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We present an approach to mapping between random walks and vibrational dynamics on general networks.
Random walk occupation probabilities, first passage time distributions and passage probabilities between nodes
are expressed in terms of thermal vibrational correlation functions. Recurrence is demonstrated equivalent to
the Landau-Peierls instability. Fractal networks are analyzed as a case study. In particular, we show that the
spectral dimension governs whether or not the first passage time distribution is well represented by its mean.
We discuss relevance to universal features arising in protein vibrational dynamics.
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I. INTRODUCTION

Mapping two different physical problems onto one an-
other has been proven very useful in physics. Examples are
the mapping between the Schrodinger and diffusion equa-
tions �1�, the mapping between lattice-gas and Ising models
�2�, the mapping between quantum field theories and critical
phenomena �2�, and the mapping between random walks and
electric networks �3�. Here we focus on another well-known
mapping, the mapping between random walks and vibrations
in the scalar elasticity model. This mapping has been recog-
nized for a long time, and some of its consequences have
been already exploited, mainly in the context of fractal and
percolation networks �4�. Nevertheless, despite the large
amount of work done in the field, vibrational analogs for
several basic quantities arising in the theory of random walks
remained unknown.

Vibrations on a network of masses and springs are one of
the most well studied problems in physics. Scalar elasticity is
a special case where the three components of the displace-
ment vector of a network node are decoupled from each
other. Recently we have shown that the scaling behavior of
the mean first passage time �MFPT� on fractal networks can
be derived by exploiting an analogy with elastic networks
�5�. The MFPT is an extremely important quantity governing
the rate of diffusion controlled chemical reactions �6,7�.
Chennubhotla et al. expressed the MFPT in terms of thermal
vibrational correlation functions �8�. However, the applied
line of argumentation could not be carried on to higher mo-
ments of the first passage time, nor to its full distribution or
other probabilistic quantities. In the present study, we con-
sider networks of general topology and focus on the con-
struction of a rigorous mapping between the problem of a
scalar elastic network coupled to a thermal bath and the ran-
dom walk problem. The roots of our approach can be traced
back to the pioneering work of Hattori et al. who established
a relation between random walks and thermal correlation
functions of spin systems �9�.

II. MAPPING RANDOM WALKS
TO THERMAL VIBRATIONS

Consider an elastic network �EN� of N masses coupled by
harmonic springs in the framework of the scalar elasticity

model also known as the Gaussian network model �GNM�
when applied to proteins �4,10,11�. The GNM is defined by
the quadratic Hamiltonian equation,

HGNM = �
i

m�u�̇ i�2

2
+

�

2 �
i,j

�ij�u� i − u� j�2. �1�

The first term represents the kinetic energy of the system, �
is the spring force constant which is assumed to be homoge-
neous, u� i��xi ,yi ,zi� and R� i=R� i

0+u� i are the displacement
with respect to the equilibrium position R� i

0 and the instanta-
neous position of the ith mass, respectively. � is the network
connectivity matrix with the following entries: �ij =1 if
i� j and the pair i , j is connected by a spring, �ij =0 other-
wise. Here we will assume that a path of masses and springs
exists between any two masses on the network. The GNM is
threefold degenerate so it is sufficient to consider one spatial
direction. Denoting by x� the vector whose entries are xi, the
equations of motion in the absence of friction are: m d2x�

dt2

=−��x�. Here � is the network Kirchhoff matrix,

�ij = �− �ij i f i � j

zi if i = j
� , �2�

where zi��k�ik is the coordination number of the ith mass.
Since rigid translations are a solution of the equations of
motion, one of the eigenvalues of the matrix � is zero and
consequently this matrix has no inverse. As an alternative,
we exploit the existence of a generalized inverse. Denoting
the Moore-Penrose pseudoinverse of � by �−1 and coupling
the elastic network to a thermal bath one can show that
�10,12�

�ij
−1 =

�

kBT
	xixj
T. �3�

where 	xixj
T is the thermal correlation function.
The EN we have described above can also be thought of

as a network of nodes connected by links �which we will
refer to as RWN�, see Fig. 1. We now construct a continuous
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time random walk on the RWN and show that under our
construction the problem of vibrations on a network of
masses and springs is practically equivalent to the random
walk problem. In particular we express the distribution of the
first passage time between two nodes �in Laplace plane� in
terms of the vibrational correlation matrix defined in Eq. �3�.
Consider a random walk where the rate � j j at which a ran-
dom walker jumps out of node j is the coordination number
of that node, � j j =zj, and that the random walker performs
random jumps to its nearest neighbors without preference. In
this scenario, −� plays the role of a rate matrix whose ele-
ments −�ij are the transition rates from node j to node i. It
follows that the change in occupation probabilities as a func-
tion of time follows the master equation: dp��t�

dt =−�p��t�, with
the formal solution p��t�=�n=0

� �−t��n

n! p��0��exp�−t��p��0�.
When reflecting boundary conditions are introduced,

probability is conserved. Indeed, from Eq. �2� it follows that:
�i�j�ij =−� j j, i.e., the rate of probability flow out of a site j
is equal to the total rate at which probability flows into ad-
jacent sites. The case of absorbing boundary conditions is
tackled by introducing artificial absorbing nodes which are
connected to some of the other network nodes. The EN ana-
log is the introduction of equivalent infinite mass nodes
which are connected by springs to the same masses as in the
RWN. Mathematically this means that the network Kirchhoff
matrix � would change such that �ii→�ii+ni, where ni is the
number of absorbing/infinite mass nodes connected to node i
and we note that this would not change the form of the mas-
ter equation. In addition, rigid translations are no longer a
solution of the equations of motion. This implies that � has a
true inverse �−1 for which Eq. �3� holds �12�.

Denote by Pij�t� the probability that a random walker is
found at site j at time t given that it was at site i at time t
=0 and let P�t� be the matrix whose entries are Pij�t�. Denote
by �ij the first passage time �FPT� �in the case of i= j the first
return time� of a random walker traveling from site i to site j
and let f ij�t� be the probability density function of �ij. In the
supplementary material accompanying this Letter we show
that �12�,

�
P̃�s� =

1̂

sN
�bc +

�−1

I + s�−1

f̃ i j�s� =

�bc

N
+ � s�−1

I + s�−1
ij

�bc

N
+ � s�−1

I + s�−1
j j

i � j

f̃ ii�s� = 1 −
s

�s + zi���bc

N
+ � s�−1

I + s�−1
ii
� i = j .

� �4�

Here, P̃�s�, f̃ i j�s�, f̃ ii�s� are the Laplace transforms of P�t�,
f ij�t�, f ii�t�, respectively, 1̂ is a matrix whose all entries equal
one and �bc equals either one or zero in the case of reflecting/
absorbing boundary conditions, respectively. Equation �4� is
the fundamental result that stands in the basis of this paper. It
provides the connection between the statistical mechanics of
an elastic network and the stochastic dynamics of a random
walker on the same network. P�t� and f ij�t� are uniquely
determined by their Laplace transform and it follows that all
the information about the stochastic dynamics of a random
walker is contained in the pairwise correlation matrix �−1.
We proceed with the derivation of novel relations implied by
Eq. �4�.

III. ABSORBING BOUNDARY CONDITIONS

On a finite network with reflecting boundary conditions
the probability of a random walker to eventually reach a
target site j given it started at i is one. In general this prob-

ability is given by Fij =�0
�f ij�t�dt=lims→0 f̃ i j�s� and our con-

clusion is revalidated by taking this limit in Eq. �4� ��bc
=1�. The case of absorbing boundary conditions is more in-
teresting since the random walker may be absorbed at the
boundary before reaching its destiny. Taking the limit s→0
��bc=0� in Eq. �4� we obtain a vibrational interpretation for
Fij on a finite network equipped with absorbing boundary
conditions,

�Fij =
�ij

−1

� j j
−1 =

	xixj
T

	xj
2
T

i � j

Fii = 1 −
1

zi�ii
−1 = 1 −

1

�zi

kBT
	xi

2
T
i = j .� �5�

Doing the same for P̃�s� yields a vibrational interpretation
for the mean time spent in site j �given the walk started at
site i� prior to absorption: �0

�Pij�t�dt= �
kBT 	xixj
T. Interest-

ingly, Fij depends only upon the vibrational correlation be-
tween source and target and the vibrational mean square dis-
placement �MSD� of the target. Similarly, the probability to
eventually return to the origin Fii, depends only upon the
vibrational MSD of the origin and its coordination number zi.
We note that by definition 1�Fij, Fii�0 and hence in the
case of absorbing boundary conditions: 	xi

2
T�
kBT

�zi
and

	xj
2
T� 	xixj
T�0. In the scalar elasticity model the vector x�

FIG. 1. �Color online� Left–a network of nodes connected by
links �RWN�, right—the corresponding elastic network of masses
coupled by harmonic springs �EN�. One can transform a RWN to an
EN �and vice versa� by transforming nodes to masses and links to
springs. Absorbing boundary conditions are tackled by introducing
absorbing nodes and equivalent infinite mass walls. We study the
relation between the random walk problem on the RWN and ther-
mal vibrations of the EN.
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is multivariate normal �10� and its equilibrium distribution is
uniquely determined by the correlation matrix 	xixj
T. Since
�0

�Pij�t�dt determines 	xixj
T, the stochastic dynamics of a
random walker on the RWN uniquely determines the equi-
librium distribution of the displacements vector on the EN.

Equation �5� allows us to examine the question of recur-
rence in infinite networks by taking the thermodynamic limit.
In achieving this limit, we construct an infinite network as a
limit of on growing finite subnetworks. Doing so, we keep
all absorbing nodes at the periphery as subnetworks grow in
size. We discriminate between two types of infinite elastic
networks, those that are thermodynamically stable and those
that are not. From Eq. �5� it is clear that limN→� Fii
=1⇔ limN→�	xi

2
T=� and that limN→� Fii
�1⇔ limN→�	xi

2
T��. A network is called recurrent if Fii
=1 for every site i �13,14�. By assumption there is path con-
necting any two nodes and one can show that in this case Fii
are either all equal to one or all smaller than one �14�. Cor-
respondingly 	xi

2
T are either all infinite or all finite and we
conclude that an infinite network is recurrent if it is thermo-
dynamically unstable and vice versa. Recurrence, in the con-
text of random walks, is hence a term equivalent to the
Landau-Peierls instability of elastic networks �15–17�. Note
that no assumptions regarding network structure were made
in arriving to this conclusion.

Since 	xi
2
T either all diverge or all converge in the ther-

modynamic limit, considering the average vibrational MSD:
	x2
T= 1

N�n=1
N 	xi

2
T is usually enough in order to determine if
an infinite network is recurrent. On fractal elastic networks
the evaluation of 	x2
T is relatively simple since after going
to normal modes and invoking the equipartition theorem one
is left with a simple integral that gives �16�

	x2
T � �constant ds 	 2

ln�N� ds = 2

N�2/ds�−1 ds � 2.
� �6�

Here ds is the network spectral dimension that governs the
density of vibrational modes g�
� at low frequencies via the
scaling relation g�
��
ds−1. For regular three-dimensional
�3D�, two-dimensional �2D�, and one-dimensional �1D� net-
works the spectral dimension coincides with the regular di-
mension and one recovers the well known Debye density of
states. Combing Eqs. �5� and �6� we revalidate that an infi-
nite fractal network is recurrent if ds�2 �and vice versa� a
result which was first obtained by Burioni et al. �16�. In
addition we recover the average manner in which the limit
Fii→1 for N→� is achieved. Note that one must be more
careful applying the above arguments when considering
pathological cases for which, after taking the thermodynamic
limit, 	x2
T is infinite despite the fact that 	xi

2
T are all finite
and we refer the reader to a discussion on the related issue of
“recurrence on the average” �14�.

IV. REFLECTING BOUNDARY CONDITIONS

On a finite network with absorbing boundary conditions
for every two sites characterized by Fij �1, the probability
that the random walker would never reach j ��ij =�� is posi-

tive and the MFPT is therefore infinite. In contrast, in the
case of reflecting boundary conditions, the random walker is
sure to reach its destiny and the MFPT is then the single
most important quantity describing �ij. The kth moment of �ij

is given by: E��ij
k �= �−1�k f̃ ij�s��k� �s=0. Taking the first deriva-

tive and the limit s→0 ��bc=1� in Eq. �4� we obtain

E��ij� = �
N�

kBT
�	xj

2
T − 	xixj
T� i � j

N

zi
i = j .� �7�

Interestingly, the MFPT from site i to site j� i depends only
upon the vibrational correlation between source and target
and the vibrational MSD of the target. The mean first return
time is only affected by the number of nodes N and the
coordination number zi. Note that E��ij�	0 by definition and
hence:	xj

2
T	 	xixj
T, in contrast to the case of absorbing
boundary conditions 	xixj
 can be negative.

Equation �7� can be used in order to obtain a simple vi-
brational derivation of the scaling law for the global MFPT
�GMFPT� on a finite fractal domain �18�. The global first
passage time �GFPT� is defined as the random time it takes a
random walker to reach a randomly selected target from a
randomly selected origin. Here we assume that the source
and target are different sites. The GMFPT is defined as the
average GFPT: GMFPT�N�= 1

N�N−1��i,j,i�jE��ij�. Using Eq.
�7� for E��ij� and assuming that cross correlations add up
�incoherently� to a negligible contribution, we obtain:
GMFPT�N�� N�

kbT 	x2
T. The scaling of the GMFPT with the
number of nodes follows from Eq. �6�,

GMFPT�N� � �N ds 	 2

N ln�N� ds = 2

N2/ds ds � 2.
� �8�

The MFPT does not provide a complete characterization of
the FPT distribution. Another important, and much less stud-
ied quantity, is the variance. The variance gives a measure
for the width of the FPT distribution around the mean. If the
width is very large in comparison to the MFPT, the latter
cannot be considered a reliable representative of the distri-
bution. For i= j we use Eq. �4� ��bc=1� to obtain �12�:
E��ii

2�= f̃ i j�s��2� �s=0=2� N
zi

�2� 1
N +

zi�

kbT 	xi
2
T� and for the reduced

variance �12�: �2��ii� /E2��ii�= 2
N +

2zi�

kBT 	xi
2
−1. In fractal net-

works with a coordination number that is sharply distributed
around a mean value z, we can replace zi with z, average over
all sites and use Eq. �6� to obtain

1

N
�
i=1

N
�2��ii�
E2��ii�

� � const ds 	 2

ln�N� ds = 2

N2/ds−1 ds � 2.
� �9�

We conclude that in the case of ds	2 the standard deviation
is of the same order of the MFPT regardless of the number of
nodes N. Conversely, when ds�2 the reduced variance di-
verges as a power law of N and the MFPT cannot be consid-
ered a reliable representative of the FPT distribution. When
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i� j we average over all pairs distanced r apart and obtain
the following approximation �12�:

1

Nr
�
i,j

�2��ij�
E2��ij�

� ��1 − �r/a�df�2/ds−1��−1 ds 	 2

ln�N�/ln�r/a� ds = 2

N2/ds−1�r/a�−df�2/ds−1� ds � 2.
� �10�

Here Nr is the number of pairs distanced r apart and the sum
goes only over these pairs, a is the average distance between
nearest neighbors and df is the network fractal dimension.
We note that the joint domain in which the approximation is
valid is given by: �N1,a�r�Rg� where Rg is the radius
of gyration. Equation �10� demonstrates that the reduced
variance is a monotonically decreasing function of the dis-
tance between source and target. Keeping this distance fixed,
the reduced variance is independent of the number of nodes
in the case of ds	2 but when ds�2 it diverges with the
number of nodes. Equation �10� stands in line with a similar
result obtained independently by Bénichou et al. �7�.

V. SUMMARY AND DISCUSSION

In this paper, we have rigorously mapped observables that
appear in random walk theory to observables associated with
the problem of an elastic network coupled to a thermal bath.
Our mapping provides a systematic way for translating ran-
dom walk problems to the realm of elasticity physics allow-
ing for new theoretical, computational, and experimental ap-
proaches toward the random walk/elastic network problems.
The mapping was demonstrated useful in the analysis of ran-
dom walk problems on complex, scale invariant, media. It is

important to emphasize that the MFPT heavily depends on
network topology. The entire network topology is summa-
rized in the network Kirchhoff matrix � and hence �using Eq.
�7�� knowing the network topology amounts to knowing the
MFPT. More surprising is the converse statement. Network
topology can be reconstructed knowing the MFPT from any
node to any other node and the second moment of the first
return time �12�.

Recently, we have utilized random walks on protein struc-
tures to study the vibrational dynamics of proteins �19�. In
particular, we used a special case of Eq. �7� �8� relating the
MFPT with the thermal variance in the instantaneous dis-
tance between amino acids. This equation has been used to
unravel universal properties in the vibrational dynamics of
proteins. In addition, we have shown that a sharp deviation
from the mean universal behavior may result in the emer-
gence of specific functionality. We suggest that exploiting the
different relations between vibrations and random walks, as
stated in this paper, can be beneficial in the research of
functionality-dynamics interplay in proteins.
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