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We study the nature of the phase transition in the fully frustrated simple cubic lattice with the XY spin
model. This system is the Villain’s model generalized in three dimensions. The ground state is very particular
with a 12-fold degeneracy. Previous studies have shown unusual critical properties. With the powerful Wang-
Landau flat-histogram Monte Carlo method, we carry out in this work intensive simulations with very large
lattice sizes. We show that the phase transition is clearly of first order, putting an end to the uncertainty which
has lasted for more than 20 years.
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I. INTRODUCTION

One of the most fascinating tasks of statistical physics is
the study of the phase transition in systems of interacting
particles. Much progress has been made in this field since 50
years. Finite-size theory, renormalization-group analysis, nu-
merical simulations, etc. have contributed to the advance of
the knowledge on the phase transition. Exact methods have
been devised to solve with mathematical elegance many
problems in two dimensions. But as improvements are pro-
gressing, new and more complicated challenges also come in
from new discoveries of materials and new applications.
Renormalization group which has predicted with success
critical behaviors of ferromagnets has many difficulties in
dealing with frustrated systems. Numerical simulations
which did not need huge memory and long calculations for
simple systems require now new devices and new algorithms
to improve convergence in systems with extremely long re-
laxation time or in systems whose microscopic states are
difficult to access. One class of these systems is called “frus-
trated systems” introduced in the 1970s in the context of spin
glasses. These frustrated systems are very unstable due to the
competition between different kinds of interactions. How-
ever, they are periodically defined �no disorder� and therefore
subject to exact treatments. This is the case of several models
in two dimensions �1�, but in three dimensions frustrated
systems are far from being understood even on basic prop-
erties such as the order of the phase transition �first or second
order, critical exponents, etc.�. Let us recall the definition of
a frustrated system. When a spin cannot fully satisfy ener-
getically all the interactions with its neighbors, it is “frus-
trated.” This occurs when the interactions are in competition
with each other or when the lattice geometry does not allow
them to satisfy all interaction bonds simultaneously. A well-
known example is the stacked triangular antiferromagnet
�STA� with interaction between nearest neighbors �NNs�.

The frustration in spin systems causes many unusual
properties such as large ground-state �GS� degeneracy, suc-

cessive phase transitions with complicated nature, partially
disordered phase, reentrance, and disorder lines. Frustrated
systems still constitute at present a challenge for investiga-
tion methods. For recent reviews, the reader is referred to
Ref. �2�.

In this work, we are interested in the nature of the phase
transition of the classical XY spin model in the fully frus-
trated simple cubic lattice �FFSCL� shown in Fig. 1. Al-
though phase transition in strongly frustrated systems has
been a subject of intensive investigations in the last 20 years,
many aspects are still not understood at present. One of the
most studied systems is the STA with Ising �3�, XY, and
Heisenberg �4,5� spins. The cases of XY �N=2� and Heisen-
berg �N=3� STAs have been intensively studied since 1987
�6–13�, but only recently that the 20-year controversy comes
to an end �14–23�. For details, see, for example, the review
by Delamotte et al. �4�.

The paper is organized as follows. Section II is devoted to
the description of the model and the technical details of the
Wang-Landau �WL� methods as applied in the present paper.
Section III shows our results. Concluding remarks are given
in Sec. IV.
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FIG. 1. Fully frustrated simple cubic lattice. Broken �solid� lines
denote antiferromagnetic �ferromagnetic� bonds.
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II. MODEL AND WANG-LANDAU ALGORITHM

We consider the FFSCL shown in Fig. 1. The spins are the
classical XY model of magnitude S=1. The Hamiltonian is
given by

H = − �
�i,j�

JijSi · S j , �1�

where Si is the XY spin at the lattice site i and ��i,j� is made
over the NN spin pairs Si and S j with interaction Jij. Here-
after we suppose that Jij =−J �J�0� for antiferromagnetic
�AF� bonds indicated by broken lines in Fig. 1, and Jij =J for
ferromagnetic �F� bonds. This model is a generalization in
three dimensions of the two-dimensional �2D� Villain’s
model �24� which has been extensively studied �25–27�: ev-
ery face of the cube is frustrated because we know that a
plaquette is frustrated when there are an odd number of AF
bonds on its contour �2,24�. To describe the model, let us
look first at the xy plane �Fig. 1�. There, all interactions are F,
except one AF line out of every two in the y direction. The
same is for the yz �zx� plane: one AF line out of every two in
the z �x� direction. Note that there is no intersection between
AF lines. Each plane is thus a 2D Villain’s model. Let us
define by formulas the interactions of this model. At the lat-
tice site defined by three integers �l ,m ,n� in the Cartesian
coordinates, there are three interaction bonds with the NNs
in increasing x, y, and z directions. The x, y, and z bonds are
given by

Jx�l,m,n� = �− 1�mod�m,2�mod�n,2�,

Jy�l,m,n� = �− 1�mod�n+1,2�mod�l,2�,

Jz�l,m,n� = �− 1�mod�l+1,2�mod�m,2�.

These formulas are written using the convention that at the
coordinate origin, one has l=m=n=0 �see Fig. 1�.

Let us recall some results on the present model. For the
classical XY model on the FFSCL, the GS is 12-fold degen-
erate with noncollinear spin configurations �28�. For conve-
nience, let us define the local field acting on the spin Si from
its neighbors as hi=� jJijS j. The GS can be calculated by
noticing that the local field is the same at every site and is
equal to �h�=2�3, so that �28�

h5 = 2�S2 + S3 + S4� , �2�

h6 = 2�S1 + S3 − S4� , �3�

h7 = 2�S1 − S2 + S4� , �4�

h8 = 2�S1 + S2 − S3� , �5�

where the factor of 2 results from the symmetric neighbors
lying outside the cube and Jij = �1 depending on the bond
that has been used. Putting into square these equalities and
using h2=12, Si

2=1 �i=1, . . . ,8�, one has three independent
relations which determine the relative orientation of every
spin pair:

S2 · S3 + S3 · S4 + S2 · S4 = 0, �6�

− S1 · S3 + S3 · S4 + S1 · S4 = 0, �7�

S1 · S2 + S2 · S4 − S1 · S4 = 0. �8�

There are 12 solutions of these equations which can be de-
scribed as follows �28,29�. Consider just one of them shown
in the upper figure of Fig. 2: on a yz face, the spins �dis-
played by continued vectors� on a diagonal are perpendicu-
lar, i.e., S1�S2, S7�S8. In addition, the orthogonal dihedron
�S1 ,S2� makes an angle �=arccos� 1+�2

�6
� with the dihedron

�S7 ,S8�. On the other yz face the spins �displayed by discon-
tinued vectors in Fig. 2� are arranged in the same manner:
S5�S6, S4�S3, and the dihedron �S4 ,S3� makes an angle �
with the dihedron �S5 ,S6�. Note that the dihedron �S5 ,S6�
makes a turn angle �=� /4 with respect to the dihedron
�S7 ,S8�, and that the sum of the algebraic angles between
spins on each face of the cube is zero.

There is another choice shown in the lower part of Fig. 2
where everything is the same as described above except
�=−3� /4. One has therefore two configurations with the
choice of the yz faces. If one applies the same rule for the
spins on the xy faces and the xz faces, one obtains in all six
configurations. Finally, together with their six mirror images,
the total degeneracy is 12 �29�.

The above description of the GS shows an unusual degen-
eracy which can help to understand the first-order transition
shown below by relating this system to a Potts model where
the GS degeneracy plays a determinant role in the nature of
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FIG. 2. Two of the 12 ground-state configurations of the fully
frustrated simple cubic lattice. The numbers indicate the spins at the
sites defined in Fig. 1. The angle � is �=arccos� 1+�2

�6
�. Upper:

�=� /4; lower: �=−3� /4.
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phase transition. Note however that all simulations have been
carried out with the initial Hamiltonian �1�; no GS rigidity at
finite temperature �T� has been imposed.

The first investigation of the nature of the phase transition
of this model by the use of Metropolis Monte Carlo �MC�
simulations has shown a second-order transition with un-
usual critical exponents �29�. However, the MC technique
and computer capacity at that time did not allow one to con-
clude the matter with certainty. Recently, Wang and Landau
�30� proposed a MC algorithm for classical statistical models
which allowed one to study systems with difficultly accessed
microscopic states. In particular, it permits one to detect with
efficiency weak first-order transitions �22,23�. The algorithm
uses a random walk in energy space in order to obtain an
accurate estimate for the density of states �DOS� g�E� which
is defined as the number of spin configurations for any given
E. This method is based on the fact that a flat energy histo-
gram H�E� is produced if the probability for the transition to
a state of energy E is proportional to g�E�−1.

We summarize how this algorithm is applied here. At the
beginning of the simulation, the DOS is set equal to 1 for all
possible energies, g�E�=1. We begin a random walk in en-
ergy space �E� by choosing a site randomly and flipping its
spin with a probability proportional to the inverse of the
temporary density of states. In general, if E and E� are the
energies before and after a spin is flipped, the transition
probability from E to E� is

p�E → E�� = min�g�E�/g�E��,1� . �9�

Each time an energy level E is visited, the DOS is modified
by a modification factor f �0 whether the spin flipped or not,
i.e., g�E�→g�E�f . At the beginning of the random walk, the
modification factor f can be as large as e1�2.718 281 8. A
histogram H�E� records the number of times a state of en-
ergy E is visited. Each time the energy histogram satisfies a
certain “flatness” criterion, f is reduced according to f →�f
and H�E� is reset to zero for all energies. The reduction
process of the modification factor f is repeated several times
until a final value f final, which is close enough to 1. The
histogram is considered as flat if

H�E� � x%	H�E�
 �10�

for all energies, where x% is chosen between 70% and 95%
and 	H�E�
 is the average histogram.

The thermodynamic quantities �30,31� can be evaluated
by 	En
= 1

Z�EEng�E�exp�−E /kBT�, Cv= �	E2
− 	E
2� /kBT2,
	Mn
= 1

Z�EMng�E�exp�−E /kBT�, and �= �	M2
− 	M
2� /kBT,
where Z is the partition function defined by
Z=�Eg�E�exp�−E /kBT�. The canonical distribution at any
temperature can be calculated simply by P�E ,T�
= 1

Zg�E�exp�−E /kBT�.
In this work, we consider a energy range of interest

�32,33� �Emin,Emax�. We divide this energy range to R sub-
intervals, the minimum energy of each subinterval is Emin

i for
i=1,2 , . . . ,R, and the maximum of the subinterval i is
Emax

i =Emin
i+1 +2	E, where 	E can be chosen large enough for

a smooth boundary between two subintervals. The WL
algorithm is used to calculate the relative DOS of each

subinterval �Emin
i ,Emax

i � with the modification factor
f final=exp�10−9� and flatness criterion x%=95%. We reject
the suggested spin flip and do not update g�E� and the energy
histogram H�E� of the current energy level E if the spin-flip
trial would result in an energy outside the energy segment.
The DOS of the whole range is obtained by joining the DOS
of each subinterval �Emin

i +	E ,Emax
i −	E�.

III. RESULTS

We used the system size of N
N
N, where N varies
from 24 up to 48. We stop at N=48 because, as seen below,
the transition at this size shows a definite answer to the prob-
lem studied here. Periodic boundary conditions are used in
the three directions. J=1 is taken as the unit of energy in the
following.

We show in Fig. 3 the magnetization and the susceptibil-
ity and in Fig. 4 the energy per spin and the specific heat, for
N=24. All these quantities show a transition with a second-
order aspect. However, we know that many systems show a
first-order transition only at very large sizes. This is indeed
the case. The energy histograms obtained by the WL tech-
nique for three representative sizes N=24, 36, and 48 are
shown in Fig. 5. As seen, for N=24, the energy histogram,
although unusually broad, shows a single peak indicating a
continuous energy at the transition as observed before in Fig.
4. The double-peak histogram starts already at N=36 and the
dip between the two maxima becomes deeper with increas-
ing size, as observed at N=48. We note that the distance
between the two peaks, i.e., the latent heat, increases with
increasing size and reaches �0.03 for N=48. This is rather
large compared with the value of �0.009 for N=120 in the
XY STA �17–19,22� and with 0.0025 for N=150 in the
Heisenberg case �23�. We give here the values of Tc for a few
sizes: Tc=0.680 80�0.000 10, 0.679 67�0.000 10, and
0.679 19�0.000 10 for N=24, 36, and 48, respectively.
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FIG. 3. Magnetization and susceptibility versus T for N=24.
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Note that the double-peak structure is a sufficient condi-
tion, not a necessary condition in old-fashion MC simula-
tions �i.e., not the WL method�, for a first-order transition.
This is because in old-fashion MC simulations performed at
a given T, we often encounter the situation where, at the
transition, the system is spatially composed of two �or more�
parts: the ordered phase with energy E1 and the disordered
phase with energy E2. Since in old-fashion MC simulations
we make histogram from the total system energy, i.e.,
E1+E2, the histogram will record the “average” energy
E1+E2; therefore, the double-peak structure will not be seen.
Such a coexistence at any time of the ordered and disordered
phases in some first-order transitions makes it impossible in
old-fashion MC simulations to detect two peaks. In our
present WL flat-histogram method, the double-peak structure
is obtained from the DOS histogram which gets rid of the
problem of spatial coexistence of the two phases discussed
above. Therefore, the double-peak structure is a necessary
condition for a first-order transition as it should be.

Let us say a few words on the correlation length. It is
known that the correlation length is finite at the transition
point in a first-order transition. For very strong first-order
transitions, this correlation length is short, so that the first-
order character is detected in simulations already at small
lattice sizes. For weak first-order transitions, the correlation
length is very long. To detect it one should study very large
lattice sizes as in the present paper. Direct calculation of the
correlation length is not numerically easy. Fortunately, one
has other means such as the WL method to detect more eas-
ily weak first-order transitions.

To close this section, let us emphasize two points: �i�
First, the first-order transition observed here may come from

the fact that the GS of the present XY FFSCL model has a
12-fold degeneracy which is reminiscent of the 12-state Potts
model. In three dimensions, the latter model has a first-order
transition. Note however that this conclusion is not always
obvious because the continuous degrees of the order param-
eter mask in many cases the symmetry argument based on
discrete models �27�. �ii� Second, some other XY frustrated
systems such as the fcc �34�, hcp �35�, and helimagnetic �36�
antiferromagnets show also a first-order transition in MC
simulations. Although the nonperturbative renormalization
group has been extensively used for the STA case �4� due to
its long-lasting controversy, we believe that the other cases
are worth to study in order to verify that the validity of that
theory is not limited to the STA but is universal for frustrated
systems of vector spins.

IV. CONCLUDING REMARKS

Using the powerful WL flat-histogram technique, we have
studied the phase transition in the XY fully frustrated simple
cubic lattice. The technique is very efficient because it helps
to overcome extremely long transition time between energy
valleys in systems with a first-order phase transition. We
found that the transition is clearly of first order at large lat-
tice sizes in contradiction to early studies using standard MC
algorithm and much smaller sizes �29�. The result presented
here will serve as a testing ground for theoretical methods
such as the renormalization group which still has much dif-
ficulty in dealing with frustrated systems �4�.
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