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We studied avalanches of cohesionless granular materials down a rough inclined plane and overflowing a
wall normal to the incoming flow and to the bottom. This paper focuses on the transient time-varying mean
force exerted by the granular stream on the obstacle at various slope inclinations. A nearly triangular dead zone
is formed upstream of the obstacle. It largely contributes to the overall force signal at low slope inclinations.
It also drives the residual force corresponding to the avalanche tail until its standstill whatever the slope
inclination. An analytical hydrodynamic model based on depth-averaged momentum conservation was suc-
cessfully developed for steady-flow conditions to predict the steady-state force computed from discrete nu-
merical simulations �T. Faug, R. Beguin, and B. Chanut, Phys. Rev. E 80, 021305 �2009��. The basic equations
of the model are briefly reviewed and adapted to transient time-varying flows. The modified hydrodynamic
model quite accurately represents the force peak produced by the granular avalanche flows computed from
discrete numerical simulations reported in previous studies. A fitting procedure is needed to represent the
decrease of the force after the force peak, thus quantifying the different contributions to the mean force on the
wall. We show that the weight of each contribution is largely dependent on the slope inclination.
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I. INTRODUCTION

Granular flows around obstacles and the force that granu-
lar flows are able to exert on the obstacle are of major im-
portance in several applications such as storage and convey-
ing of bulk solids in industrial processes �1� as well as
protection dams against geophysical flows �2–6�. Granular
drag on objects was approached by the pioneering work of
Wieghardt �7,8� and was followed by several studies in a
relatively quasistatic granular regime on the one hand �9–14�
and in the rapid-dilute-granular regime on the other hand
�15–18� including interstitial gas effects �19,20�. Many stud-
ies on granular flows around obstacles focused on the shock
waves occurring in front of the obstacles in the rapid regime
�17,18,21–26�. To date, granular drag in the dense regime has
received little attention, referring to the so-called granular
liquid regime mentioned in �27�.

A condition to obtain such a dense regime is a rough
bottom �typical size roughness close to the diameter of the
moving grains�. In presence of obstacles, this complex dense
regime leads to the formation of large stagnant zones or
“dead zones” �28,29� in front of the obstruction. The follow-
ing conditions are needed for dead zone formation: �i� an
obstacle of typical size close to the incoming flow thickness,
and �ii� a relatively low Froude number of the incident flow
�Fr�1 typically�. When these dead zones occur, the grains
that are not trapped inside the dead zone continue to flow
over the obstacle in the absence of what is called a granular
jump, i.e., a large discontinuity in flow and velocity. These
granular jumps have been outlined earlier for rapid flows on
relatively smooth beds �30–33�. As shown for free-surface
gravity-driven granular flows overflowing a wall in the
steady dense regime, a nearly triangular dead zone, whose
length depends on the slope inclination, is formed upstream

of the obstacle �see experimental evidence in �28��. This
dead zone largely influences the force on the wall, as shown
by discrete numerical simulations in steady flow conditions
�29�. In this steady dense regime, a simple hydrodynamic
analytical model has been proposed and successfully tested
to reproduce the mean force on the wall computed from dis-
crete numerical simulations �29�. In this paper, we propose to
slightly modify the hydrodynamic model in order to adapt it
to transient, time-varying granular avalanches. This corre-
sponds to the situation typically encountered in geophysical
flows when avalanches flow over protection dams in the run-
out zone �5�.

The first section reviews the hydrodynamic model’s equa-
tions for the steady regime �see details in �29�� and describes
the assumptions made to establish the time-varying model
equations. In particular, exponential growth over time is pos-
tulated for the dead zone length. In the second step, the ex-
ponential equation describing the dead zone length is suc-
cessfully validated on discrete numerical simulations briefly
described in the present paper �and previously reported in
�34��. The predicted force is then directly cross-compared to
the mean force derived from the discrete numerical simula-
tions with a careful focus on the model’s sensitivity to each
of the various free parameters. The model’s predictions are in
good agreement with the numerical results to predict the
force at short and intermediate times. In particular, the maxi-
mum force is accurately predicted by the hydrodynamic
model. For slopes greater than a critical angle �max, we show
that a calibration of the friction force acting at the base of the
dead zone is needed to be able to catch the numerical results
with the hydrodynamic model at larger times when the ava-
lanche comes to a standstill. �max is the angle above which
steady recirculating flows do not remain uniform �29,35–37�.
The resulting basal friction force was found to vanish when
the slope inclination is greater than the angle �max. The vari-
ous contributions to the force derived from the model are
also quantified. A discussion on the usefulness of this ava-
lanche force model within the framework of depth-averaged*thierry.faug@cemagref.fr
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equations, recently revisited for dense granular avalanches
�38�, is finally given, and the possible model extension to
more complex obstacle geometries is suggested.

II. HYDRODYNAMIC MODEL

A. Equations for steady flows

We consider a steady granular stream down a rough in-
clined slope � characterized by its flow depth h, its depth-
averaged velocity ū= 1

h�0
hu�y�dy and its depth-averaged fluid

density �̄= �̄�P. �̄, respectively, �P, are the depth-averaged
volume fraction and the particle density of the granular ma-
terial. The granular stream overflows an obstacle of height H,
as shown in Fig. 1�a�. We define x, respectively y, as the unit
vectors parallel, respectively normal, to the bottom �Fig.
1�a��. Based on momentum conservation applied to the con-
trol volume V0 defined in Fig. 1�a�, the hydrodynamic model
proposed and described in detail in �29� makes it possible to
define the normal force Fn exerted on a wall by a steady
dense granular flow as the sum of a dynamic force Fd, a
hydrostatic force Fp, and a force based on the weight Fw of
the control volume minus the basal friction Ff with the rough
bottom:

Fn = Fd + Fp + Fw − Ff , �1a�

Fd = ��̄ū2h�1 − �1 − ��0�cos �0� , �1b�

Fp =
1

2
k�̄gh2 cos � , �1c�

Fw − Ff = ��̄�V0 −
1

2
LH	 +

1

2
�zmLH
g�sin � − �zm cos �� ,

�1d�

where the � factor is related to the velocity profile and is
defined by 1

h�0
hu2�y�dy=�ū2, � is a velocity reduction coef-

ficient equal to �1−e� / �	 /2� with e the restitution coefficient
�29�, and k is the earth pressure coefficient classically intro-
duced for granular flows �38,39� representing the ratio of the
longitudinal normal stress 
xx to the vertical normal stress

yy. �zm is the mean density inside the dead zone and should
be greater than the density �̄ due to the expected compres-
sion of the material trapped upstream of the wall.

To close the model, the following additional equations are
needed to define the deflecting angle �0, the dead zone angle
�zm

0 , the free-surface angle �sl
0 , the control volume V0 �in-

cluding the upstream fluid volume disturbed by the obstacle�,
the length of the influence zone L upstream of the obstacle,
and the basal friction coefficient �zm,

�0 =
1

2
��zm

0 + �sl
0 � , �2a�

�zm
0 = � − �min, �2b�

�sl
0 �� � �max� =

�min

�max − �min
�� − �min� , �2c�

�sl
0 �� � �max� =

	

2
− � �min − 	/2

�max − 	/2	�	/2 − �� , �2d�

V0 =
1

2
hL�2 + tan�2�0 − arctan

H

L
	�L

h
− h sin �0	

+
h

L
�H − h�sin �0
 , �2e�

L =
H

tan�� − �min�
, �2f�

�zm = tan �min. �2g�

The angle �zm
0 is the angle of the nearly triangular dead

zone formed upstream of the wall. The angle �sl
0 denotes the

angle of the upstream free surface disturbed by the presence
of the obstacle. The angle �0 is the resulting mean angle
between the bottom and the u� direction, where u� is the
outgoing flow velocity at section �S�� defined in Fig. 1�a�. All
these variables can be seen in Fig. 1�a�. The angles �min and
�max define the slope inclination range for which steady and
uniform granular flows are possible �29,35–37� if a constant
input discharge is supplied. Assuming that h is simply in-
versely proportional to the velocity reduction u= ū� / ū=1
−�� �29�, h is defined by h=h� /h=1 / �1−���, where h� is
the thickness of the outgoing flow at section �S�� defined in
Fig. 1�a�. The entire calculation to derive the system of Eqs.
�1� and �2� is detailed in �29�.

FIG. 1. �a� Sketch of the control volume V0 �hatched zone�
inside which momentum conservation is applied. h and u are the
flow depth and the mean velocity of the incoming flow at section
�S�. The section �S� is normal to the bottom and represents the
beginning of the influence zone �length L� of the obstacle �height
H�. L is the distance between the section �S� and the foot of the
obstacle. h� and u� are the flow depth and the mean velocity of the
flow at section �S��. Section �S�� is normal to the main direction of
the outgoing flow of velocity u�. We defined the deflecting angle �
between u� and the bottom. � is the bottom slope. Assuming a
triangular shape for the dead zone, we also defined �zm as the angle
of the dead zone with the bottom and �sl as the angle of the free-
surface �inside V0� with the bottom. �b� Sketch of the simulated
system. A finite volume �hatched area� of an assembly of about
18 000 spheres �mean diameter, d� is suddenly released from the
reservoir �length Lr=300d� by an aperture of height Hr=35d, and
the grains flow down the inclined slope.
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The discrete numerical simulations on the steady flows
presented in �29� show that the dead zone angle with the
horizontal, �−�zm

0 �see Fig. 1�a��, was found to be constant
and equal to �min for any slope, which gives Eq. �2b�. There-
fore, it was possible to derive the length of the influence
zone L according to Eq. �2f�. It was also found that the basal
friction coefficient �zm was constant and equal to tan �min,
which gives Eq. �2g�. Further details can be found in �29�.
These results must be modified for the granular avalanches
investigated in this paper, which are time-varying phenom-
ena. This will be discussed in the following section.

B. Equations for avalanches

In the case of finite volume granular avalanches, we have
to consider the additional term d

dt ���V�udV� in the momen-
tum balance �per unit width�. This term must be taken into
account beside Eqs. �1b�–�1d� provided the time-varying val-
ues of the flow depth h�t�, the depth-averaged velocity ū�t�,
and the depth-averaged density �̄�t�. The time t=0 corre-
sponds to the avalanche release. The average velocity inside
the dead zone is nil, which leads to d

dt ���V�udV�
= d

dt ���V0−�1/2�HL�udV�. Let us consider the approximation
dM
dt = d

dt ���V�udV� ·x� d
dt ��VuV�V0− 1

2HL��, where uV and �V
are the mean velocity and density inside the volume V0

− 1
2HL. Then, neglecting the term dM

dt is a reasonable assump-
tion if the variations of the momentum d

dt ��VuV� and of the
volume d

dt �V0− 1
2HL� are small. This is almost true when the

avalanche decelerates before coming to a standstill �ava-
lanche tail after the peak pressure�, but this assumption may
fail at short and intermediate times when the avalanche front
impacts the obstacle, with possibly large time-velocity, flow
depth, and pressure gradients. We will come back to this
assumption in Sec. III C.

We call �zm the dead zone angle, �sl the free-surface
angle, and � the deflection angle which are time varying in
the avalanche regime considered here. Only at the first im-
pact of the avalanche front with the wall does the influence
zone length remain at zero �the incident flow is still undis-
turbed�, corresponding to a limit value of the angles �zm and
�sl equal to 	 /2. If the avalanche volume is large enough,
we can expect to reach a steady state similar to the one
investigated in �29�. This steady regime may lead to the
angle value corresponding to the steady regime defined by
Eqs. �2b�–�2d�. At this stage, and without accurate experi-
mental knowledge of these angles’ changes over time, we
can expect to reproduce this behavior by exponential laws in
the following form as soon as the avalanche has reached the
wall:

�zm�t� = �zm
0 + �	

2
− �zm

0 	e�Ti−t�/�, �3a�

�sl�t� = �sl
0 + �	

2
− �sl

0	e�Ti−t�/�, �3b�

where �zm
0 and �sl

0 are the values in the steady state �Eqs.
�2b�–�2d�� and � is a characteristic time. The time Ti corre-
sponds to the impact of the avalanche with the wall. Equa-

tions �3a� and �3b� are valid if t�Ti. �zm�t� and �sl�t� are
equal to 	 /2 when t�Ti. It is reasonable to assume that � is
similar for �zm and �sl, since the latter angle is directly in-
fluenced by the former angle. The value of � will be dis-
cussed in the next section. The time-varying deflecting angle
��t� is simply derived from Eq. �2a�, which remains valid if
the above time-varying angles �zm�t� and �sl�t� are consid-
ered. The limit values of the angles established for the steady
regime may be inappropriate to describe the final state when
the avalanche comes to a standstill. This point will be dis-
cussed in Sec. III B. The time-varying influence zone length
L�t� is then defined as

L�t� =
H

tan��zm�t��
, �4�

and the control volume V0 is time-varying and defined by Eq.
�2e� provided the appropriate time-varying values of L�t�
�Eq. �4�� and ��t�.

In steady regime �29�, the basal friction coefficient �zm
was found constant for any slope and equal to tan �min on the
one hand and the dead zone angle with the horizontal, �
−�zm

0 , was also found constant for any slope and equal to
�min on the other hand. This results leads to the following
equation in steady regime: �zm=tan��−�zm

0 �. This last equa-
tion suggests a simple geometrical relation between the basal
friction coefficient and the dead zone angle with the horizon-
tal. If such a statement holds for the time-varying avalanche,
the basal friction coefficient should be time-varying and is
likely to be defined by the following equation with respect to
the dead zone geometry:

�zm�t� = tan�� − �zm�t�� . �5�

Whether the above time-varying value of �zm from Eq.
�5� should be chosen instead of a constant value equal to
tan �min will be discussed in Sec. III C. It should be noted
that the basal friction coefficient defined here is used to de-
scribe a time-averaged macroscopic behavior without going
into the details of the complex physical processes acting in-
side the dead zone. The fluctuating force chain network ob-
served inside the dead zone and leading to high-frequency
force fluctuations �Fig. 4�a� in �29� and Fig. 4 in �34�� is
beyond the scope of the depth-averaged hydrodynamic
model presented in this paper.

III. MODEL PREDICTIONS COMPARED TO DISCRETE
NUMERICAL SIMULATIONS RESULTS

A. Discrete numerical simulations

1. Simulation method, contact law, and microscopic parameters

Numerical simulations were carried out using the
molecular-dynamics method as introduced by Cundall �40�
and successfully used to simulate dense granular flows �see,
for example �36,41,42�. The method assumes rigid spheres
interacting through a damped linear spring for the normal
force and a linear spring restricted to a threshold value ac-
cording to friction between grains described by a Coulomb
condition for the tangential force. Four microscopic param-
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eters are needed for the model: the normal stiffness kn
�=104 N m−1 in our simulations�, the tangential stiffness kt
�=1 /2kn�, the local particle friction � �=0.5�, and the damp-
ing coefficient related to the restitution coefficient e �=0.5�.
Further details on the numerical method and the choice of
the values given to the microscopic parameters are presented
in �29,34� and references therein.

2. Simulated systems and measures

The simulated systems consisted of an inclined slope and
an upstream reservoir of length Lr=300d, as shown in Fig.
1�b�. The grains in motion were spheres with a slight poly-
dispersity ��10% in size�. The simulated system worked as a
purely 2D system made of disks but with spheres whose
centers were forced to stay in the 2D plane �x ,y� defined in
Fig. 1�b�. Because of the thickness of the spheres in the third
dimension z �see Fig. 1�b��, we will consider 3D volume
fractions �see Sec. III C�. The mean grain diameter was d
=1 mm and the particle density was �P=2450 kg m−3 cor-
responding to glass material. The roughness of the bottom
was made with grains measuring d in diameter with the same
properties as the grains in motion. A constant volume was
initially released from the reservoir by an aperture of con-
stant height Hr=35d. The results of the numerical tests are
presented in greater detail elsewhere �34�. The granular ava-
lanches considered here differ from the stationary flows gen-
erated from a recirculation system investigated in �29�. The
avalanche flows are more complex because they correspond
to transient, time-varying granular flows.

First, we investigated flows with no obstacle in a large
range of slope inclinations �16° ���32°� and we character-
ized the changes over time in flow depth h, depth-averaged
velocity ū and volume fraction �̄ at various locations, x /d,
from the reservoir. The typical changes over time in flow
depth and velocity are given in Fig. 2 for �=24° at the po-
sition x0 /d=500. Second, we measured the force over time
exerted by the granular avalanche on an obstacle located at
the position x0 /d=500. The obstacle is a wall of height H
normal to the incoming flow and normal to the bottom. The
flow depth over time at location x0 /d=500 shows a maxi-
mum �see example in Fig. 2�. H was systematically set to be
equal to this maximum value of the flow depth at the location

x0 /d=500. High-frequency force fluctuations were observed,
as shown in �34�, Fig. 4. In this paper, we focus on the
time-averaged normal force Fn only. Typical forces evolving
with time are depicted in Fig. 3. The force-vs-time signals
are characterized by three phases: �i� a short-duration force
increase, �ii� a force peak whose width increases with de-
creasing slope inclination, �iii� a long-lasting force decrease
up to a residual force whose value decreases with decreasing
slope inclination. Further details and discussion of the nu-
merical results can be found in �34�. Further results are also
given in Sec. III C when these numerical results and the hy-
drodynamic model prediction are cross-compared.

B. Measured and predicted dead zone lengths

Importantly, the dead zone length determines the magni-
tude of the control volume V0 and therefore the forces Fw
and Ff in Eqs. �1a� and �1d�. The empirical laws proposed to
estimate the change over time of the dead zone angle �Eq.
�3a�� and the influence zone length �Eq. �4�� were directly
compared to the results of the numerical simulations. This
helped the model calibration before focusing on the mean
force exerted on the wall. The so-called dead zone was de-
fined as the region inside which the grains had an individual
velocity v smaller than a threshold velocity vt. For steady
recirculating flows investigated in �29�, vt was chosen equal
to 0.05ū, with ū the steady averaged velocity of the control
flows with no obstacle. vt was slope-dependent. In the ava-
lanche regime here, the depth-averaged velocity ū was not
only slope-dependent but also time varying. For the sake of
simplicity, we used a constant threshold velocity equal to
5 10−2 m s−1 whatever the slope and the time t. Further-
more, the dead zone shape was calculated at a frequency of
10 Hz. This allowed us to roughly estimate the average shape
of the dead zone without consuming too much calculation
time. Figure 4 gives a typical example of the changes over
time of the dead zone shape. This is shown to be nearly

FIG. 2. Flow depth and velocity versus time measured at the
position x0 /d=500 �see Fig. 1�b��: example for �=24°.

FIG. 3. Time-averaged normal force Fn versus time �moving
average over 0.2 s�. The results presented in this figure were ob-
tained for �=16°, 24° and 32°. The complete results are presented
in �34� and in Sec. III C when the numerical results and the hydro-
dynamic model prediction are cross-compared.
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triangular in spite of the observed fluctuations in the dead
zone profiles �choosing a time-varying threshold velocity vt
also depending on the slope inclination and increasing the
acquisition frequency would have smoothed the results�. Fig-
ure 5 displays the change over time of the dead zone length
for the following slopes: �=16°, 24°, and 30°. The results for
other slopes are very similar. We also reported the prediction
from Eq. �4�. The comparison shows that the numerical data
are relatively well reproduced at short and intermediate times
for any slope provided a value of �=0.40 s. At longer times,
the predictions remain satisfactory even if the dead zone
length tends to increase slightly at longer times, whereas the
exponential law predicts a saturation to the value corre-
sponding to the steady regime. It may lead to a slight under-
estimation of the dead zone length by the proposed empirical
law at large times.

C. Measured and predicted forces

In this section is studied the model’s sensitivity to �i� the
basal friction coefficient �zm, �ii� the time-derivative term in

momentum balance, �iii� the dead zone length and the model
parameters �, �, and k. First, we show that a time-varying
value of the basal friction is more efficient than a constant
value derived from the steady regime to catch the force peak.
However, a gap between numerical results and model predic-
tion exists at large times after the force peak and this gap
increases with increasing slope. Second, we show that taking
into account or not the time-derivative term in momentum
balance has little effect on the results. Third, the sensitivity
of the model prediction to the dead zone length and to the
model parameters �, �, and k is investigated. It is shown that
varying L, �, �, or k does not improve the model predictions
at large times �avalanche tail�. Finally, we show that it is
needed to fit the basal friction in order to be able to catch the
force not only at short and intermediate times �close to the
force peak� but also at large times �avalanche tail�. The vari-
ous steps of the sensitivity study are detailed below.

1. Influence of the basal friction �zm: A time-varying value?

Figure 6 gives the hydrodynamic model predictions com-
pared to the numerical data using the following set of the
model’s free parameters: �min=14°, �max=24° �both angle
values were previously determined in �29,34� and are com-
patible with previous studies with the same granular material
in 2D geometry �37,43��, k=1, �=0.32 �e=0.5� and �=1.
Investigating in detail the possible influence of the slope at
different times on the density of the dead zone was beyond
the scope of our study. We simply assume here that the mean
density of the dead zone is close to the random close pack-
ing: �zm��max=�max�P where �max=0.64 is the random
close packing for a 3D system �44�. We use here �max
=0.64 �real 3D system� instead of �max=0.82 �real 2D sys-
tem� in order to be consistent with the computed forces
which depend on the density of the system made of 3D
spherical particles. In Fig. 6 are presented the results for the
following slopes: �=18°, 22°, and 30°. The results for other
slopes are similar.

If we consider a time-varying basal friction coefficient,
i.e., �zm�t�=tan��−�zm�t��, the predictions are shown to be
relatively good at short and intermediate times for most of
the slope inclinations. The model predictions given in Fig. 6
are drawn without including the term dM

dt in momentum bal-
ance. This result tends to show that not considering this term
may be a reasonable assumption for the avalanche flows in-
vestigated here. In the following section are discussed the
model predictions including an approximation of this time-
derivative term. On the other hand, the force is generally
underestimated at higher times �after the force peak�. We will
come back to this discrepancy between model predictions
and numerical data later in the paper. Figure 6 also shows the
model’s predictions with �zm=tan��min�, which give less sat-
isfactory results to reproduce the force at short and interme-
diate times.

The maximum force, or force peak, exerted by the granu-
lar avalanche on the wall must be considered. Figure 7 shows
the maximum force Fmax normalized by a typical force F0
versus the slope inclination where F0 is defined as: �i� the
typical dynamic force of the control flow with no obstacle,
F0

dyn=1 /2�̄mūm
2 hmax �where hmax is the maximum height, ūm

FIG. 4. Change over time of the dead zone shape: example for
�=28°. The arrow indicates the propagation of the dead zone up-
stream of the obstacle �x /d�0�.

FIG. 5. Normalized dead zone length L /H versus time t �s�:
comparison between the numerical data and the predictions from
Eq. �4� with �=0.40 s. Examples for �=16°, 24°, and 30°.
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and �̄m are the corresponding depth-averaged velocity and
fluid density, taken at same time t and same position x0 /d
=500� and �ii� the typical hydrostatic force of the control
flow with no obstacle, F0

hydro=1 /2�̄mghmax
2 cos �. Model pre-

dictions to reproduce the numerical values of the ratios
Fmax /F0

dyn and Fmax /F0
hydro are better with �zm�t�=tan��

−�zm�t�� than with �zm=tan �min. In the following, we will
systematically keep the time-varying value �zm�t�=tan��
−�zm�t�� with respect to the changes over time in the dead
zone angle.

The numerical results from Fig. 7 show that above �max
the maximum force is accurately described by Fmax
�CuF0

dyn �with Cu=1� while below �max, it is clearly de-
scribed by Fmax�ChF0

hydro �with Ch�6�. Above �max, the
maximum force scales as Fmax�um

2 hmax �dynamic force�. Be-
low �max, the maximum force scales as F�hmax

2 �hydrostatic
force�, but, because of the influence of the dead zone, a force
equal to around six times the incoming hydrostatic force is
mobilized. The hydrodynamic model is able to reproduce
these two regimes remarkably well. It should be noted that a
similar behavior has also been evidenced for steady-flow
conditions �see Fig. 8�b� in �29��.

2. Influence of the time-derivative term in momentum balance

As previously discussed, the temporal variation of the
momentum dM

dt can be approximated with the following
equation:

dM

dt
=

d

dt�� �
V

�udV	 · x �
d

dt
��VuV�V0 −

1

2
HL	
 .

�6�

This term can be estimated if we consider the following
assumptions: �i� �V� �̄ �the overall density inside V0− 1

2HL is
assumed equal to the depth-averaged density of the incoming

FIG. 6. Time-averaged force versus time for various slope inclinations: comparison between the numerical data �circles� and the model
predictions using �zm�t�=tan��−�zm�t�� �black line� or �zm=tan �min �gray line� with the following values: �min=14°, �min=24°, k=1, �
=0.32 �e=0.5�, �=1, and �max=0.64. Examples for �=16°, 22° and 30°.

FIG. 7. Normalized maximum force Fmax /F0 vs slope inclina-
tion � with F0=F0

hydro �gray� or F0=F0
dyn �black�. Model predictions

�curves� compared to discrete numerical data �points�. Model pre-
dictions are given for two values of �zm: �zm=tan �min �dash line�
and �zm�t�=tan��−�zm�t�� �solid line�.
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flow� and �ii� uV= 1
2 ū�1+u� �the overall velocity inside V0

− 1
2HL is close to the mean value given by ū and ū��. Figure

8 shows the comparison between the hydrodynamic model
predictions including the term dM

dt or not for the following
slopes: �=18°, 24°, and 30°. The results for other slopes are
very similar. The influence of this term remains weak. How-
ever, we can detect a better accuracy of the model to describe
the force signal at small times, corresponding to the short-
duration increase of the force before reaching the maximum
value. Figure 9 displays the maximum force Fmax normalized
by the typical forces F0 �dynamic and hydrostatic� versus the
slope inclination. Model predictions including the approxi-
mated value of dM

dt or not are displayed. The model predic-
tions on maximum force are slightly influenced by the time-
derivative term in momentum balance.

3. Influence of L, k, � and �

As previously mentioned and shown in Fig. 5, the value
of the dead zone length L is shown to be well predicted by
the exponential law. However, it may be noticed a slight
underestimate of the dead zone length at long times in Fig. 5.
Underestimating L leads to underestimating V0, resulting in a
lower force Fw. Hence, increasing L can reduce the gap be-
tween the model predictions and the numerical data. How-
ever, we did not find reasonable L values which allowed us

to match the numerical data for any slope and time. As an
example, it is needed to multiply the dead zone length by a
factor 1.5 to catch the measured force at large times for �
=22°. The resulting dead zone length is then far from the
measured one and the good prediction at earlier times, before
and at the force peak, is completely lost �the force peak being

FIG. 8. Time averaged force versus time for various slope inclinations: comparison between the numerical data �circles� and the model’s
predictions including the time-derivative term in the momentum balance �black line� or not �gray line�. The following values of the model’s
free parameters are used: �min=14°, �min=24°, k=1, �=0.32 �e=0.5�, �=1, and �max=0.64. The friction is defined with respect to the
time-varying geometry of the dead zone: �zm�t�=tan��−�zm�t��. Examples for �=18°, 24°, and 30°.

FIG. 9. Normalized maximum force Fmax /F0 vs slope inclina-
tion � with F0=F0

hydro �gray� or F0=F0
dyn �black�. Model predictions

�curves� compared to discrete numerical data �points�. The model
predictions include the time-derivative term in the momentum bal-
ance �solid line� or not �dashed line�.

TIME-VARYING FORCE FROM DENSE GRANULAR… PHYSICAL REVIEW E 82, 041302 �2010�

041302-7



largely overestimated�. It can be concluded that the observed
discrepancies between the hydrodynamic model predictions
and the discrete numerical results at large times after the
force peak are not explained by an error in estimating L with
the proposed exponential law.

Figure 10 gives the hydrodynamic model predictions
compared to the numerical data using various sets of the
model’s free parameters k, � �e�, and �. Four triplets are
considered: �i� k=1, �=0.32 �e=0.5�, and �=1; �ii� k=1.12,
�=0.32 �e=0.5�, and �=1; �iii� k=1, �=0.32 �e=0.5�, and
�=5 /4; and �iv� k=1, �=0.13 �e=0.8�, and �=1. The value
�=1 corresponds to the exact value for plug flows �39�,
whereas �=5 /4 refers to a Bagnold-like velocity profile
�45�. The value k=1 corresponds to isotropic material condi-
tions whereas k=1.12 is derived from a Mohr-Coulomb plas-
ticity prediction �39� when the basal and the internal friction
coefficients are taken equal to tan �min �46�. In Fig. 10 are
presented the results for three slope inclinations: �=16°, 24°,
and 32°. We found identical trends for the slopes not de-
picted in Fig. 10.

The model’s sensitivity to � and � is insignificant at low
slopes whatever the time. The model’s sensitivity increases
with increasing slope inclination but only at short and inter-
mediate times �close to the force peak�. Varying � and �
does not change the model predictions at larger times �ava-
lanche tail�. The model’s sensitivity to k is generally insig-

nificant for any slope whatever the time. It can be concluded
that changing the values of k, � �or e�, and � does not ex-
plain the observed discrepancies between the hydrodynamic
model predictions and the discrete numerical results at large
times after the force peak.

4. Influence of �zm: Distinguishing flows below and above
�max?

In this section is investigated the influence of the basal
friction �zm in greater detail. At this stage, and for a lack of
better knowledge on the frictional processes involved at the
base of the dead zone, we suggest using the basal friction
coefficient �zm as a calibration parameter. We simply assume
that the real basal friction coefficient named �zm

� is propor-
tional to the basal friction coefficient defined by Eq. �5�
where the proportionality coefficient c� is a calibration pa-
rameter:

�zm
� �t� = c� tan�� − �zm�t�� . �7�

Figure 11 shows the results of the model’s calibration on
the numerical data for the following slopes: �=18°, 22°, and
28°. The results for other slopes are similar. The best-fitting
curves have been obtained by a simple method of least-
squares. The hydrodynamic model can match the numerical
data well after the force peak if the following values for c�

FIG. 10. Time-averaged force versus time: comparison between the numerical data �circles� and the model predictions using various sets
of the model’s free-parameters: �i� k=1, �=0.32 �e=0.5�, and �=1 �solid black line�; �ii� k=1.12, �=0.32 �e=0.5�, and �=1 �solid gray
line�; �iii� k=1, �=0.32 �e=0.5�, and �=5 /4 �dashed gray line�; �iv� k=1, �=0.13 �e=0.8�, and �=1 �dashed black line�. The results are
displayed for three slope inclinations: �a� �=16°, �b� 24°, and �c� 32°. The model predictions are given using �min=14°, �min=24°, and
�zm=tan��−�zm�t��.
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depending on the slope inclination are considered: c�=0.99
for �=16°, c�=0.99 for �=18°, c�=0.86 for 20°, c�=0.52
for 22°, c�=0.20 for �=24°, and c�=0 for �
=26° ,28° ,30°, and 32°.

Importantly the angle �max that defines a critical angle
above which no steady and uniform flows are possible even
if a constant input discharge in granular materials is supplied.
This angle �max is determined by measuring the thickness of
the granular material left by the granular stream and depends
on the flowing grains and roughness properties �see �35,37�
and references therein�. �max was estimated at 24° for the
material studied �29,34�, which is compatible with previous
studies on similar 2D granular systems �37,43�. Physically,
�max can be interpreted as the critical friction angle above
which grains cannot be trapped in the bottom roughness.
Thus, one can expect different friction processes at the base
of the dead zone if the slope inclination is below or above
�max. Figure 12 depicts the calibration coefficient c� versus
the slope inclination. The curve shows a change in behavior,
which, remarkably, acts around the critical angle �max. Above
�max, c� vanishes, indicating that the friction force at the base
of the dead zone is nil. Below �max, c� sharply increases and
tends to reach a value equal to 1 when the slope inclination
tends toward �min.

At this stage, we are not able to explain this peculiar
result derived from the fitting process and showing a transi-

tion around �=�max. We can only suggest the idea or the
intuition that this behavior is related to the function hstop���
previously evidenced from numerical and experimental
simulations �27,35,37�. Indeed let us imagine a situation for
which the wall would be removed. Above �max, all the grains
stored upstream of the wall will flow downward obeying
hstop����max�=0 and suggesting that the average basal fric-

FIG. 11. Time-averaged force versus time for various slope inclinations: comparison between the numerical data �circles� and the model’s
predictions using �zm�t�=tan��−�zm�t�� �black line� or �zm

� �t�=c� tan��−�zm�t�� �gray line� with the following values: �min=14°, �min

=24°, k=1, �=0.32 �e=0.5�, �=1, and �max=0.64. Examples for �=18°, 22° and 28°. The best fit �least-squares method� was obtained with:
c�=0.99 for �=18°, c�=0.52 for 22° and c�=0 �no basal friction force� for �=28°.

FIG. 12. Calibration coefficient c�, defined by Eq. �7�, versus
the slope inclination �. The vertical dashed line marks the value of
�max. Inset: function hstop /d versus �.
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tion �resulting from grain scale effects such as trapping� is
nil. Below �max, the grains will form a deposit obeying
hstop����max��0 suggesting that the average basal friction
is nonzero. The thickness of this deposit will increase with
decreasing slope inclination �increase of hstop��� when de-
creasing �� suggesting that the basal friction increases. In the
inset of Fig. 12 is shown the hstop function to illustrate the
possible link with c�. We did not measure the basal friction
directly and further investigations are needed on the influ-
ence of roughness. Whether this correlation between the
function hstop and the fitting parameter c� is simply a coin-
cidence or results from more fundamental physical phenom-
ena remains an open question.

D. Various contributions to the total force

As illustrated in Fig. 13 and already mentioned in the
paper, the typical time-varying force from the granular ava-
lanche can be split into three phases: �i� a rapid, short-
duration increase, �ii� a more or less pronounced force peak
depending on the slope inclination, and �iii� a long-lasting
force decrease �avalanche tail� until the avalanche comes to a
standstill in the presence of a residual force. Figure 13 gives
the model’s predictions compared to the numerical data �us-
ing the calibration value of c�� for the two extreme slopes
�=16° and �=32°, and for the intermediate slope �=24°.
Figure 13 also shows the different contributions to the total

force: the dynamic force Fd, the hydrostatic force Fp, and the
weight of the control volume V0 minus the basal friction
force Fw−Ff. The cross-comparison of the graphs given in
Fig. 13 is highly informative on the flow-obstacle interac-
tion.

First, during the avalanche phases �i� and �ii� previously
mentioned, the distribution of the various contributions to the
total force depends on the slope inclination. At high slope
values �rapid-dilute regime�, the dynamic contribution Fd is
dominant and largely contributes to the peak force: the con-
tributions from Fp and Fw−Ff are insignificant. In this re-
gime, the force is proportional to a purely dynamic force
1 /2�̄ū2h. Here it is crucial to estimate the depth-averaged
velocity and fluid density accurately to calculate the dynamic
force. Accurate estimations of the deflecting angle � and the
coefficient � �related to the velocity profile in depth� and �
�related to velocity reduction� are also of crucial importance
to derive the so-called drag coefficient 2��1− �1
−���cos ��. At this stage, we only used empirical arguments
to derive the deflecting angle � and the velocity reduction
coefficient � �29�. At low slope values �a dense regime close
to the quasistatic regime�, the contribution of Fw−Ff is
dominant: the contribution Fp is also important but to a
lesser extent. The dynamic contribution is here largely incon-
sequential. In this regime, it is crucial to estimate the hydro-
static force �flow depth h, fluid density �̄, and coefficient k�
accurately as well as the properties of the control volume

FIG. 13. Time-averaged force versus time: the model’s predictions using the fitting coefficient c� �black line� compared to numerical data
�circles�, including the curves showing each contribution to the total force: Fd �solid gray line�, Fp �dashed gray line� and Fw−Ff �dashed
black line�. The results are presented for three slope inclinations: �a� �=16° �low slope�, �b� �=24° �intermediate slope�, and �c� �=32° �high
slope�.
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upstream of the obstacle �dead zone length L and basal fric-
tion �zm also derived here from simple empirical arguments�.

Second, during the avalanche phase �iii� previously men-
tioned �avalanche tail�, the contribution to the total force
mainly stems from Fw−Ff, whatever the slope inclination.
Consequently, the conclusions drawn immediately above for
the dense regime close to the quasistatic regime at low slope
values are also valid here for any slope.

Third, the so-called granular liquid regime corresponds to
a transition state between these two asymptotic behaviors for
which all the contributions should be taken into account to
determine the total time-varying force exerted on the wall by
a dense granular avalanche. The hydrodynamic model pre-
sented in this paper is a good candidate to fulfill this require-
ment.

IV. CONCLUSION

This paper has described a simple depth-averaged hydro-
dynamic model allowing one to derive the time-averaged
force exerted by finite volume granular avalanches on a wall
normal to the incident flow. Basic model equations were de-
rived from a previous analytical model proposed for steady
flow conditions �29�. The interaction of the granular stream
with the wall is characterized by the formation of a dead
zone upstream of the obstacle. This dead zone largely influ-
ences the resulting force on the wall. In the case of granular
avalanches, we had to take into account the dead zone
changes over time. This was described by an exponential
variation in time. The proposed exponential law was shown
to predict the dead zone length, roughly estimated from dis-
crete numerical simulations, relatively well.

The hydrodynamic model predicted that the force was the
sum of three contributions: �i� a dynamic force Fd, �ii� a
hydrostatic force Fp, and �iii� the difference between the
weight of the control volume �fluid volume disturbed by the
wall� and its basal friction with the bottom, Fw−Ff. The first
two forces were accurately determined. The third one largely
influenced the total force �i� at low slope inclinations and �ii�
the residual force for all slope values. It was shown to de-
pend mainly on the value of the control volume �related to
the dead zone length� and the basal friction coefficient. As
the control volume was accurately estimated, the basal fric-
tion coefficient between the dead zone and the bottom re-

mained to be evaluated. The model’s prediction was first
found to be in good agreement with the numerical values for
most of the slopes in terms of the maximum force. The basal
friction coefficient was then used as a fitting parameter. It
was possible to accurately match the force decrease over
time obtained from the discrete numerical simulations. The
fitting process gave a basal friction coefficient depending on
the slope. Above the critical maximum angle �max, no fric-
tional force seems to be mobilized at the base. The wall is
submitted to the dynamic and hydrostatic forces plus the
weight of the control volume. Below �max the frictional force
sharply increases when the slope inclination decreases. The
basal frictional force contributes to decreasing the force to
which the wall is submitted. At this stage, we were not able
to explain this peculiar behavior. We suggested relating it to
the existence of the function hstop��� evidenced from previ-
ous experimental and numerical simulations �27,35,37�.

Today, advanced models based on depth-averaged equa-
tions initiated by the pioneering work of Savage and Hutter
�39�, recently revisited �38�, are able to reproduce the dy-
namics of granular avalanches observed in small-scale ex-
periments. With these models, it is not possible to compute
the force exerted by the granular stream on a wall. The
model proposed herein is encouraging in that it provides a
simple analytical approach to derive the force if the flow
features �flow depth, depth-averaged velocity, and density�
are determined a priori by a depth-averaged model. Further
research is needed to investigate the parameters derived from
empirical arguments and needed to close the model. This
paper has been restricted to a wall spanning the flow and
consisting of a flat obstacle normal to the incident flow. Fu-
ture investigations are needed on more complex flow geom-
etries with possible 3D effects including lateral fluxes and
other obstacles when the flow conditions correspond to the
granular liquid regime for which stagnant zones can occur in
the absence of a granular jump.
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