rephrase Eq. �5� as

Hdip =
�

4��0



S2
dA�er�


u��er�

maxS2�u�� 1

r
p · �I − 3er � er�p�dr .

�9�

If R and R� are both spheres with radius R, then R� is a
sphere of radius 2R, and so, again by Eq. �7�, SR� vanishes
and Hdip�0. This shows that, for homogeneous assemblies
of spherical molecules where the intermolecular vector is
isotropically distributed in space, dipolar interactions would
be completely masked by steric hindrance. In general, for
nonspherical molecular shapes, SR� does not vanish, and a
residual dipolar interaction survives in Hdip, determined es-
sentially by the short-range behavior of Udip. The long-range
dependence of Udip is washed away by our assuming that the

influence region Bi has a spherical shape.1 Effectively, such
an assumption makes our interaction Udip equivalent to a
short-range dipolar interaction, though it was long range to
start with. Actually, it is remarkable that our spherical sym-
metry assumption lets any anisotropic interaction survive in
Hdip, albeit short range. Such a conclusion is also in agree-
ment with Groh and Dietrich’s treatment �17� of the depen-
dence on sample’s shape of the effective interaction potential
for Stockmayer fluids in a vacuum: for a spherical sample’s
shape, that is, for k=1 in Eq. �3.20� of �17�, the effective
interaction potential vanishes identically. Whereas in Groh
and Dietrich’s approach molecules are spherical and sam-
ple’s shapes are ellipsoidal, in ours, molecules are ellipsoidal
and the sample’s shape is spherical: in the only case where
these two approaches can be compared, they agree.

III. BIAXIAL SPHEROIDAL MOLECULES

To compute analytically SR�, we employ, as in �41�, a
specific family of molecular shapes, which is described be-
low. For the shapes in this family we then obtain explicitly
Hdip from Eq. �5� and we explore its properties.

A. Spheroidal shape

We adopt a perturbation approach and we assume that �R
is nearly a sphere of radius R. More precisely, we assume
that �R is the image under the mapping er�ur�er�er, with

u�er� = R�1 + 	ur�er�� , �10�

of the unit sphere S2 around p0. In Eq. �10�, 	 is a perturba-
tion parameter and ur is subject to


–
S2

ur�er�dA�er� = 0, �11�

which allows us to interpret R as the average molecular ra-
dius.

For the quasispherical particles described by Eq. �10�, one
might expect that the isotropic-to-nematic transition could
only take place at unrealistic temperatures or densities; simi-
larly, one might suspect that the influence on that transition
of the dipolar nature of the fluid can only be effective for
dipolar moments so large to make our mean-field treatment
inapplicable, but, as will be clear shortly below, the major
merit of our approach is that it is analytic and explicit, and
we believe that it is indicative of what happens for more
realistic molecular shapes.

As shown in �41�, to within first order in 	, �R� can be
represented as the image of the unit sphere S2 around p0
through the mapping er�u��er�er, with

1This is not the case for quadrupolar interactions, for which the
law of decay in the integrand of Eq. �5� is stronger than 1 /r, and so
the long-range tail of the interaction does not contribute to the ef-
fective Hamiltonian, irrespective of the shape of the influence re-
gion �41�.
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u��er� = 2R�1 + 	
1

2
�ur�er� + ur�− RTer��� + o�	� , �12�

where R is the rotation by which R� differs from R. Within
our shape approximation �Eq. �10��, the function in Eq. �12�
represents the distance of closest approach between two
molecules, which plays a central role in colloid science. As
also witnessed by some recent work �48,49�, mostly related
to liquid crystals, determining this function is not in general
an easy task, despite its deceivingly simple, direct geometric
definition. Formula �12� owes its simplicity to the spheroidal
approximation adopted here.

By Eqs. �7� and �11�, we can write the steric tensor in Eq.
�6� as

SR� =
3

2
	
–

S2
�ur�er� + ur�− RTer��er � erdA�er� + o�	� .

�13�

We now assume a quadrupolar shape for R, that is, we rep-
resent ur through the shape tensor E,

ur�er� = er · Eer, �14�

where E satisfies the conditions

E = ET and tr E = 0, �15�

which, again by Eq. �7�, make Eq. �11� valid. By inserting
Eq. �14� into Eq. �12� and making use of the identity �see, for
example, Appendix A of �41��


–
S2

eiejekeldA�er� =
1

15
�
ij
kl + 
ik
 jl + 
il
 jk� ,

where ei are the Cartesian components of er, one easily
checks that within the family of molecular shapes under con-
sideration the steric tensor can be written as

SR� =
	

5
�E + E�� + o�	� , �16�

where

E� ª RERT �17�

is the shape tensor for R�. As a result, the dipolar pair po-
tential in Eq. �5� takes the form

Hdip =
	�

5�0
p · �E + E��p� + o�	� . �18�

We shall write p= p�, where p is the scalar electric dipole
moment of each molecule, so that the unit vector ��S2

along the permanent electric molecular dipole describes the
molecular electric polarity. If we neglect higher order terms
in 	, Hdip in Eq. �18� thus becomes

Hdip = U0�E� · �� + E��� · �� , �19�

where ��ªR�, and U0ª	�p2 /5�0 expresses the strength of
the interaction.

Furthermore, we assume that the shape tensor in Eq. �14�
has the general biaxial form

E = q + �b , �20�

where

q ª m � m −
1

3
I , �21a�

b ª e � e − e� � e� �21b�

are the traceless molecular tensors introduced in �50� and
adopted to describe the general quadrupolar interaction of
molecules endowed with D2h symmetry along the axes
�e ,e� ,m� �42,43,51–53�. The unit vector m in Eq. �21a� rep-
resents the long molecular axis, that is, the axis along which
the molecule is elongated. Thus, the eigenvalue of E relative
to m must be the largest eigenvalue of E, and so positive, by
Eq. �15�. As is easily seen, this requires � to be in the inter-
val �−1,1�. For �=−1, the shape tensor E describes a disk-
like molecule symmetric about e, whereas, for �=1, E de-
scribes a disklike molecule symmetric about e�. For both
�= �

1
3 , E exhibits the largest biaxiality as det E=0: either

the eigenvalue relative to e or the one relative to e� vanishes.
For �=0, the molecule has a uniaxial shape, symmetric
about m. For any other value of � the molecular shape is an
ellipsoid with axes along the frame �e ,e� ,m� �see Fig. 2�.

In general, the dipole moment need not be directed along
m. Another model parameter is the angle � between the unit
vectors m and �. Here we choose to place the unit vectors e,
�, and m all in the same plane, so as to represent the mo-
lecular electric polarity as

� = cos �m + sin �e , �22�

thus designating the plane �m ,e� as the one where both the
molecular shape elongation and the molecular electric polar-
ity lie. Without loss of generality, we can assume that �
� �0, �

2 �.

B. Ground state

Direct inspection of Eq. �1� shows that the antiparallel
configuration, in which p�=−p and p�er, can indeed be-
come the absolute minimizer for Udip whenever the distance
r� of closest approach in this configuration and the distance
r� of closest approach in the parallel configuration, for which
p=p� and p �er, are such that r� /r���32. Since, according to
Eq. �12�, this ratio is close to unity in our linear approxima-
tion, the absolute minimizer of Udip remains the parallel con-
figuration �=��, but, as shown in Appendix A, it is stag-
gered, that is, with the intermolecular vector neither parallel
nor orthogonal to �. The configuration that minimizes the
effective, purely orientational pair potential Hdip may differ
from the parallel configuration as a result of a collective
average behavior which is not intuitively justifiable only in
terms of the absolute minimizer of Udip. We shall determine
below how the ground state of Hdip depends on the model
parameters �� ,�� chosen in the parameter space P depicted
in Fig. 3.

By inserting both Eqs. �22� and �20� into Eq. �19�, we
arrive at the following explicit representation for Hdip:
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Hdip = U0�4

3
cos2 �m · m�

+ �� +
1

3
sin � cos ��e · m� + e� · m�

+ 2�� −
1

3
sin2 �e · e�� . �23�

It readily follows from Eq. �23� that, for �=0, Hdip is mini-
mized by the antiparallel configuration m�=−m, no matter
how �e ,e�� is oriented relative to �e� ,e�� �, and so the inter-
action is repulsive. It is remarkable that the antinematic in-
teraction described by Hdip for �=0 is not affected by the
biaxial shape of the molecules; this might be a consequence
of our linear approximation for the molecular shape in Eq.
�10�: for �=0, molecular biaxiality must be a second order
effect in 	. For �= �

2 and ��
1
3 , the global minimizer of Hdip

is the parallel configuration e�=e, and so the interaction is
attractive. For �= �

2 and ��
1
3 , the minimizer of Hdip is the

antiparallel configuration e�=−e. For �= �
2 and �= 1

3 , Hdip
vanishes identically: steric hindrance compensates exactly
electric dipolar interaction. Another limiting case where Hdip
is somewhat degenerate arises for �=1: then, by Eqs. �22�
and �23� becomes

Hdip =
4

3
U0� · ��,

which, for any �� �0, �
2 �, is minimized in the antiparallel

configuration ��=−�.
The interactions embodied by Eq. �23� when either �=0,

�= �
2 , or �=1, be they attractive or repulsive, are all of the

simplest dipolar nature, with a single unit vector representing
the molecular state. We are here interested in the most gen-
eral interactions expressed by Eq. �23�, and so we show in
Appendix B that when neither �=0, nor �= �

2 , nor �=1, Hdip
can in general be expressed as the superposition of an attrac-
tive and a repulsive component, which makes it partly repul-
sive, in the terminology adopted in �44�. In Appendix B, we
also give all the mathematical details needed to identify the
repulsive dimension associated with Hdip.

To evaluate the degree of polarization  of a pair of
molecules in the ground state of Hdip, we define

 ª

1

2
�� + ��� . �24�

It is easily shown by combining Eqs. �22� and �B10� that

 =�1 − cos 2�� + ��
2

, �25�

where �−2��+�� is the angle that �� makes with � in the
configuration that minimizes Hdip. By use of Eq. �B8�, we
have drawn in Fig. 4 the graph of . This is discontinuous at
the point � 1

3 , �
2 � on the boundary of the parameter space P.

The graph of  also suggests that the ground state of the
interaction Hdip would promote the highest degree of polar-
ization for �� �−1, 1

3 � and �= �
2 . The mean-field analysis

presented in the following section will show to what extent

α
m

e

�

FIG. 2. Cartoon of the ellipsoid describing the molecular shape.
The unit vector � describes the molecular electric polarity; m and e
are the unit vectors adopted to describe the molecular tensors q and
b in Eq. �21�.

λ −1 1−1
3

1
3

α

π
2

π
4

0

A B

C

FIG. 3. The order parameter space P : ��� ,�� :�� �−1,1�,
�� �0, �

2 �� is split for later reference in the subregions A, B, and C.
The boundary separating B from C in P is described by Eq. �B7�.
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the microscopic prediction for the highest polarization state
based on  is confirmed by an estimate based on the mac-
roscopic free energy.

IV. MEAN-FIELD MODEL

In building our-mean field model for polar nematics based
on the interaction Hamiltonian Hdip, whose ground state has
been shown to promote polarity in appropriate regions of the
parameter space, we apply the general theory put forward in
�44� for partly repulsive interactions.

A. Indefinite mean-field free energy

It is essential to our program to identify the macroscopic
variables that describe the condensed phases along with their
possible polarity. Following �54�, we introduce the vector
order parameters

M ª �m� and E ª �e� , �26�

where � · � denotes the appropriate ensemble average, which
in our setting is to be computed relative to the one-particle
distribution function �0 of the mean-field approximation.

A condensed phase is uniaxial if either M=0 or E=0, or
if M �E, whereas it is biaxial if M�0 and E�0 and M∦E.

Both phases are indeed polar for �� ,��� P̊, as the ensemble
dipole moment P normalized to the molecular dipole mo-
ment p reads as

P ª ��� = cos �M + sin �E . �27�

In principle, to represent both vectors M and E in an
arbitrarily given frame �ex ,ey ,ez�, we should introduce three
scalar order parameters for each vector. However, M and E
define a plane. Whenever they are not parallel, we can as-
sume this plane to be identified with �ex ,ez�, and so we in-
troduce the scalar order parameters �t ,u ,v ,w� defined by

M = tex + uez, �28a�

E = vex + wez. �28b�

Correspondingly, by Eq. �27�,

P = Pxex + Pzez, �29�

where

Px = t cos � + v sin � , �30a�

Pz = u cos � + w sin � . �30b�

Since both m and e are unit vectors, it is an easy conse-
quence of Eq. �26� that all scalar order parameters �t ,u ,v ,w�
are bound to range in the interval �−1,1�.

The assumption that neither M nor E can leave the plane
�ex ,ez� in the different transitions possibly associated with
phase transformations is to be confirmed a posteriori by
computing the y-components My and Ey of M and E relative
to the one-particle distribution function �0 expressed in terms
of �t ,u ,v ,w�: though finding My and Ey negligible will by no
means be a proof of the validity of our assumption, it will
provide evidence for the consistency of our model.

Following �44�, we write the one-particle Hamiltonian H0
�scaled to U0� corresponding to the interaction Hamiltonian
Hdip in Eq. �23� as

H0�M,E;m,e� =
4

3
cos2 �M · m

+ �� +
1

3
sin � cos ��M · e + E · m�

+ 2�� −
1

3
sin2 �E · e

−
1

2
	4

3
cos2 �M2

+ 2�� +
1

3
sin � cos �M · E

+ 2�� −
1

3
sin2 �E2� . �31�

The one-particle distribution function �0 associated with H0
is then

�0�M,E;�,�� ª
1

Z0
e−�H0�M,E,m���,e����, �32�

where �= �� ,� ,�� is the triple of angles adopted to describe
the molecular orientation in the frame �ex ,ey ,ez�,

� ª

U0

kBT
, �33�

with kB the Boltzmann constant, is the dimensionless inverse
temperature and

Z0�M,E;�� ª
1

8�2

T

e−�H0�M,E;m���,e����d� �34�

is the partition function. In Eq. �34�, T is the orientation
torus, a three-dimensional manifold with measure d�
=sin �d�d�d�. Specifically, we represent m and e as in
�50�,

–1

–0.5

0

0.5

1

λ0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6

α

0

0.2

0.4

0.6

0.8

1

Π

FIG. 4. The microscopic degree of polarization  in the ground
state of Hdip, as given by Eq. �25�, plotted over the parameter space
P.  is a smooth function away from the point � 1

3 , �

2 ���P.
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m��� = cos � sin �ex + sin � sin �ey + cos �ez,

�35a�

e��� = �cos � cos � cos � − sin � sin ��ex

+ �cos � sin � cos � + sin � cos ��ey − cos � sin �ez.

�35b�

The one-particle �dimensionless� free energy F0 is defined
in terms of Z0 as

F0�M,E;�� ª −
1

�
ln Z0�M,E;�� . �36�

As proved in �44�, for every given ��0, the equilibrium
points of F0 represent the solutions to the self-compatibility
equations generated by Eq. �26� upon computing the en-
semble averages appearing there with respect to �0 in Eq.
�32�. The theory developed in �44� shows that, for partly
repulsive Hamiltonians such as Hdip, the equilibrium points
of F0 are all saddle points and F0 is neither bounded from
below nor from above: for given �, the mean-field approxi-
mation to the minimum of the two-particle free energy F
associated to Hdip is the least critical value of F0, which is
not a minimum of F0. To identify the least critical value of
F0 through a bifurcation analysis moving for increasing �
from the isotropic phase, where both M and E vanish, a local
stability criterion is required that singles out the critical val-
ues of F0 that can legitimately compete to deliver its least
critical value. As shown in �44�, such a criterion requires the
Hessian matrix H at a critical point of F0 to possess a num-
ber of negative eigenvalues equal to the repulsive dimension
n−, which is defined as the number of independent scalar
order parameters needed to represent the mean-field average
of the repulsive microscopic variable. Having identified this
latter in Appendix B as the molecular unit vector m�, it fol-
lows from Eqs. �B1b�, �26�, and �28� that n−=2 in the present
representation of M and E.

We are now in a position to express F0 in Eq. �36� as a
function f of the scalar order parameters �t ,u ,v ,w�,

f�t,u,v,w;�� = − 	2

3
cos2 ��t2 + u2�

+ �� +
1

3
sin � cos ��tv + uw�

+ �� −
1

3
sin3 ��v2 + w2��

−
1

�
ln

1

8�2

T

e�g�t,u,v,w;��d� , �37�

where

g�t,u,v,w;�� ª
4

3
cos2 ��t cos � sin � + u cos ��

+ �� +
1

3
sin � cos ��t�− sin � cos �

+ cos � cos � cos �� − u cos � sin �

+ v cos � sin � + w cos ��

+ 2�� −
1

3
sin2 ��v�cos � cos � cos �

− sin � sin �� − w cos � sin �� . �38�

The equilibrium equations that identify the critical points of
f can be cast in the form

4

3
cos2 �t + �� +

1

3
sin � cos �v −

Zt

Z
= 0, �39a�

4

3
cos2 �u + �� +

1

3
sin � cos �w −

Zu

Z
= 0, �39b�

2�� −
1

3
sin2 �v + �� +

1

3
sin � cos �t −

Zv

Z
= 0,

�39c�

2�� −
1

3
sin2 �w + �� +

1

3
sin � cos �u −

Zw

Z
= 0,

�39d�

where

Z�t,u,v,w;�� ª 

T

e−�g�t,u,v,w;��d� �40�

is the reduced partition function and

Zx�t,u,v,w;�� ª 

T

�g

�x
e−�g�t,u,v,w;��d� , �41�

for any scalar order parameter x.
The equilibrium equations �39� suffer from a severe de-

generacy. Rotating both M and E by the same angle about ey
does indeed leave F0 unchanged, since this is a frame-
indifferent function. Correspondingly, each critical point of f
in the variables �t ,u ,v ,w� is transformed into another where
f attains the same value by the transformation that acts on
the pairs �t ,u� and �v ,w� as one and the same rotation in the
plane; this associates a full orbit to every critical point of f .
To remove such a degeneracy from the equilibrium manifold
of f , we constrain our search for its critical points to t=0,
thus selecting a single point in the equilibrium orbit, effec-
tively defining ez as the direction of M. Since requiring that
an equilibrium point of f occurs at t=0 is equivalent to en-
forcing the self-consistency condition



T

cos � sin �e−�g0�u,v,w;��d� = 0, �42�

where

g0�u,v,w;�� ª g�0,u,v,w;�� , �43�
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we now explore the consequences of setting t=0 into Eq.
�39�, while requiring Eq. �42� to be satisfied. It is easily seen
that Eqs. �39a� and �39c� then become equivalent and Eqs.
�39b�–�39d� can also be interpreted as equilibrium equations
for the function

f0�u,v,w;�� ª f�0,u,v,w;�� �44�

on which the constraint Eq. �42� is imposed as a further
requirement. This also amounts to find the free equilibrium
points in �u ,v ,w� of the extended function

f0
��u,v,w;�� ª f0�u,v,w;��

+ �

T

cos � sin �e−�g0�u,v,w;��d� , �45�

where � plays the role of a Lagrange multiplier to be deter-
mined with the aid of Eq. �42�, but with the proviso that only
such equilibrium points �u ,v ,w� for which �=0 correspond
to solutions �0,u ,v ,w� of Eq. �39�. Equivalently, the equilib-
rium point �u ,v ,w� solves the overdetermined system com-
prising the equilibrium equations for f0 and Eq. �42�.

Eventually, the validity of our approach is subject to the
compatibility between the representation in Eq. �27� for the
macroscopic averages M and E and the corresponding one-
particle distribution function �0 in Eq. �32�. In particular,
such a compatibility requires that

0 = My =
1

z0



T
sin � sin �e−�g0d� , �46a�

0 = Ey =
1

z0



T
�cos � sin � cos � + sin � cos ��e−�g0d� ,

�46b�

where

z0�u,v,w;�� ª Z�0,u,v,w;�� . �47�

The details of our strategy to solve Eqs. �39�, freed from
their degeneracy, are given in Appendix C, where the stabil-
ity of the equilibrium solutions is also characterized.

B. Bifurcation diagrams

We performed a numerical bifurcation analysis starting
from the trivial solution u=v=w=0, which corresponds to
the isotropic phase. Upon increasing �, we found a new
stable solution branch emanating off the trivial solution at
�=�c �see Eq. �C2� in Appendix C�, where the trivial solu-
tion becomes unstable. We found that along the bifurcated
branch not only t but also v vanishes to within our numerical
precision, while the functions u��� and w��� are in a ratio �
that appears to be independent of �, to within the same nu-
merical precision, while it takes different values for different
model parameters �� ,���P. Figure 5 shows typical bifur-
cation diagrams, obtained for �� ,�� in the three regions A,
B, and C of Fig. 3; they all show the classical pitchfork
bifurcation with exchange of stability at �=�c.

In all the computations we performed, for �� ,�� in either
A, B, or C, we systematically found My, Ey, and � negli-
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FIG. 5. Bifurcation diagrams for the scalar order parameters u
and w against the reciprocal dimensionless temperature �. Stable
branches are represented by solid lines, while unstable branches are
represented by dashed lines. At the critical value �=�c, which
agrees with the value delivered by Eq. �C2�, a second order transi-
tion takes place: the isotropic phase becomes unstable, and stability
occurs at a polar uniaxial stable phase with t=v=0 and u /w=�, in
complete agreement with Eq. �49�. �a� Typical bifurcation diagram
in region A, parameters used are �=− 1

2 and �= �

4 . Here �c

=3.5802, �=0.0554; the dominant order parameter is w. �b� Typical
bifurcation diagram in region B, parameters used are �=0 and �
= 2

5�. Here �c=4.8708, �=−0.1318; the dominant order parameter
is w. �c� Typical bifurcation diagram in region C, parameters used
are �= 4

9 and �= 7
16�. Here �c=80.1608, �=−1.6879; the dominant

order parameter is u.
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gible, to within our numerical precision. By Eq. �27�, we
then conclude that the condensed phase represented by these
scalar order parameters is uniaxial, as both M and E are
along ez. By Eqs. �29�, the polarization P is also along ez.
Since, as far as we could explore, this conclusion applies
everywhere in the interior P̊ of the parameter space, we are
thus led to conjecture that the condensed phases predicted by
our model are uniaxial for all �� ,��� P̊, so that a single
scalar order parameter, either u or w, would indeed suffice to
describe them. Below, we assume this conjecture as valid
and we explore its consequences.

C. Maximum polarization

Here we show that the only ordered equilibrium phase
predicted by our model is polar uniaxial, and we learn how
to choose the parameters �� ,�� to maximize the phase polar-
ization. The numerical evidence we collected makes us be-
lieve that the only equilibrium solutions for f are such that

t = �v and u = �w , �48�

with � depending only on �� ,��.

The situation we envisage is similar to that encountered in
the classical Maier-Saupe theory. Allowing the mean-field
ensemble average Q of the microscopic uniaxial tensor q to
be potentially biaxial does not lead to any more solutions to
the equilibrium equations for the resulting mean-field free
energy F0 than were already found in the seminal paper of
Maier and Saupe �26� under the assumption that Q be
uniaxial. As predictable as this result may seem, it has only
recently been proved analytically �55–57�.

Having chosen t�0 to lift the degeneracy of f under ro-
tations, we also obtain from Eq. �48� that v�0. At the bifur-
cation point, where �=�c, u and w satisfy the linear system

Huuu + Huww = 0,

Huwu + Hwww = 0,

where Huu, Huw, and Hww are components of the Hessian
matrix of f , see Eq. �C1� in Appendix C. Under the assump-
tion in Eq. �48�, we then obtain an analytic expression for �,

���,�� = −
Huw

Hww
= −

�3� + 1�sin ��9 + �c�4 cos2 � + 2�3� − 1�sin2 ���

4 cos ��9 + �c	4 cos2 � +
1

4
�3� + 1�2sin2 ��� , �49�

where �c is given by Eq. �C2� as a function of �� ,��.
The analysis of the function � in Eq. �49� shows that it

vanishes for �=− 1
3 and on two segments on �P, namely,

��� ,�� :�� �−1,1� ,�=0� and ��� ,�� :�� �−1, 1
3 � ,�= �

2 �; the
whole nodal set of � is marked in Fig. 10 by bold dots. In
particular, � is positive in A, where it stays below 1, and
negative in the interior of P \A, where it equals −1 precisely
along the line �=�c that marks the boundary between B and
C: more specifically, −1���0 in B and ��−1 in C. More-
over, � diverges to −� upon approaching the segment
��� ,�� :�� � 1

3 ,1� ,�= �
2 � on �P and it approaches the func-

tion −tan � as � approaches 1. Since both u and w range in
the interval �−1,1�, this shows that u is the dominant order
parameter in C, while w is the dominant order parameter in
P \C. Furthermore, u and w have the same sign in A and
opposite signs in the interior of P \A. Clearly, reversing the
sign of both u and w does not change the phase, as both
vectors M and E simply get reversed, but reversing the sign
of their ratio � affects the phase polarity P.

Assuming that the dominant order parameter saturates to
1 as � grows away from �c, which was indeed the case for
all our numerical solutions, we can derive from Eq. �27� with
Eq. �48� an explicit expression for the measure of saturated
polarization,

P��,�� ª lim
�→�

�Pz� = � sin � + � cos � in P \ C ,

�cos � +
1

�
sin �� in C , �

�50�

where � is as in Eq. �49�. The graph of the function P in Eq.
�50� is depicted in Fig. 6; it shows that the largest saturated
polarization is attained for �� �−1, 1

3 � and �= �
2 . The graph

of P is similar in its appearance to the graph of the micro-
scopic degree of polarization  derived through Eq. �25�
from the ground state of Hdip and shown in Fig. 4 above. To
illustrate quantitatively both similarities and differences be-
tween P and  we draw in Fig. 7 the graph of �ª−P. It
clearly indicates that P and  differ mainly around the
boundary separating B from C.

The above analysis indicates that for the interaction
Hamiltonian Hdip studied in this paper the polar nematic tran-
sition takes place at the least possible temperature and estab-
lishes the largest polarization at saturation, if �=−1 and �
= �

2 . In the light of Sec. III A above, this means that among
all molecules whose shape is described by Eqs. �14� and �20�
the most efficient ones in promoting a polar nematic phase
are disklike, symmetric about the axis of their permanent
dipole moment.
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V. CONCLUSION

We employed a mean-field theory to explore the possible
occurrence of a polar nematic phase comprising polar mol-
ecules biaxial in shape. Our program also conceived the pos-
sibility that the resulting phase were biaxial, as an effect of
the mutual steric hindrance between the constituting mol-
ecules.

This is perhaps the point where our approach differs the
most from other theoretical attempts to describe the molecu-
lar mechanism behind the possible occurrence of polar nem-
atic phases: that we combine in one and the same theory the
attractive, long-range dipolar forces that promote the mo-
lecular alignment and the repulsive, short-range steric forces
that interfere with the former to the point of counterbalanc-
ing their aligning effect. Our analysis was based on the steric
tensor SR�, a second-rank tensor depending on the molecular
excluded region R�, which within our theory embodies the
steric component of the molecular interaction.

We were able to compute SR� analytically only in the
limit where the molecular shape R is a spheroid, obtained as

a small biaxial deformation of a sphere. Within this limit, we
determined explicitly the pair-potential Hdip representing the
dipolar interaction along with the steric effects that modify
it; the analysis of its ground state revealed that it is partly
repulsive. Applying to Hdip the general mean-field theory for
partly repulsive Hamiltonians, we obtained the equilibrium
phases for all temperatures T and for all choices of the model
parameters �� ,��.

We found that there is a critical temperature Tc such that
the equilibrium phase is isotropic for T�Tc and nematic, at
the same time polar and uniaxial, for T�Tc. The equilibrium
solutions computed in our work suggested that the con-
densed nematic polar phase can indeed be described by a
single scalar order parameter. The phase transition taking
place at T=Tc is second order and the corresponding bifur-
cation diagram has a typical pitchfork appearance with the
usual associated exchange of stability. The analysis of the
dependence of Tc on the model parameters revealed that Tc is
maximal when the constituting molecules are disklike in
shape with their permanent dipole moment p along the sym-
metry axis. Thus, for such molecules, the nematic transition
should be less likely to be preempted by other transitions
also involving some degree of spatial ordering, such as the
smectic transition, which were not considered in our study.
The same disklike molecules would promote the largest po-
larization of the condensed phase at saturation. Quantita-
tively, placing p along the axis of a prolate molecule would
result in a transition temperature Tc four times smaller than
the one expected when p is placed along the axis of an oblate
molecule �see Eq. �C3� in Appendix C�. This conclusion,
which we made precise within a specific class of molecular
shapes, had already been anticipated in �34� through an in-
tuitive reasoning. It suggests a general criterion to engineer
polar molecules more likely to give rise to a polar nematic
phase.

Our model failed to produce a polar biaxial phase. A pos-
sible reason for this could be the restriction of the molecular
shape to spheroids. A further study where molecules are not
spheroidal is presently under way; it relies on a general com-
putational method to construct the steric tensor for dipolar
molecules with a generic convex shape �58�. The ultimate
objective of this study is to identify the molecular shape that
in a given, not too narrow family of model shapes would
promote the transition to a polar nematic phase, possibly
biaxial, at the largest temperature and with the largest satu-
ration polarization.
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APPENDIX A: STAGGERED CONFIGURATIONS

We show here that the small deformation of the spherical
shape represented by Eq. �10� is sufficient to make both the
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parallel and the antiparallel dipolar configurations staggered,
that is, such that the minimum of Udip is attained when the
intermolecular vector is neither parallel nor orthogonal to the
dipoles.

By replacing r in Eq. �1� with the distance of closest
approach u� in Eq. �12�, also with the aid of Eq. �14�, we
write Udip as U� or U�, according as to whether ��=� or
��=−�. Representing er in the form

er = cos �m + sin � cos �e + sin � sin �e�

and making use of Eqs. �20�, �21a�, �21b�, and �22�, we ex-
press U� and U� as functions of � and �:

U� =
p2

32��0R3U and U� = − U� ,

with

U��,�� ª
1 – 3�cos � cos � + sin � sin � cos ��2

�1 + 		2

3
cos2 � + �� −

1

3
sin2 � cos2 � − �� +

1

3
sin2 � sin2 ���3

. �A1�

It is easily checked that the function U is invariant under the
transformation �� ,��� ��−� ,�+��, which simply
amounts to exchange the particles in the interacting pair.

For 	=0, U possesses both �� ,0� and ��+ �
2 ,0� as critical

points, being the former its absolute minimizer. They corre-
spond to the parallel and antiparallel dipolar configurations,
with � �er in the former and ��er in the latter. Expanding U
up to second order in 	, one finds that for every �� �0, �

2 �,
the critical points �� ,0� and ��+ �

2 ,0� migrate into ��	 ,�	�,
with

�	 = � + 	�1 − ��sin 2� + o�	�, �	 = o�	�

and

�	 = � +
�

2
−

	

2
�1 − ��sin 2� + o�	�, �	 = o�	� ,

respectively, which shows how both parallel and antiparallel
configurations are now staggered at first order in 	. Clearly,
as already remarked in the text, the absolute minimizer of
Udip is the staggered parallel configuration.

APPENDIX B: REPULSIVE DIMENSION

To illustrate better the partly repulsive nature of the inter-
action described by Eq. �23� and to identify the dimension of
its repulsive component, we write Hdip in Eq. �23� as the sum
of two simple dipolar interactions. To this end, we introduce
in each molecule a different set of reference unit vectors,
�e� ,m��, rotated by the angle �� with respect to �e ,m�,

e�
ª cos ��e + sin ��m , �B1a�

m�
ª − sin ��e + cos ��m . �B1b�

Correspondingly, for any other molecule in an interacting
pair, the same unit vectors read as

e�� ª cos ��e� + sin ��m�, �B2a�

m�� ª − sin ��e� + cos ��m�. �B2b�

It is easily seen that by use of �B1� and �B2� Hdip in �23� can
be given the following equivalent form:

Hdip = U0�amm� · m�� + aee
� · e��� , �B3�

provided that �� is defined by

��
ª −

1

2
arctan	 �1 + 3��tan �

2 + �1 − 3��tan2 �
� �B4�

and am and ae are identified with

am =
1

3
�1 + cos 2���1 + cos 2��� −

1

2
�� +

1

3
sin 2� sin 2��

+
1

2
�� −

1

3
�1 − cos 2���1 − cos 2��� �B5a�

and

ae =
1

3
�1 + cos 2���1 − cos 2��� +

1

2
�� +

1

3
sin 2� sin 2��

+
1

2
�� −

1

3
�1 − cos 2���1 + cos 2��� . �B5b�

An easy but tedious computation shows that, with �� as in
Eq. �B4�,

amae = − �� − 1�2sin2 � cos2 � , �B6�

and so, for either �� �−1,1� and �� �0, �
2 �, Hdip is partly

repulsive, as either am or ae is negative.
As is clear from Eq. �B1�, the transformation �����+ �

2
maps e� into m� and m� into −e�, while by Eq. �B5� am and
ae get correspondingly exchanged, so that Hdip in Eq. �B3�
remains eventually unchanged. This shows that �� may suf-
fer a jump by �

2 , which necessarily produces both a discon-
tinuity and a change in sign in both ae and am, without af-
fecting Hdip. With �� defined as in Eq. �B4�, this actually
occurs for
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� = �c��� ª arctan� 2

3� − 1
and

1

3
� � � 1,

�B7�

which marks the boundary of the open region C within the
parameter space Pª ��� ,�� :�� �−1,1� ,�� �0, �

2 �� depicted
in Fig. 3. Whereas �� in Eq. �B4� converges to the limiting
value − �

4 upon approaching the line �=�c��� in the interior
of P \C, it converges to + �

4 upon approaching the same line
in the interior of C; for �� as in Eq. �B4�, ae�0 and am�0 in
C, whereas ae�0 and am�0 in the interior of P \C. To avoid
this annoying but immaterial discontinuity, which has no
physical meaning, we redefine the function �� so as to make
it continuous across the boundary between C and the interior
of P \C: we replace �� by � defined as

���,�� ª �����,�� for ��,�� � P \ C ,

����,�� −
�

2
for ��,�� � C . � �B8�

The graph of � is presented in Fig. 8, which shows how � is

indeed a smooth function in the whole of the interior P̊ of P
and suffers a �

2 -discontinuity at �= 1
3 and �= �

2 . The interior
of P \C is further split into the open regions A and B, sepa-
rated by the line �=− 1

3 �see Fig. 3�: � is positive only in A.
We conclude that, with �� replaced by �, m� is the repulsive

microscopic variable throughout P̊, whereas e� is the attrac-
tive one: the former minimizes the pair potential Hdip in the
antiparallel configuration m��=−m�, whereas the latter mini-
mizes Hdip in the parallel configuration e��=e�. According to
�44�, the repulsive dimension is defined by the number of
independent scalar order parameters needed to represent the
macroscopic ensemble average �m��. Since this is a vector in
three-dimensional space, one would normally expect that
such a dimension is 3; as shown in Sec. IV, it can be effec-
tively reduced.

To bring the triple �e ,e� ,m� identifying one molecule
into the triple �e� ,e�� ,m�� identifying the other molecule in
the interacting pair so that Hdip attains its ground state every-

where in P̊, we perform the rotation described by the equa-
tions

e� = cos �0e − sin �0m , �B9a�

e�� = − e�, �B9b�

m� = − sin �0e − cos �0m �B9c�

and illustrated in Fig. 9, where the angle �0 is to be deter-
mined so that m��=−m� and e��=e�. By rewriting these lat-
ter equations with the aid of Eq. �B9�, we readily arrive at

�0 = − 2� . �B10�

By the way � is defined in Eq. �B8�, which removes the
meaningless discontinuity of �� across the boundary separat-
ing B from C in P, �0 turns out to be positive in P \A, as in
the sketch shown in Fig. 9, and negative in A.

APPENDIX C: BIFURCATION ANALYSIS

The trivial triple �u ,v ,w,�= �0,0 ,0� corresponds to the
isotropic phase. It is clearly nonpolar and it is a solution to
the equilibrium problem for any ��0. The search for non-
trivial equilibrium solutions �0,u ,v ,w� of Eq. �39� was per-
formed through a numerical bifurcation analysis of the equi-
librium equations for f0

�, with the aid of MATCONT,2 a free
software package which integrates into MATLAB.3 This
method was already employed in the bifurcation analysis of
the equilibrium phases for nonpolar biaxial nematic liquid
crystals �42,43,52,53�. Here our analysis was further compli-
cated by the need of monitoring the Lagrange multiplier �
and the equilibrium values of My and Ey in Eq. �46� along all
possible bifurcation branches, to ensure that they can be re-
garded as negligibly small.

In the light of our analysis of the partly repulsive nature
of Hdip in Appendix B, the stability criterion that makes an
equilibrium solution �u ,v ,w� for f0 admissible, as it makes
the equilibrium solution �0,u ,v ,w� for f eligible to be the
saddle point where f attains its least equilibrium value, re-

2See http://www.matcont.ugent.be/matcont.html.
3
MATLAB is a registered trademark of The MathWorks, Inc.

http://www.mathworks.com.
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quires the Hessian matrix H of f at �0,u ,v ,w� to possess two
negative eigenvalues and two positive eigenvalues. To pre-
dict the possible bifurcation points along the trivial solution
whence nontrivial solutions may branch off, we compute H
at �t ,u ,v ,w�= �0,0 ,0 ,0�, for varying �. An expansion of f in
Eq. �37� near the origin reveals that, when expressed in the
permutated variables �t ,v ,u ,w�, H has the following block
structure

H = 	H2 0

0 H2
�, with H2 = 	Huu Huw

Huw Hww
� ,

where

Huu��,�;�� ª −
1

3
cos2 ��4 + �	16

9
cos2 �

+ �� +
1

3
2

sin2 ��� , �C1a�

Huw��,�;�� ª − �� +
1

3
sin � cos ��1 + �	4

9
cos2 �

+
2

3
�� −

1

3
sin2 ��� , �C1b�

Hww��,�;�� ª − sin2 ��2�� −
1

3
 + �	4

3
�� −

1

3
2

sin2 �

+
1

3
�� +

1

3
2

cos2 ��� . �C1c�

It is easily seen that

det H2 → − �� − 1�2cos2 � sin2 � for � → 0,

and so in this limit, for �� ,�� in the interior P̊ of the param-
eter space, H2 possesses one negative eigenvalue and one
positive eigenvalue, which shows that, according to the cri-
terion stated above, the trivial solution is stable at arbitrarily
large temperature T. As � grows away from 0 �and T de-
creases�, a bifurcation from the trivial solution may take
place only if det H2 vanishes. As is easily shown, this is the
case only for

� = �c��,��

ª

3�� − 1�sin2 � + 2 + �3�3�2 − 2� − 1�sin2 � + 4

�� − 1�2cos2 � sin2 �
.

�C2�

The analysis of the function �c in Eq. �C2� shows that it

diverges to � upon approaching the following segments on
�P : ��� ,�� :�� �−1,1� ,�=0�, ��� ,�� :�=1,�� �0, �

2 ��, and
��� ,�� :�� � 1

3 ,1� ,�= �
2 �, all marked by solid lines in Fig. 10.

Along the segment ��� ,�� :�� �−1, 1
3 � ,�= �

2 �, �c tends to a
finite limit, so that �c can be extended up to there by setting

�c��,
�

2
 =

9

2

1

1 − 3�
. �C3�

Moreover, along the segment Lª ��� ,�� :�� �−1, 1
9 � ,�= �

2 �,
��c

�� converges to zero, while it is negative at all points

�� ,��� P̊ with �� �−1, 1
9 �. This proves that, for any given

�� �−1, 1
9 �, the minimum of �c�� , ·� falls on L. Contrari-

wise, for any given �� � 1
9 ,1�, the minimum of �c�� , ·� oc-

curs in P̊, along the curve

� = �0��� ª arcsin�1

2
�5 + 3�

1 + 3�
, � � 	1

9
,1� .

�C4�

In Fig. 10, the locus defined by Eq. �C4� is represented along
with L as a white line. We thus conclude that the absolute
minimum of �c in P occurs at the vertex where �=−1 and
�= �

2 and that

min
P

�c =
9

8
. �C5�
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