
From local to critical fluctuations in lattice models:
A nonperturbative renormalization-group approach

T. Machado and N. Dupuis
Laboratoire de Physique Théorique de la Matière Condensée, CNRS-UMR 7600, Université Pierre et Marie Curie, 4 Place Jussieu,

75252 Paris Cedex 05, France
�Received 21 April 2010; published 28 October 2010�

We propose an implementation of the nonperturbative renormalization group �NPRG� which applies to
lattice models. Contrary to the usual NPRG approach where the initial condition of the RG flow is the
mean-field solution, the lattice NPRG uses the �local� limit of decoupled sites as the �initial� reference system.
In the long-distance limit, it is equivalent to the usual NPRG formulation and therefore yields identical results
for the critical properties. We discuss both a lattice field theory defined on a d-dimensional hypercubic lattice
and classical spin models. The simplest approximation, the local potential approximation, is sufficient to obtain
the critical temperature and the magnetization of the three-dimensional Ising, XY, and Heisenberg models to an
accuracy on the order of 1%. We show how the local potential approximation can be improved to include a
nonzero anomalous dimension � and discuss the Berezinskii-Kosterlitz-Thouless transition of the two-
dimensional XY model on a square lattice.
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I. INTRODUCTION

Many models of statistical physics and condensed matter
are defined on a lattice. The phase diagram of a lattice model
usually depends on the lattice type, the range and strength of
interactions, as well as other details of the Hamiltonian. On
the other hand, the precise knowledge of the Hamiltonian is
often not necessary to understand the long-distance behavior
of the system, in particular the universal critical properties
near a second-order phase transition. In this paper, we de-
scribe an approach based on the nonperturbative renormal-
ization group �NPRG� which captures both local and critical
fluctuations in lattice models and therefore describes univer-
sal and nonuniversal properties. In particular, we can calcu-
late the critical exponents, the transition temperature, and the
magnetization in classical spin models.

The NPRG approach has been successfully applied to
many areas of physics and in particular to the study of criti-
cal phenomena �1–3�. It has recently been extended to lattice
models �4�. The strategy of the NPRG is to build a family of
models indexed by a momentum scale parameter k, such that
fluctuations are smoothly taken into account as k is lowered
from a microscopic scale � down to 0. In practice, this is
achieved by adding to the Hamiltonian �or the action� a
“regulator” term �Hk, which vanishes for k=0, and comput-
ing the corresponding Gibbs free energy �or effective action
in the field theory terminology� �k. The initial value �H� is
chosen such that in the reference system defined by the
Hamiltonian H+�H� all fluctuations are effectively frozen.
The determination of �� is then reduced to a saddle-point
�mean-field� calculation. The Gibbs free energy �k=0 we are
eventually interested in is obtained from that of the reference
system by solving a RG flow equation. The latter cannot in
general be solved exactly �even numerically� and one has to
resort to some approximations. The approximate flow equa-
tion must be sufficiently accurate �and yet tractable� to pro-
vide a good approximation of the state of the system.

In some cases, however, the mean-field solution is too far
away from the actual state of the system to provide a reliable

initial condition for the NPRG procedure. An example is
provided by the localization transition between a Mott insu-
lator and a superfluid in lattice boson systems. The two-pole
structure of the local �on-site� propagator is crucial for the
very existence of the transition. This structure is however
impossible to reproduce using a RG approach starting from
the mean-field �Bogoliubov� approximation. This prevents a
straightforward generalization of recent NPRG studies of in-
teracting bosons �5–11� to lattice models such as the Bose-
Hubbard model.

We therefore propose a NPRG scheme for lattice models
where the reference system corresponds to the �local� limit of
decoupled sites. As an expansion about the local limit, the
lattice NPRG is reminiscent of Kadanoff’s idea of block
spins �12�, although the way intersite interactions are pro-
gressively introduced when lowering the momentum scale k
makes it significantly different from a real-space RG. In the
long-distance limit, the lattice NPRG is equivalent to the
usual NPRG formulation and therefore yields identical re-
sults for the critical properties.

The possibility to start from a reference system which
already includes short-range fluctuations has been recog-
nized before and was used by Parola and Reatto in the hier-
archical reference theory �HRT� of fluids �13�, an approach
which bears many similarities with the lattice NPRG. An
important aspect of the lattice NPRG is that it is formulated
in the field theory language commonly used in the NPRG
approach. Its relation to the standard NPRG formulation is
therefore obvious, and many of the approximate solutions of
the flow equation satisfied by �k proposed previously also
apply to the lattice case.

In Sec. II we introduce the lattice NPRG for a lattice field
theory. We first recall the “standard” NPRG approach to lat-
tice models �4� and then show that the lattice NPRG scheme
merely results from a different initial condition while the
long-distance �small k� behavior of the effective action �k
remains the same. As an application, we derive a lattice field
theory from the Ising model and compute the transition tem-
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perature in the local potential approximation �LPA�. In Sec.
III, we apply the lattice NPRG to classical spin models with-
out deriving first a lattice field theory. We find that the LPA is
sufficient to obtain the critical temperature and the magneti-
zation of the three-dimensional �3D� Ising, XY, and Heisen-
berg models to an accuracy on the order of 1%. We also
discuss an improvement of the LPA �known as the LPA��
which yields a nonzero anomalous dimension �. In Sec. IV,
we use the lattice NPRG to calculate the Berezinskii-
Kosterlitz-Thouless �BKT� �14,15� transition temperature of
the two-dimensional �2D� XY model on a square lattice.

II. LATTICE NONPERTURBATIVE RG

We consider a lattice field theory defined on a
d-dimensional hypercubic lattice,

H��� =
1

2�
q

�−q�0�q��q + �
r

U0��r� , �1�

where �r� denotes the N sites of the lattice. For simplicity, we
consider a one-component real field �r. �q=N−1/2�r e−iq·r�r
is the Fourier-transformed field. The momentum q is re-
stricted to the first Brillouin zone �−� ,��d of the reciprocal
lattice. In the thermodynamic limit �N→��,

1

N
�
q

→ �
−�

� dq1

2�
¯�

−�

� dqd

2�
	 �

q
. �2�

The potential U0 is defined such that �0�q=0�=0 but
is otherwise arbitrary. �0�q�
�0q2 for q→0 and
maxq �0�q�=�0

max. The lattice spacing is taken as the unit
length.

To implement the renormalization-group �RG� procedure,
we add to Hamiltonian �1� the regulator term

�Hk��� =
1

2�
q

�−qRk�q��q. �3�

Throughout the paper, we take

Rk�q� = ��k − �0�q��	��k − �0�q�� �4�

��k=�0k2�, which is adapted from Ref. �16� to the lattice
case. The cutoff function Rk�q� leaves the high-momentum
modes ��0�q�
�k� unaffected and gives a mass �k to the
low-energy ones �their effective �bare� dispersion satisfies
�0�q�+Rk�q�=�k�.

In the presence of an external field, the partition function
reads

Zk�h� =� D���exp�− H��� − �Hk��� + �
r

hr�r� �5�

and the order parameter is given by

�r = 
�r� =
� ln Zk�h�

�hr
. �6�

The so-called average effective action,

�k��� = − ln Zk�h� + �
r

hr�r − �Hk��� , �7�

is defined as a modified Legendre transform which includes
the explicit subtraction of �Hk��� �2�. It satisfies the exact
flow equation �1�,

�k�k��� =
1

2�
q

�kRk�q���k
�2���� + Rk�q,−q

−1 �8�

as the energy scale �k is varied. �k
�2���� is the second-order

functional derivative of �k���. Since Rk=0�q�=0, �k=0��� co-
incides with the effective action of original model �1�.

A. Standard NPRG scheme

In the standard NPRG approach to lattice models �4�, the
initial value � of the momentum scale k is chosen such that
�� is much larger than all characteristic energy scales of the
problem. In this limit, all fluctuations are frozen and
mean-field theory becomes exact: �����=H���. The first
part of the RG procedure when �k varies between �� and
�kin

=�0
max is purely local since the effective �bare� dispersion

�0�q�+Rk�q�=�k remains dispersionless for all modes. Only
for k�kin does the intersite coupling start to play a role.
When k
1, i.e., when 1 /k is much larger than the lattice
spacing, the lattice does not matter any more. This result is a
direct consequence of the structure of the flow equation; the
�kRk term in Eq. �8� implies that only modes with �q��k
contributes to �k�k. When k
1, one can therefore approxi-
mate �0�q�
�0q2, and one recovers the flow equation of the
continuum model obtained from Eqs. �1� and �3� by replac-
ing �0�q� by �0q2 �4�.

B. Lattice NPRG scheme

In the lattice NPRG, we start the RG procedure from
k=kin; i.e., we bypass the initial stage of the flow
kin�k�� where the fluctuations are purely local �Fig. 1�.
The average effective action �kin

��� is no longer given by the
microscopic Hamiltonian H��� �since the mean-field solu-
tion is not exact for the Hamiltonian H+�Hkin

� but its com-

-1 -0.5 0 0.5 1
q/π

-1 -0.5 0 0.5 1
q/π

FIG. 1. �Color online� Initial effective dispersion �0�q�+Rk�q� in
the standard �left panel� and lattice �right panel� NPRG schemes
�d=1 and �0�q�=2�0�1−cos q��. The green dashed line shows the
bare dispersion �0�q�.
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putation reduces to a single-site problem which can be easily
solved numerically �and even analytically in some models�.
In principle, the NPRG scheme can be defined with any cut-
off function provided that the latter satisfies the initial con-
dition �17�

Rkin
�q� = − �0�q� + C , �9�

ensuring that the sites are decoupled �the limit C→� corre-
sponding to the standard scheme�. The choice C=�kin

=�0
max

made in Eq. �4� is however very natural since it allows to set
up the RG procedure for k�kin in the usual way, i.e., by
modifying the �bare� dispersion of the low-energy modes
�0�q���k without affecting the high-energy modes �Fig. 2�.

For kin
k
0, the effective coupling in real space �de-
fined as the Fourier transform of �0�q�+Rk�q�� is long range
and oscillating. The oscillating part comes from the behavior
of Rk�q� for �0�q���k. Although the lattice NPRG is based
on an expansion about the local limit, it markedly differs
from Kadanoff’s real-space RG �12� in the way degrees of
freedom are progressively integrated out.

The standard and lattice NPRG schemes thus differ only
in the initial condition. Both schemes are equivalent for
k�kin when the flow Eq. �8� is solved exactly for k
kin in
the standard scheme. As shown in Sec. II C, this is the case
for classical models even within simple approximations. In
practice, however, one often relies on an approximate solu-
tion of the flow equation. The NPRG lattice scheme is pref-
erable whenever the �approximate� flow equation gives a
poor description of �kin

��� starting from the mean-field result
�����=H���. As discussed in Sec. I, this is to be expected in
quantum models �such as the �Bose-�Hubbard model� where
on-site �quantum� fluctuations make the local limit non-
trivial. Finally, we point out another advantage of the lattice
NPRG; it enables to study classical spin models without first
deriving a field theory �see Sec. III�.

C. Application to the Ising model

We consider the Ising model

H = − J� �

r,r��

SrSr� �Sr = � 1� �10�

defined on a d-dimensional hypercubic lattice ��=1 /T�.

r ,r�� denotes nearest-neighbor sites. To apply the NPRG

approach, one possibility is to first derive a field theory �an-
other, more natural, approach is described in Sec. III�. To this
end, one considers the Hamiltonian

H� = − J� �

r,r��

SrSr� − ���
r

Sr
2 	 −

1

2 �
r,r�

SrAr,r�
��� Sr�,

�11�

which differs from that of the Ising model only by the addi-
tive constant −��N. The matrix A��� is diagonal in Fourier
space with eigenvalues

���q� = 2��J�
�=1

d

cos q� + �� . �12�

For �
Jd the matrix A��� is positive ����q�
0 ∀ q� and
can be inverted. We can then rewrite the partition function of
the Ising model using a Hubbard-Stratonovich transforma-
tion,

Z� � �
�Sr�
�

−�

�

�
r

d�r exp�−
1

2 �
r,r�

�rAr,r�
���−1

�r� + �
r

�rSr�
� �

−�

�

�
r

d�r exp�−
1

2 �
r,r�

�rAr,r�
���−1

�r� + �
r

ln cosh �r� .

�13�

We thus obtain a lattice field theory with the Hamiltonian

H���� =
1

2�
q

�−q� 1

���q�
−

1

���0���q

+ �
r
� �r

2

2���0�
− ln cosh �r� . �14�

Rescaling the field, we can cast the Hamiltonian in form �1�
with

�0�q� = 2d�Jd + ��
1 − �q

Jd�q + �
,

U0��� =
Jd + �

J
�2 − ln cosh�2��

J
�Jd + ���� �15�

��q=d−1�� cos q��. The �bare� dispersion �0�q� includes
long-range interactions and �0�� ,� , . . .�=�0

max diverges for
�→Jd. In the limit �→� long-range interactions are sup-
pressed and �0�q�→2d�1−�q�.

We are now in a position to apply the NPRG approach. In
the standard scheme �Sec. II A�, the initial value
�����=H��� of the effective action is defined by
Hamiltonian �1�, with �0�q� and U0 given by Eq. �15�. In
the lattice NPRG scheme, the initial value Ukin

of the
effective potential has to be computed numerically. One has
Zkin

�h�=�r zkin
�hr�, where

-1 -0.5 0 0.5 1

(k = kin)

q/π
-1 -0.5 0 0.5 1

(k = 0)

q/π
-1 -0.5 0 0.5 1

(kin > k > 0)

q/π

FIG. 2. �Color online� Effective �bare� dispersion �0�q�+Rk�q�
for k=kin, kin
k
0, and k=0 with cutoff function �4� �d=1 and
�0�q�=2�0�1−cos q��. The green dashed line shows the bare disper-
sion �0�q�.
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zkin
�h� = �

−�

�

d�e−�1/2��kin
�2−U0���+h� �16�

is the partition function of a single site in an external field h.
The relation between �r and hr is obtained from the equation

�r =
�

�hr
ln zkin

�hr� , �17�

which has to be computed and inverted numerically �Fig. 3�.
The initial value of the average effective action then takes
the form

�kin
��� = − �

r
ln zkin

�hr� + �
r

hr�r − �Hkin
���

= �
r

Ukin
��r� +

1

2�
q

�−q�0�q��q, �18�

where

Ukin
��� =

1

N
�kin

�����r=� = − ln zkin
�h� + h� −

�kin

2
�2

�19�

is the effective potential �Fig. 3�.
In the LPA, one neglects the k dependence of the disper-

sion so that

�k��� = �
r

Uk��r� +
1

2�
q

�−q�0�q��q. �20�

Here and in the following, we consider Uk as a function of
�r=�r

2 /2. From Eq. �8�, one deduces

�kUk��� =
1

2
�

q

�kRk�q�
�0�q� + Rk�q� + Uk���� + 2�Uk����

. �21�

With cutoff function �4�, Eq. �21� is reduced to

k�kUk��� =
�k

�k + Uk���� + 2�Uk����
�

q
	��k − �0�q�� . �22�

The integral over q can be rewritten as

�
q

	��k − �0�q�� = �
0

�k

d�D��� , �23�

where �18�

D��� = �
q

��� − �0�q�� . �24�

In the local fluctuation regime kin�k��,
H���+�Hk��� is a local Hamiltonian �no intersite coupling�.
It follows that both −ln Zk�h� and its Legendre transform
reduce to a sum of single-site contributions. The LPA for the
average effective action �k��� is therefore exact. We have
computed the derivative Uk� of the effective potential for
various values of �=�� /�0

max= �� /kin�2. �In practice, it is
easier to solve for Uk� than Uk.� The results are shown in Fig.
4 for �=1000 �we comment on the numerical method in Sec.
III A�. As k decreases from � to kin, the potential Uk����
converges toward the exact solution obtained from the nu-
merical computation of the local partition function zkin

�h�
�Eqs. �16� and �19��. The relative error is shown in the right
panel of Fig. 4. It decreases as 1 /�, in agreement with the
fact that the validity of the mean-field �saddle-point�
approximation to Z��h� for large � is controlled by
R�

−1���
−1��−1. We therefore conclude that the standard and

lattice NPRG schemes are equivalent in the LPA for classical
lattice field theories.

The critical temperature is obtained from the divergence
of the susceptibility �=1 /Uk=0� ��=0� �or, equivalently, the
divergence of the correlation length �=��� �19�. For
�=1000 and d=3 one finds that Tc
0.747Tc

MF is indepen-
dent of � and in very good agreement with the “exact” result
Tc

exact
0.752Tc
MF obtained from the Monte Carlo simulations

�20�.

III. CLASSICAL SPIN MODELS

In this section, we show that the lattice NPRG can be
applied to classical spin models without first deriving a field
theory. For simplicity, we consider the Ising model on a
d-dimensional hypercubic lattice �Eq. �10��. In the presence
of an external field and a regulator term �Hk, the partition
function reads

-1 -0.5 0 0.5 1-60

-30

0

30

60

φ

h

-1 -0.5 0 0.5 10

1

2

φ

U
k
in

(φ
)

FIG. 3. �Color online� Left panel: function h��� obtained from
the numerical solution of Eq. �17�. Right panel: effective potential
Ukin

��� �Eq. �19��. �=5, T=4.48J, and d=3.

0 0.02 0.04 0.06

-40

-20

0

ρ

U
′ k
(ρ

)

2 3 4 5 6 7-8

-7

-6

-5

-4

-3

ln α

ln
ε

FIG. 4. �Color online� Left panel: derivative Uk���� of the effec-
tive potential for various values of k ranging from � to kin. The
initial value U����=U0��� is given by Eq. �15�. The red points
show the solution Ukin

� ��� directly obtained from a numerical solu-
tion of the single-site partition function zkin

�h� �Eq. �16��. Right
panel: relative error � vs �= �� /kin�2. �=5, T=4.48J, and d=3.

T. MACHADO AND N. DUPUIS PHYSICAL REVIEW E 82, 041128 �2010�

041128-4



Zk�h� = �
�Sr�

exp� J

T
�


r,r��

SrSr� −
1

2 �
r,r�

SrRk�r,r��Sr� + �
r

hrSr� = �
�Sr�

exp�−
1

2�
q

S−q��0�q� − 2�0d + Rk�q��Sq + �
r

hrSr� ,

�25�

where

�0�q� = 2�0�
�=1

d

�1 − cos q�� , �26�

with �0=J /T. Since Sr
2=1, the term 2d�0 in Eq. �25� contrib-

utes a constant term to the Hamiltonian and can be omitted.
The magnetization at site r is given by

mr = 
Sr� =
� ln Zk�h�

�hr
�27�

and the average effective action is defined by

�k�m� = − ln Zk�h� + �
r

hrmr − �Hk�m� . �28�

The standard NPRG scheme cannot be used since the parti-
tion function is not expressed as a functional integral over a
continuous variable. A regulator term �k�qS−qSq=�k�rSr

2

=N�k would only add a constant term to the Hamiltonian. On
the contrary, there is no difficulty to apply the lattice NPRG
scheme. With cutoff function �4�, one has

Zkin
�h� = �

�Sr�
exp�− 2d�0N + �

r
hrSr� = e−2d�0N�

r
z�hr� ,

�29�

where

z�h� = �
S=�1

ehS = 2 cosh�h� �30�

is the partition function of a single site in an external field h.
The magnetization at site r,

mr =
�

�hr
ln z�hr� = tanh�hr� , �31�

varies between −1 and 1. Up to an additive constant, we
obtain

�kin
�m� = �

r
Ukin

��r� +
1

2�
q

m−q�0�q�mq �32�

and the effective potential �21�

Ukin
��� =

1

2
ln�1 − 2�� + �2�argtanh��2�� − 4d�0� ,

�33�

where �r=mr
2 /2. Ukin

�1 /2�=ln�2�−2d�0 is finite but
Ukin

� ����− 1
2 ln�1−2�� diverges for �→1 /2. This divergence

suppresses the propagator

1

�k + Rk�q� + Uk���� + 2�Uk����
�34�

appearing in the flow �Eq. �21�� and therefore the fluctua-
tions corresponding to a large magnetization.

A comment is in order here. We have followed the usual
convention to define the average effective action �k as a
modified Legendre transform which includes the explicit
subtraction of �Hk�m� �Eq. �7�� �2�. The definition of the
average effective action �k is of course arbitrary provided
that �k=0 corresponds to the true Legendre transform of the
original model. Since

Ukin
��� = ��1 − 4d�0� + O��2� �35�

for �→0, we find that the initial transition temperature is
determined by 1=4d�0, i.e., Tc

�kin�=4dJ, which differs from
the mean-field transition temperature Tc

MF=2dJ by a factor of
2. �kin

�m� assumes a mean-field treatment of the intersite
coupling term 1

2�qS−q�0�q�Sq as in the usual mean-field ap-
proach to the Ising model. The discrepancy between Tc

�kin�

and Tc
MF comes from the fact that 1

2�qS−q�0�q�Sq includes a
local term 1

2�r2d�0Sr
2=Nd�0. The latter contributes a mere

constant to the Hamiltonian but is considered at the mean-
field level in the average effective action where it gives a
term −d�0�rmr

2. To make contact with the usual mean-field
theory, we consider the average effective action

�̄k�m� = �k�m� +
1

2�
r

Rk�r,r�mr
2 �36�

and the corresponding effective potential

Ūk��� = Uk��� + �Rk�r,r� . �37�

�̄k�m� differs from the true Legendre transform only by non-
local terms. The initial value

Ūkin
��� = ��1 − 2d�0� + O��2� �38�

reproduces the mean-field result Tc
�kin�=Tc

MF. Again we stress

that �k and �̄k lead to the same k=0 results and in particular
to the same critical temperature.

A. Local Potential Approximation

We have solved the equation for Uk���� �see Eq. �22��
numerically using Euler’s method with a typical RG time
step �t=−10−4 �t=ln�k /kin��. The function Uk���� is dis-
cretized with a few hundreds points in �. The convexity of
the potential �see Fig. 6� makes the numerical resolution dif-
ficult below Tc �in particular at low temperatures� and there
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is a tendency to numerical instability for large values of �t�.
However, the value �0 for which Uk����=0 usually converges
before instability problems arise.

The critical temperature is obtained from the criterion
Uk=0� ��=0�=0 �Sec. II C�. One finds Tc
0.747Tc

MF for the
three-dimensional Ising model, in very good agreement
with the results of Sec. II C and the exact result
Tc

exact
0.752Tc
MF obtained from the Monte Carlo simulations

�20�. We have obtained a similar accuracy for the critical
temperature of the XY and Heisenberg models in d=3
�Table I�.

Figure 5 shows the transition temperature Tc
�k� of the

three-dimensional Ising model deduced from the effective

potentials Uk and Ūk �Eq. �37��. As k decreases, Tc
�k� con-

verges rapidly toward the actual transition temperature
Tc=Tc

�k=0�. This result is due to the fact that all degrees of
freedom contribute more or less equally to the thermody-
namics. Once k
kin, thermodynamic quantities are therefore
obtained with a reasonable accuracy. This also explains why
the LPA, which does not correctly describe the long-distance
limit of the propagator when T
Tc, is remarkably successful
in computing the transition temperature and other thermody-
namic quantities.

Figure 6 shows the derivative Uk���� of the effective po-
tential for k=kin and k=0 at criticality �T=0.747Tc

MF�, as well
as Uk=0� ��� for T=Tc, T
Tc, and T�Tc. In the latter case, we
find Uk=0� ���=0 and therefore Uk=0���=const for ���0,
where �0=m0

2 /2 determines the actual magnetization m0 of
the system. This result is a consequence of the convexity of
the potential in the low-temperature phase, a property which
is known to be satisfied in the LPA �2�.

In Fig. 7, we show the uniform susceptibility
�=1 /Uk=0� ��=0� in the high-temperature phase �19�,
as well as the magnetization below Tc with the Essam-Fisher

approximant �24�. We find the critical exponents
�=2�=� /2
0.64–0.65 �with �=0 in the LPA�, in agree-
ment with the known result in the LPA with cutoff function
�4� �16,25�.

Not surprisingly, the LPA is not as accurate in two dimen-
sions. For the 2D Ising model, we find Tc
0.48Tc

MF, to be
compared with the exact result Tc

exact=2J / ln�1+�2�

0.567Tc

MF �26�.

B. Renormalization of the spectrum

A natural generalization of the LPA includes a renormal-
ization of the amplitude of the spectrum. We therefore con-
sider the ansatz

�k�m� = �
r

Uk��r� +
1

2�
q

Ak�0�q�m−qmq. �39�

This approximation can be seen as the first step of a circular
harmonic expansion of the renormalized dispersion ��q� �4�.
Since

�k
�2��q;�� = Ak�0�q� + Uk���� + 2�Uk���� �40�

in a uniform field �r=�2�, we can define the renormalized
spectrum amplitude by

Ak =
1

�0
�k

�2��r − r�;�0,k� �41�

where r and r� are nearest neighbors. The amplitude
Ak	Ak��0,k� should be understood as the first term in the
expansion of the function

Ak��� = Ak��0,k� + Ak
�1���0,k��� − �0,k� + ¯ �42�

about the minimum �0,k of the effective potential Uk���. An-
other possible definition of the spectrum amplitude is

Ak	Ak��̄0,k�, where �̄0,k is the minimum of Ūk��� �Eq. �37��.
The flow equation for Ak follows from Eqs. �8� and �41�,

�kAk =
�3

2

�0
�

q
�1 −

�0�q�
2d�0

��kRk�q�G�q�2

��
p
�1 −

�0�p�
2d�0

�G�p� , �43�

where �3=�2�0,k�3Uk���0,k�+2�0,kUk���0,k��. The flow equa-

TABLE I. Critical temperature Tc
NPRG obtained in the LPA com-

pared to the mean-field estimate Tc
MF and the Monte Carlo result

Tc
exact �20,22,23�. All temperatures are in unit of J.

Tc
MF Tc

exact Tc
NPRG

Ising 3D 6 4.51 4.48

XY 3D 3 2.20 2.18

Heisenberg 3D 2 1.44 1.42
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FIG. 5. �Color online� Transition temperature Tc
�k� obtained from

the effective potential Uk �green points� and Ūk �red points�.
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FIG. 6. �Color online� Left panel: potentials Uk=0� ��� �red solid
line� and Ukin

� ��� �green dashed line� at criticality �T=Tc� in the LPA
�d=3�. Right panel: potential Uk=0� ��� for T=Tc �red dotted line�,
T=1.05Tc �green dashed line�, and T=0.95Tc �blue solid line�.
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tion for Uk��� is identical to Eq. �21� with �0�q� replaced by
Ak�0�q�.

Numerical results for Ak��0,k� and Ak��̄0,k� are shown in
Fig. 8. In both cases, Ak varies when k�1, in agreement with
the expectation that the amplitude of the harmonic cos�nq��
should vary when k�1 /n �4�. The variation of Ak is moder-
ate �from 1 to 1.27 for Ak��0,k� and from 1 to 1.19 for
Ak��̄0,k�� and weakly affects the critical temperature which
remains within a few percents of the exact result:
Tc=0.74Tc

MF with Ak��0,k� and Tc=0.72Tc
MF with Ak��̄0,k�. We

expect that the inclusion of additional higher-order harmon-
ics in the spectrum would give a better estimate of Tc.

C. LPA�

When k
1, we can approximate �0�q� by �0q2. In this
regime, a simple improvement over the LPA �known as the
LPA�� consists in including a field renormalization factor Zk
so that the renormalized dispersion ��q� is given by
Zk�0�q�
Zk�0q2. The LPA� can be generalized to all values
of k by writing the average effective action as �4�

�k�m� = �
r

Uk��r� +
1

2�
q

m−qZk�0�q�mq. �44�

Although this ansatz is formally similar to Eq. �39�, Zk
should not be confused with the amplitude Ak introduced in
Sec. III A. Zk is computed from the O�q2� part of the spec-
trum,

Zk =
1

�0
lim
q→0

�

�q2�k
�2��q;�0,k� , �45�

and therefore receives contributions from all harmonics. The
LPA� can be justified when k�1 by noting that in this limit
the renormalization of the spectrum is weak �Zk�1�, so that
the approximation ��q�
Zk�0�q�, valid for small q, is ex-
pected to remain approximately valid in the whole Brillouin
zone �4�. Nevertheless, because short-range fluctuations are
important for the thermodynamics �Sec. III A�, the LPA�
might lead to a slight deterioration of the value of Tc ob-
tained in the LPA. As in Sec. III A, we can compute Zk either
from the minimum of Uk��� �as in Eq. �45�� or from the

minimum �̄0,k of Ūk���.
To obtain a fixed point when the system is critical, one

should redefine the cutoff function,

Rk�q� = Zk��k − �0�q��	��k − �0�q�� , �46�

and introduce the dimensionless variables

�̃ = Zkk
−d�k�, Ũk��̃� = k−dUk��� . �47�

This change of variables cannot be done at the beginning of
the flow if one works with a given range of �̃ values. This
would indeed correspond to a smaller and smaller range in �,
whereas a good determination of the critical temperature re-
quires to consider the window 0���1 /2. To circumvent
this difficulty, we define

�̃ = Zkk
−d�kg1�k��, Ũk��̃� = k−dg2�k�Uk��� , �48�

where

g1�k� = �kd�Zk�k�−1 if k � kc

1 if k 
 kc,
�

g2�k� = �kd if k � kc

1 if k 
 kc.
� �49�

For k�kc, �̃ and Ũk are equal to � and Uk, whereas they
coincide with the dimensionless variables in Eq. �47� when
k
kc. The momentum scale kc will be determined below. In
practice, we take

g1�k� = �x + k−dZk�k�1 − x��−1,

g2�k� = �x + k−d�1 − x��−1, �50�

where x=e−�k / kc�n
with n
d. The parameter n fixes the size

of the crossover region k�kc between dimensionful and di-
mensionless variables �Fig. 9�.

Figure 10 shows the RG time −���� beyond which the
potential Uk���� differs from Uk=0� ��� by less than
10−3�d=3�. �The RG time t is defined by k=kine

t.� This pre-

10
-3

10
-2

10
-1

10
010

0

10
1

10
2

10
3

10
4

(T − Tc)/Tc

χ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

T/Tc

m

10
-3

10
-2

10
-1

10
0

10
0

1 − T/Tc

FIG. 7. �Color online� Left
panel: uniform susceptibility �
�red points� in the high-
temperature phase and a fit
�� �T−Tc�−� with �=2�
1.30.
Right panel: magnetization m in
the low-temperature phase �red
points� and the Essam-Fisher ap-
proximant �24� �solid line�. The
inset shows a fit to m� �Tc−T��

with �=� /2
0.32.

0 1 2 3 41

1.1

1.2

1.3

−t

A
k

0 1 2 3 40

0.1

0.2

0.3

0.4

0.5

−t

−k
∂
k

ln
A

k
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cision �10−3� is sufficient to determine the critical tempera-
ture to an accuracy on the order of 1%. As expected, the
potential converges to its asymptotic value faster for large
values of �. In Fig. 10, the red solid line shows the maximum
value �max= 1

2e� at time � if one works with a fixed window
�̃� �0,1 /2� �Eq. �47�� �we neglect Zk=e� 
1 in the calcula-
tion of �max�. Thus, we see that a natural choice for
tc=ln�kc /kin� is tc
−2.5 since for times −t
−tc the window
�0,�max� becomes larger than the range of � values for which
the potential Uk���� has not converged to its asymptotic value
yet. In practice, we verify that our results are independent of
the precise choice of kc and n.

The change of variables in Eq. �48� leads to the flow
equations

k�kŨk = �− d +
k�kg2

g2
�Ũk + �d − 2 + �k −

k�kg1

g1
��̃Ũk�

+
g2

1 +
g1

g2
�Ũk� + 2�̃Ũk��

��2 − �k�I1 + �kI2� �51�

and

�k = 4
g1

3

g2
2 �̃�3Ũk� + 2�̃Ũk��2 I3 + �d,2/�8��

�1 +
g1

g2
�Ũk� + 2�̃Ũk���4 , �52�

where

I1 =
k−d

2
�

q
	��k − �0�q�� ,

I2 =
k−d

2
�

q

�0�q�
�k

	��k − �0�q�� ,

I3 =
k2−d

4
�

q

�0�q��qx

2 �0�q� − ��qx
�0�q��2

�0�q�2 	��k − �0�q��

�53�

�see the Appendix�. In Eq. �52�, the right-hand side should be
evaluated at �̃0,k or �̃̄0,k. For d=3 and n
3, the numerical
solution of the flow Eqs. �51� and �52� is stable for −tc�2.
The results described below are obtained for n=4 and
tc=−3. We find Tc=0.8Tc

MF when Zk is defined with respect
to the minimum �0,k of Uk, and Tc=0.74Tc

MF if we use the

minimum �̄0,k of Ūk. The result is not as accurate as in the
LPA �as anticipated above; see the discussion following Eq.
�45��. Nevertheless, with �̄0,k �the only case we discuss in the
following�, it remains within 2% of the exact result
Tc

exact=0.752Tc
MF. The flow of Zk is shown in Fig. 11. For

−t�1, Zk does not differ significantly from Ak �Fig. 8�. In
this regime, only the first harmonic �i.e., cos q�� is expected
to vary and therefore contribute to Zk. For −t
1, the renor-
malization of higher-order harmonics makes Zk deviate from
Ak. While Ak saturates to �1.19, Zk�k−��

diverges with an
exponent given by the anomalous dimension ��=limk→0 �k.
��
0.1 is a poor estimate of the exact result ��
0.036 but
agrees with previous estimates based on the LPA� �4�. A �
dependence of Zk is expected to improve the value of ��

�27�.

D. Comparison with HRT

Our approach bears similarities with the hierarchical ref-
erence theory �HRT� of fluids �28–32� �for a review, see Ref.
�13��. The HRT is based on an exact treatment of short-
distance �hard-core� interactions supplemented by a RG
analysis of long-range interactions. The HRT also applies to
classical spin models: as in the lattice NPRG, it starts from
the local theory �decoupled sites� and takes into account the
intersite coupling in a RG approach. Although the final re-
sults are very similar to those we have obtained in Secs. III A
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−t = ln(kin/k)

ln
f 2

FIG. 9. �Color online� The function f2�k�=k−dg2�k� vs
−t=−ln�k /kin� for n=6 and tc=−3 �d=2�. The green dashed line
corresponds to g2�k�=1.
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FIG. 10. �Color online� RG time −���� beyond which the poten-
tial Uk���� differs from Uk=0� ��� by less then 10−3 �blue dotted line�.
The red solid line shows �= 1

2e� �see text�.
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and III B, the HRT nevertheless differs from the lattice
NPRG in some technical aspects, e.g., the choice of the cut-
off function and the way degrees of freedom are progres-
sively integrated out �13,33�. Because it was first developed
in the context of liquid state theory, the connection between
HRT and the more standard formulation of the NPRG �2� is
not always obvious �for a discussion of the relation between
HRT and RG; see Refs. �34,35��. By contrast, the lattice
NPRG is formulated in the usual language of statistical field
theory. The various improvements over the LPA known for
continuum models can then be easily implemented in the
lattice NPRG. In Sec. III C, we have discussed one of these
improvements, the LPA�, which allows us to compute the
anomalous dimension �.

IV. BKT TRANSITION IN 2D XY MODEL

The NPRG approach to the continuum O�2� �linear�
model reproduces most of the universal properties of the
BKT transition in two dimensions �36,37�. In particular,
one finds a value �̃0

� of the dimensionless order parameter
�the spin-wave “stiffness”� such that the � function
���̃0,k�=k�k�̃0,k nearly vanishes for �̃0,k
�̃0

�, which reflects
the existence of a line of quasifixed points. In this low-
temperature phase, after a transient regime, the running of
the stiffness �̃0,k becomes very slow, which implies a very
large, although not strictly infinite, correlation length �. The
anomalous dimension �k depends on the �slowly varying�
stiffness and takes its largest value when the system crosses
over to the disordered regime ��̃0,k� �̃0

� and k��−1�. When

�̃0,k��̃0
�, the essential scaling ��ea/��̃0

� − �̃0,k�1/2
of the correla-

tion length is reproduced �37�.
In this section, we apply the lattice NPRG to the two-

dimensional XY model defined by the Hamiltonian

H = −
J

T
�


r,r��

Sr · Sr�, �54�

where Sr= �cos 	r , sin 	r� is a 2D classical spin of unit
length. Up to a multiplicative constant, the initial value of
the partition function Zkin

�h�=�r z�hr��hr= �hr�� is deter-
mined by the partition function of a single site,

z�h� = �
0

2� d	

2�
eh cos 	 = I0�h� . �55�

The magnetization points along the applied field with an am-
plitude

m�h� =
�

�h
ln z�h� =

I1�h�
I0�h�

, �56�

where I0�h� and I1�h� are modified Bessel functions. Con-
trary to the Ising model, the function h�m� obtained by in-
verting Eq. �56� must be computed numerically. For k=kin
the average effective action takes the form

�kin
�m� = �

r
Ukin

��r� +
1

2�
q

�0�q�m−q · mq �57�

��r=mr
2 /2�, with

Ukin
��� = − ln z�h� + h�2� − 8�0� . �58�

Expanding I0�h� and I1�h� for small h, one finds
m=h /2+O�h3� and in turn

Ukin
��� = 2��1 − 4�0� + O��2� . �59�

This yields the transition temperature Tc
�kin�=4J, which differs

from the mean-field result Tc
MF=2J for reasons explained in

Sec. III.
In the LPA�, the flow equations read

k�kŨk = �− 2 +
k�kg2

g2
�Ũk + ��k −

k�kg1

g1
��̃Ũk�

+ � g2

1 +
g1

g2
�Ũk� + 2�̃Ũk��

+
g2

1 +
g1

g2
Ũk��

���2 − �k�I1 + �kI2� �60�

and

�k = 8
g1

3

g2
2 �̃�Uk��

2�1 +
g1

g2
�Ũk� + 2�̃Uk���−2�1 +

g1

g2
Ũk��−2

��I3 +
1

8�
� , �61�

where we evaluate the right-hand side in Eq. �61� at the
minimum �which we denote by �̃0,k for simplicity� of the

potential Ũ̄k��̃� �Eq. �37�� �see the Appendix�. I1, I2, and I3
are defined in Eq. �53�. We use the change of variables in Eq.
�48� with n=3 and tc=−2.

The flow trajectories in the plane ��̃0 ,�� are shown in Fig.
12. The flow diagram is reminiscent of the results obtained in
the continuum 2D O�2� model �36,37�. At low temperature
�T�J�, the trajectories join a line of quasifixed points. The
value of �̃0 at the merging point depends on the temperature.
The critical temperature of the BKT transition is defined by
the trajectory for which the merging point corresponds to �̃0

�.
A precise determination of the value of �̃0

� �which can be
obtained by fitting the beta function k�k�̃0,k to 1

� ��̃0,k− �̃0
��3/2�

is however not possible in the LPA� as it requires the full
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FIG. 12. �Color online� Flow trajectories ��̃0 ,�� for the two-
dimensional XY model. Tc /J=1.05 �red solid line�, 1 �green dashed
line�, 0.95 �blue dash-dotted line�, 0.9 �dotted purple line�, and 0.85
�black solid line�. The arrows indicate the merging points with the
line of quasifixed points. The vertical line shows the value of �̃0

�.
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O��2� expansion of the effective action in the continuum
limit k
1 �37�. Since for the long-distance properties of the
XY model the lattice should not matter, we make the assump-
tion that the ratio �̃0

� / �̃max ��̃max is the value of �̃0 for which
� is maximum� takes the same value in the XY and con-
tinuum O�2� models. We can then deduce the value of
�̃0

� from the results in Ref. �37�. Although this determination
of Tc is clearly approximate, we can nevertheless conclude
from our results that 0.9�Tc /J�1. This estimate should
be compared to the exact result Tc

exact=0.89J obtained
from the Monte Carlo calculations �38� and the mean-field
expression Tc

MF=2J. Note that the relative error on Tc is of
the same order of magnitude as in the 2D Ising model
�Sec. III A�.

V. CONCLUSION

We have proposed an implementation of the NPRG,
which takes as a reference system the local limit of decou-
pled sites rather than a system where fluctuations are frozen.
The lattice NPRG captures both local and critical fluctua-
tions in a nontrivial way. For a lattice field theory and clas-
sical spin models, the LPA is sufficient to compute nonuni-
versal quantities �transition temperature and magnetization�
to an accuracy on the order of 1%. We have also discussed an
approximation �the LPA�� which goes beyond the LPA and
allows us to compute the anomalous dimension �.

A new NPRG scheme has been recently proposed by
Blaizot, Méndez-Galain, and Wschebor �BMW� �39,40�. The
BMW approach relies on approximate flow equations for the
effective potential Uk and the two-point vertex �k

�2�. Contrary
to the LPA and the LPA�, it keeps the full momentum depen-
dence of the two-point vertex. We believe that the BMW
scheme provides the natural framework to go beyond the
LPA in the lattice NPRG.

There are many theoretical methods where the idea to use
a reference system which includes short-range fluctuations is
central. These methods are usually based on “cluster” ap-
proaches where one solves exactly �usually numerically� the
model on a single cluster �possibly a single site� �41� and
includes the coupling between clusters by means of a pertur-
bative calculation, a self-consistent condition, etc. The clus-
ter approaches include the correlated cluster mean-field
theory in classical spin models �see, e.g., Ref. �42� and ref-
erences therein�, the dynamical mean-field theory �43,44�
�DMFT� and its extensions �cellular DMFT �45,46��, the
cluster perturbation theory �47,48�, the variational cluster ap-
proach �49�, and the self-energy functional theory �50�.
These approaches describe exactly the local fluctuations but
struggle to take into account low-energy �collective� fluctua-
tions which become very important near a phase transition or
in low dimensions.

In this context the lattice NPRG may be seen as a
step toward a theory including both local and critical fluc-
tuations in strongly correlated systems. While we have only
discussed classical models, the lattice NPRG can be easily
applied to interacting boson systems �the Bose-Hubbard
model� �51�.
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APPENDIX: ANOMALOUS DIMENSION

In this appendix, we compute the anomalous dimension
for the Ising model. From definition �45� and flow equation
�8�, one obtains the following expression of the �running�
anomalous dimension �k=−k�k ln Zk,

�k =
�3

2

2Zk�0
�

q
�qx

Gk�q��qx
�k�kRk�q�Gk�q�2� , �A1�

where �3 is defined after Eq. �43�. To proceed further, we use

R = Z�kyr ,

k�kR = − ��r + 2yr��Z�ky ,

�qx
R = Z�r + yr���qx

� ,

�qx
k�kR = − Z��kr + �� + 4�yr� + 2y2r���qx

� ,

�qx
G = − G2Z�1 + r + yr���qx

� , �A2�

where r	r�y�=	�1−y��1−y� /y, �	�0�q�, G	G�q�, and
y=� /�k. To alleviate the notations we now drop the k index.
The product of �qx

G� �1+r+yr��=	�y−1� and �qx
k�kR gives

zero except for possible singular contributions at y=1 com-
ing from r�r and r�r�. Thus, Eq. �A1� simplifies into

� =
Z�3

2

�0
�

q
y2r��1 + r + yr��G4��qx

��2. �A3�

By an integration by part we obtain

�
q

y2r��1 + r�G4��qx
��2

= �k�
q

y2�1 + r�G4�qx
��qx

r�

= − �k�
�

� dqx

�
�

q�

	�q�
2 − �2�r��qx

�y2�1 + r�G4��qx
��2�

+
�k

�
�

q�

	�q�
2 − �2�y2�1 + r�G4��qx

��r��qx=�
qx=�, �A4�

where q�= �qy ,qz , . . .�. Note that we have regularized the
integrals near q=0 ��→0+�. To compute the first integral in
Eq. �A4�, I1, we remark that if �qx

acts on G4 then the inte-
grand vanishes, so that

I1 =
Ḡ4

�Z�k�4�
q

	�1 − y�
y2 ����qx

2 �� + ��qx
��2� , �A5�

where Ḡ=Z�k / �Z�k+U���0�+2�0U���0��. The second contri-
bution in Eq. �A4� reads
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I1� =
Ḡ4

�Z4�k
3�

q�

	�q�
2 − �2�

	�1 − y�
y

��qx
���qx=�, �A6�

since �qx
�=2�0 sin�qx� vanishes for qx=�. For �→0+, we

obtain

I1� =
2Ḡ4

�Z4�k
2�

q�

	�q�
2 − �2�	�1 − y�

�

q�
2 + �2 , �A7�

where the Lorentzian � / �q�
2 +�2� acts as a delta function

���q��. Thus, the integral vanishes for d
2 and takes the

value Ḡ4 / �2�Z4�k
2� for d=2. By a similar reasoning, we find

�
q

y3r�r�G4��qx
��2 = −

Ḡ4

2�Z�k�4�
q

	�1 − y�
y2

�����qx

2 �� + 3��qx
��2� −

1

2
I1�. �A8�

We deduce

� =
�3

2Ḡ4

2�0Z3�k
2��

q

	��k − ��
�2 ����qx

2 �� − ��qx
��2� +

�d,2

2� � .

�A9�

In the continuum limit, one recovers the known results of the
LPA�. In particular, when U���= �

2 ��−�0�2 is truncated to
second order in �,

� = 72
vd

d

�̃0�̃2

�1 + 2�̃0�̃�4
. �A10�

Note that the last term in Eq. �A9� ensures that � is a con-
tinuous function of d. For the XY model, a similar calculation
leads to Eq. �61�.
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