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I. INTRODUCTION

The study of systems composed of a large number of
degrees of freedom was endowed a definitive means of rea-
soning with the introduction of the differential stochastic dy-
namical framework about a century ago �1�. Specifically, dif-
ferential stochastic dynamics allows one to describe the time
evolution of a given observable as a function of macroscopic
variables of the system as well as nondeterministic ones. The
latter are expressed in terms of noise�s�, reflecting the micro-
scopic features of the system, whose univocal description is
beyond the bounds of possibility �2,3�. Despite the impossi-
bility of a deterministic description of the evolution of the
observable, one can successfully obtain time dependent sta-
tistical details. Undeniably, Einstein’s and Bachelier’s groun-
breaking works, respectively on Brownian motion �4� and
stock price movements �5�, are outstanding examples of the
relevance of differential stochastic dynamics in diverse
fields.

The inference of a differential stochastic process is ge-
nerically made from statistical features such as statistical mo-
ments, correlation functions and probability density func-
tions built from a time series of measurements. In particular,
a well established theoretical background for identifying the
stochastic dynamics exists for the important class of pro-
cesses following the Markov property �2,3�. However, in
practice, several hindrances arise. Specifically, besides mat-
ters related to the finite size of data sets �6� and to the direct
error of the measurements �associated with the quality of the
equipments and/or their calibration �7��, the sample rating
�the spell between logged measurements� plays a crucial role
in the determination of actual underlying stochastic process.
As a matter of fact, we are generally left a set of snapshots
reproducing a fraction of the events that occurred in the con-
tinuous time process from which the dynamics is due to be
determined. In any case, it would be important to compare
the acquisition interval with the characteristic times of the
process to determine whether the Kramers-Moyal �KM� co-
efficients estimates are trustworthy. In this respect, another
difficulty is that the characteristic times are not always
known beforehand, although they can be estimated, e.g.,
through the computation of autocorrelation functions. More-
over, when the sampling interval is found to be too long

compared with the characteristic time scales, for suitably un-
covering the process, it is not always possible to upgrade it,
particularly for historical data. For such cases, it is therefore
of primary importance a careful analysis of the impact of the
time interval � of data sampling on the observable finite-time
KM coefficients, specially as one approaches the indepen-
dence limit.

For a Markovian timeseries, one can obtain the evolution
equation for the conditioned probability density �PDF� by
computing the KM coefficients,

Dk�x0� = lim
�→0

D̃k�x0,�� , �1�

with

D̃k�x0,�� =
1

k!�
� dxP�x,��x0,0��x��� − x0�k

�
1

k!�
��x��� − x0�k	 ,

=
1

k!�

j=0

k �k

j
��xj	�− x0�k−j , �2�

where we have already assumed that the coefficients are �at
least locally� stationary �for non-stationary data sets see Ref.
�6��. Aiming to simplify the notation, we denote the statisti-
cal averages conditioned to the initial value x0: �¯ 	 �x=x0
��¯ 	, while we will reserve �¯ 	u for usual stationary un-
conditioned averages.

In practice, only the finite-time estimates D̃k�x0 ,�� can be
directly computed, with � limited by the minimal time inter-
val, �min, of data acquisition. Furthermore, when the sam-
pling interval � is larger than the correlation time, i.e., the
PDF P�x ,� �x0 ,0� becomes unconditioned and under station-
arity, one gets,
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D̃k
indep�x0,�� =

1

k!�
� dxP�x��x − x0�k

�
1

k!�
��x��� − x0�k	u,

=
1

k!�

j=0

k �k

j
��xj	u�− x0�k−j . �3�

Notice that, in Eq. �3� the stationary averages are uncondi-
tioned, hence do not depend on x0, differently from Eq. �2�.
Therefore, Eq. �3� represents a k-order polynomial in x0, no
matter how complex the intrinsic coefficients Dk are. In prac-
tical applications, this feature introduces a complete uncer-
tainty on the actual form of the intrinsic coefficients, in the
absence of a model a priori �8�.

In this manuscript we obtain the finite-time estimates for
several standard processes described by Itô-Langevin sto-
chastic differential equations,

dx = D1�x�dt + 2D2�x�dWt, �4�

where Wt is a standard Wiener process. In previous work �9�,
this task was accomplished for the particular class of pro-
cesses with D1=−ax and D2=Ax2+C, by means of Itô-
Taylor expansions. Herein, we will consider a larger class of
processes following two different approaches. The first one,
based on the solution of the evolution equation of the raw
statistical moments, represents a simplification regarding the
whole process of appraising the finite-time coefficients when
the drift is linear. Second, we employ the Fokker-Planck ad-
joint operator technique that is useful for processes with non-
linear drifts, for instance.

Furthermore, we will analyze the extreme instances of
no-fluctuations and independence. The deterministic limit
�absence of fluctuations� is relevant in stochastic dynamical
systems since it provides a reference on the functional be-
havior of quantities that can be perturbed by augmenting the
intensity �broadness� of the noise. In the meanwhile, the in-
dependence limit sets the bounds expected for large acquisi-
tion interval and/or large noise intensity.

Although it is not always possible a direct inversion of the
finite-time estimates to extract the intrinsic ones, the expres-
sions herein obtained can be contrasted against the observed
KM coefficients, allowing the identification of the underly-
ing process as well as the associated parameter values.

II. ESTIMATING CONDITIONAL MOMENTS

Given the Fokker-Planck equation �FPE� for P
� P�x , t �x0 ,0�

�tP = − �x�D1P� + �xx�D2P� , �5�

the evolution equation for a mean value can be obtained by
multiplying both sides of Eq. �5� times the quantity to be
averaged and integrating by parts with suitable boundary
conditions �vanishing at the boundaries�. In this way, the
equations for the moments have the form

d�xn	
dt

= n�xn−1D1�x�	 + n�n − 1��xn−2D2�x�	 . �6�

If D1�x� is linear and D2�x� is at most quadratic, the equa-
tions for the moments can be successively solved from the
lowest order n=1 �10�. However, a hierarchy of equations
depending on higher-order moments generally arises. In such
cases, one can still resort to approximate techniques such as
hierarchy truncation, substitution of terms, etc. Alternatively,
the conditional averages can be computed by means of the
short-time solution expansion �2�, which leads to

�Q�x�	�x0,�� = 

n�0

�L†�x��nQ�x��x0
�n/n!, �7�

where L†�x�=D1�x+D2�xx is the �backward� Fokker-Planck
adjoint operator �see also �11��.

In the deterministic case, it is enough to solve Eq. �6� for
the first moment, which becomes

d�x	det

dt
= D1��x	det� , �8�

where the superindex stands for “deterministic” and whence
we obtain the full range of values, �xk	det= ��x	det�k. Then, the

deterministic part of D̃k, with k�1, is

D̃k
det =

1

k!�
��x	det − x0�k =

�k−1

k!
�D̃1

det�k. �9�

Let us note that the deterministic D̃k are non-null functions,
although they vanish in the limit �→0 except for k=1. Nev-
ertheless, we should bear in mind that for not too small � the
deterministic part can dominate over the noise contribution.
This represents another drawback one may face in a practical
application. In fact, if the noise is small, the deterministic

contribution to D̃k may screen the information on the noise.

III. LINEAR DRIFT

Let us first consider the case of linear drift,

D1�x� = − ax + b , �10�

with a�0 assuring the existence of a stationary solution. As
a matter of fact, a raft of phenomena are described by an
exponential relaxation, which is concomitant with a para-
bolic drift potential �3�. From Eq. �6� one has

d�x	
dt

= − a�x	 + b , �11�

whose solution is

�x���	 = x0z +
b

a
�1 − z� , �12�

assuming the initial condition �x�0�	=x0 and defining z
�e−a�. Hence, according to Eq. �2�,
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D̃1�x0,�� = − �x0 −
b

a
�1 − z

�
, �13�

that in the limit �→0 recovers D1. The opposite limit of
independence yields −�x0−b /a� /� in accordance with Eq.
�3�.

It is noteworthy that Eq. �13� is independent of the par-
ticular form of D2. This is due to the fact that in �and only in�
the linear case, Eq. �11� coincides with its deterministic ver-

sion, Eq. �8�, hence D̃1= D̃1
det. For other forms of the deter-

ministic part of the stochastic differential equation, the de-
rivative of �x	 with respect to the time is equal to more
complex expressions which depend on higher-order moments
and/or powers of the first conditional moment. Despite the
slope evolution with �, it is worth noting that the finite-� drift
preserves the linear form of the intrinsic D1.

Equation �12� also allows one to estimate the conditional
two-time covariance function given by �3�

K��,x0� =� dxxx0P�x,t�x0,0� = x0�x���	 = x0
2z + x0

b

a
�1 − z� ,

�14�

that exponentially decays toward the long-time average. Still
one has to average over initial conditions x0 to find

K��� =� dxdx0xx0P�x,t;x0,0� =� dx0K��,x0�P�x0� ,

where P�x0� is usually the steady PDF. However, any choice
of P�x0� will not alter the exponential character of the corre-
lations since the integration is not carried out over time. In
addition, the correlations are only ruled by the drift and do
not depend on the noise amplitude. It is straightforward to
understand that this quirk comes to pass because of the func-
tional properties of the conditional average.

A. Second and higher-order conditional moments
for quadratic noise intensity

If together with drift linearity the noise intensity is
second-order polynomial,

D2�x� = Ax2 + Bx + C , �15�

with parameters such that D2�x��0, then each evolution Eq.
�6� is linearly coupled to those of lower order only. In this
case the equations can be solved one after another. In par-
ticular, for the second moment, one has

d�x2	
dt

= 2�− �a − A��x2	 + �b + B��x	 + C� . �16�

Thus, we just need to solve a non-homogeneous 1st order
differential equation of the form

f� = Âf + B̂e−�t + Ĉ , �17�

whose solution, given the initial condition f�0�, is

f�t� =
�Ĉ + Â�B̂ + Ĉ + �� + Â�f�0��

Â�� + Â�
eÂt −

B̂

� + Â
e−�t −

Ĉ

Â
.

�18�

Therefore, �x2���	= f��� with the identifications

Â = − 2�a − A� ,

B̂ = 2�b + B��x0 − b/a� ,

Ĉ = 2�b + B�b/a + 2C ,

and �=a, following Eqs. �16� and �12�, and the initial con-
dition f�0�=x0

2. Namely,

�x2���	 = z2wx0
2 + 2

b + B

a − 2A
�z − z2w�x0

+
b�b + B�

a�a − A��a − 2A�
�az2w − 2�a − A�z + a − 2A�

+
C

a − A
�1 − z2w� , �19�

where z�e−a� and w�e2A�.
The finite-� second KM coefficient can be obtained by

means of Eq. �2� with �x���	 and �x2���	 given by Eqs. �12�
and �19�, respectively. Explicitly, we find

D̃2�x0,�� =
1

2�
��1 – 2z + z2w�x0

2

+ 2� b + B

a − 2A
�z − z2w� +

b

a
�z − 1��x0

+
b�b + B��az2w − 2�a − A�z + a − 2A�

a�a − A��a − 2A�

+
C

a − A
�1 − z2w�� . �20�

When �→0, D̃2→D2, while for a��1, Eq. �3� is veri-
fied.

These results permit one to embrace many fundamental
models such as Ornstein-Uhlenbeck, Feller and harmonic
drift with additive-�linear�multiplicative noise. Also in fi-
nance, in most well-known models of volatility ��=x�, the
drift is linear and D2=D�x��, with �=0 �Ornstein-Uhlenbeck
process�, 1 �square-root, Feller or Cox-Ingersoll–Ross
model� and 2 �Hull and White model�.

Let us also recall that for the linear drift, its finite-time
expressions are also linear in x0. Similarly, with linear drift

and �=0,1 ,2 the dependence of D̃2 on x0 is quadratic. As a
matter of fact, a similar scenario holds for kth-order finite-
time KM coefficients. In other words, the kth-order KM co-
efficients are polynomials of order k, whose coefficients de-
pend on �. Thus, it is not simple to nimbly rescue the value
of � just by identifying the polynomial order of the observed
coefficients.
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For the quadratic noise intensity, the evolution equations
of higher-order conditional moments, from Eq. �6�, are

d�xn	
dt

= An�xn	 + Bn�xn−1	 + Cn�xn−2	 , �21�

where

An = n��n − 1�A − a�;

Bn = n��n − 1�B + b�;

Cn = n�n − 1�C .

High-order KM coefficients are particularly relevant as
well. In other words, for the present class of Markovian pro-
cesses the Pawula theorem �2� implies that they must vanish.
In the absence of any other reason to discard the validity of
Chapman-Kolmogorov approach, if the finite-time condi-
tional higher moments are non-null, it is important to probe
whether it is the outcome of a finite-time effect. Let us re-
strain our calculations to the explicit formulas of the third
and fourth coefficients in two important cases: �i� the rever-
sion to a null value in the absence of coupling between ad-
ditive and �linear� multiplicative white noises �b=0 and B
=0� and �ii� the Feller process.

�i� For the additive-multiplicative process with b=0 and
B=0, notice that Eq. �6� with n=3 has the same form of Eq.

�17�, through the identification Â=−3�a−2A�, B̂=6Cx0, Ĉ
=0, and �=a, and the initial condition f�0�=x0

3, yielding

�x3���	 =
3x0C

a − 3A
�z − �zw�3� + x0

3�zw�3. �22�

Then, according to Eq. �2�, one has

D̃3�x0,�� =
1

6�
��x3���	 − 3x0�x2���	 + 3x0

2�x���	 − x0
3� ,

�23�

where the averaged quantities are given by Eqs. �22�, �19�,
and �12�, respectively.

For the fourth moment, Eq. �6� with n=4 has the same

form of Eq. �17�, through the identification Â=4�3A−a�, B̂

=12C2 / �A−a�+12Cx0
2, Ĉ=−12C2 / �A−a� and �=2�a−A�,

together with the initial condition f�0�=x0
4, yielding

�x4���	 = z4w6x0
4 +

6C�z2w − z4w6�
a − 5A

x0
2

+ 3C2 �a − A�z4w6 − 2�a − 3A�z2w + a − 5A

�a − A��a − 3A��a − 5A�
.

�24�

Thus,

D̃4�x0,�� =
1

24�
��x4���	 − 4x0�x3���	 + 6x0

2�x2���	

− 4x0
3�x���	 + x0

4� , �25�

is obtained by substitution of the averaged quantities Eqs.

�24�, �22�, �19�, and �12�. The present results generalize
those previously obtained for the particular case D1=−ax
�with a�0� and D2=Ax2+C in �9�.

�ii� For the Feller process �A=C=0�, by successive inte-
gration of Eqs. �21� and using Eq. �2� we find

D̃3�x0,�� =
�1 − z�3

6�
�− x0

3 + 3
b − �b + 2B�z

a�1 − z�
x0

2

− 3
�b + B��b − �b + 2B�z�

a2�1 − z�
x0 +

b�b + B��b + 2B�
a3 �

�26�

and

D̃4�x0,�� =
�1 − z�4

24�
�x0

4 − 4
b − �b + 3B�z

a�1 − z�
x0

3

+ 6
�b + 2B���b + 3B�z − 2�b + B��z + b�b + B�

a2�1 − z�2 x0
2

− 4
�b + B��b + 2B��b − �b + 3B�z�

a3�1 − z�
x0

+
b�b + B��b + 2B��b + 3B�

a4 � . �27�

Considering that for the Feller process �x	u
n

= �B /A�n 	�b/B+n�
	�b/B� , then the KM coefficients can be rewritten in

terms of the unconditioned raw moments, which can be
straightforwardly estimated from data, as follows:

D̃1�x0,�� =
�1 − z�

�
�x − x0	u,

D̃2�x0,�� =
�1 − z�2

2�
��x − x0�2	u,

D̃3�x0,�� =
�1 − z�3

6�
��x − x0�3	u +

z�1 − z�2

�

�x
2

�x	u
2 �x�x − x0�	ux0,

and

D̃4�x0,�� =
�1 − z�4

24�
��x − x0�4	u +

z�1 − z�3

2�

�x
2

�x	u
2 �x�x − x0�2	ux0

+
z2�1 − z�2

2�

�x
2

�x	u
2x0

2,

where �x
2= �x2	u− �x	u

2.

In Fig. 1, we exemplify the behavior of D̃1, D̃2 and D̃4 for
the Feller process dx= �−ax+b�dt+2BxdW �that is A=C
=0, or also �=1� as the independence limit is approached.
Notice the variety of behaviors that can be observed even for

not too large �. The slope of the linear D̃1 changes with �

taking the values −�1−z� /�, while D̃2 soon becomes qua-

dratic with �. Also D̃4 largely departs from the intrinsic null
value. For all the coefficients, the independence limit is prac-
tically attained at ��200���1 /a=10�.
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Figure 2 illustrates the impact of the intensity of noise on

the finite-time estimates. Noise intensity does not affect D̃1

which coincides with the deterministic straight line. D̃2
largely disagrees with the true form D2, departing toward the
independence limit, for large noise intensity, and toward the
deterministic limit for small noise. Of course, as one ap-
proaches the deterministic �no-fluctuations� limit the range of
x0 shrinks around the deterministic �equilibrium� value.

When the drift is linear, whatever the noise intensity, the
parameters a and b can be unraveled by a linear fit to the
observed D1: the value of the slope −�1−z� /� allows one to
determine the parameter a, once � is known, while the ab-

scissa at which D̃1 vanishes corresponds to b /a. That is, if
the observed drift can be considered linear in good approxi-

mation, a direct inversion of D̃1 to obtain the intrinsic D1 is
possible. This will also facilitate the obtention of the func-
tional form �and parameter values� of D2.

B. Nonquadratic noise intensity

For ��0,1 ,2, or more generally for nonquadratic D2, the

finite-time D̃2 are also nonquadratic in x. The equation for
the second moment, following Eq. �6�,

d�x2	
dt

= − 2a�x2	 + 2b�x	 + 2�D2�x�	 �28�

cannot be solved straightforwardly in this case.
Let us consider the especial case with �=3 �known as

3/2-model� used as a volatility model as well �12�. For small
noise intensity, one can find the correction c2 to the deter-
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FIG. 1. �Color online� Impact of � on first, second, and fourth
finite-time KM coefficients for the process dx= �−ax+b�dt
+2BxdW, with a=0.1, b=1.0 and B=0.25. The values of � used
are indicated on the figure. Artificial time series were generated by
means of the Euler algorithm with dt=10−3 and 106 data points of
the time series were considered for the computation of KM coeffi-
cients in each case. Symbols correspond to numerical estimates and
the associated colored solid lines to the theoretical expressions for
finite-time coefficients given by Eqs. �13�, �20�, and �27�. Black
solid lines correspond to the intrinsic coefficients D1=−ax+b, D2

=Bx, and D4=0 and black dashed lines �practically coinciding with
the curves for �=200�, to the independence limit forms given by
Eq. �3� with �=200
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FIG. 2. �Color online� Impact of the noise intensity on the first
and second finite-time KM coefficients for the same process of Fig.
1. In all cases �=5 and the different values of B are indicated on the
figure. Black solid lines correspond to the intrinsic coefficients,
black dashed lines to the independence limit forms at �=5 and
black dotted lines to the deterministic forms �Eq. �9�� at �=5. Sym-
bols correspond to numerical estimates and the associated colored
�thin� solid lines to the theoretical expressions for finite-time coef-
ficients given by Eqs. �13� and �20�. In the lower panel the inset
shows the same data in log-linear scales.
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ministic part of �x2	 by means of expansion �Eq. �7��, taking
Q�x�=x2. By identifying the general form of the coefficients
of �n, with the aid of algebraic manipulation programs, we
obtain

c2 =
C

a4 �b3 + 6b2�ax0 − b�z + �3b3 − 6a2bx0
2 + 2a3x0

3�z2

+ 6ab��ax0 − b�2z2 − 2z3�ax0 − b�3� . �29�

Then

�x2	 = ��x	det�2 + c2 + O�C2� �30�

and on that account,

D̃2 =
�

2
�D̃1

det�2 +
c2

2�
+ O�C2� , �31�

which in the limit �→0 tends to D2�Cx3 as expected.

IV. NONLINEAR DRIFT

As in the case of linear drift and nonquadratic noise, if the
drift is nonlinear, the equations for the moments cannot be
solved successively from the lowest order. Moreover, the
useful independence of the evolution equation for �x�t�	 on
higher-order statistical moments, which are noise dependent,
fails. Consequently, the existence of a nonlinear drift intro-

duces a troublesome relation between D̃1 and the noise as
well as a dependence of the correlation function on the same
noise. However, we can still use the calculations at the de-
terministic limit to represent the upper bound which is quite
reliable for the cases presenting small noise intensity. Explic-
itly, if the contribution of diffusion is neglected, the evolu-
tion is almost deterministic. Accordingly, we will solve the
deterministic equation for the first moment whereas for
higher-order moments we will take into account the lowest
order correction due to noise.

Let us consider a process with cubic drift �13� also called
Bernoulli oscillator,

dx = �− ax − bx3�dt + 2CdWt, �32�

where b ,C�0. When a
0 the system represents a stochas-
tic motion in a bistable potential. The statistical moments of
this stochastic system were early studied within a variational
approach context �14�. However, this method lands up intro-
ducing an extra �fitting� parameter which we adamantly want
to avoid, since it would increase the level of uncertainty of
the results.

Figure 3 exhibits the first, second, and fourth finite-time
KM moments, obtained for different values of the sampling

interval �. Notice that, with increasing �, D̃1 tends to a linear
form that can erroneously lead to assume that the drift is

linear. However, under this assumption, the inversion of D̃1
should give incongruous results for D1, thus leading to dis-
card the linearity of D1. For small noise intensity, the deter-
ministic expression fitted �with two fitting parameters a and

b� to the observed D̃1 allows to recover D1. Notice also the
complex influence of D1 on the higher-order coefficients,

leading to forms with two minima, in contrast with the linear
drift case.

By integration of Eq. �8�, one obtains the deterministic
expression,

D̃1
det�x0,�� = � e−a�

1 + bx0
2�1 − e−2a��/a

− 1� x0

�
, �33�

that does not preserve the original simple cubic form under-
scoring the unique character of the linear drift. In the limit
b→0, one recovers the linear case studied above. The case
where b is a perturbative parameter may be of interest for
systems in the vicinity of a phase transition, such as in Ref.
�15�. In the limit a→0, Eq. �33� becomes
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4x10-5

0

FIG. 3. �Color online� Impact of � on the first, second and fourth
finite-time KM coefficients, for the process defined by Eq. �32�,
with a=−0.1, b=1 and C=0.0025. The values of � are indicated on
the figure. Symbols correspond to numerical estimates. Black solid
lines correspond to the intrinsic coefficients D1=−ax−bx3, D2=C,
and D4=0, while black dashed lines to the independence limit
forms at �=200.
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D̃1
det�x0,�� = � 1

1 + 2bx0
2�

− 1� x0

�
. �34�

Independent of the signal of a, for short �, D̃1
det�x0 ,�� is equal

to −ax−bx3. For large values of �, the picture depends on
whether a is positive or negative. In the former case, which

corresponds to a single well potential, D̃1det is defined by a
straight line,

D̃1
det�x0,�� = −

x0

�
, �35�

which corresponds to the independence limit. Meanwhile, in
the latter case, which entails bistable potentials, one obtains

D̃1
det�x0,�� = � e�a��

1 + bx0
2�e2�a�� − 1�/�a�

− 1� x0

�
. �36�

In this case, for large values of �a��, one can describe the
limits corresponding to large values of b / �a�x0

2e2�a��,

D̃1
det�x0,�� ��a�

b

1

�
−

x0

�
, �37�

and for small values of the same quantity,

D̃1
det�x0,�� �

exp��a��� − 1

�
x0 −

b exp�3�a���
2�a��

x0
3. �38�

As a result, we can verify that the polynomial dependence of

D̃1
det�x0 ,�� is preserved for the central region that dwindles as

the sampling rate increases resulting in the straight line limit
Eq. �37�, which describes the full dependence �beyond relax-
ation scale� situation.

In the generic case D1=−hxn �with h ,n�0�, the solution
to Eq. �8� is

D̃1
det�x0,�� = � 1

�1 + �n − 1�hx0
n−1��

1
n−1

− 1� x0

�
, �39�

which includes Eq. �34� as a particular case �for n=3� and
also the linear case with b=0 �for n=1�. In the latter instance
it is provable that the exponential functional dependence is
recovered. For all the cases and in the limit �→0, one re-
covers D1�x� whereas in the opposite limit �→�, one gets
−x /�.

For small fluctuations, higher-order finite-� KM moments
are dominated by the deterministic part given by Eq. �9� with
further corrections dependent on the noise.

For the cubic drift, in the presence of small fluctuations,
such that C�a,

�x	 = �x	det + c1 + O�C2,aC,a2� , �40�

with,

c1 = − Cbx0�23 + 4y + 2y2

�1 + 2y�5/2 �41�

and y=bx0
2�. Then

D̃1 = D̃1
det +

c1

�
+ O�C2,aC,a2� , �42�

where D̃1
det is given by Eq. �33�.

Similarly, for the second moment we found the first cor-
rection to the deterministic part

�x2	 = ��x	det�2 + c2 + O�C2,aC,a2� , �43�

with

c2 =
2C�

�1 + 2y�3 . �44�

Then, finally

D̃2 =
�

2
�D̃1

det�2 +
c2 − 2x0c1

2�
+ O�C2,aC,a2� , �45�

which verifies that D̃2 tends to D2�C as �→0.
Figure 4 shows the impact of the intensity of noise on the

finite-time estimates. In contrast to the linear drift case, here

the noise influences D̃1, in such a way that as the intensity of

noise C increases, D̃1 approaches the independence limit
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FIG. 4. �Color online� Impact of the noise intensity on the first
and second finite-time KM coefficients, for the same process of Fig.
3. In all cases �=5, and the different values C used are indicated on
the figure. Black solid lines correspond to the intrinsic coefficients,
black dashed lines to the independence limit at �=5, and black
dotted lines to the deterministic forms �Eq. �9�� at �=5. Symbols
correspond to numerical estimates and the associated colored lines
to the approximations for small noise intensity given by Eqs. �42�
and �45�, respectively. In the lower panel the inset shows the same
data in log-linear scales. For the smallest noise intensity two differ-
ent initial conditions were used to fill both potential wells.
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even for small sampling rates. This could be attributed to the

decorrelating role of noise �it is worth regarding that D̃1 al-
ready depends on the noise for nonlinear potentials�. Simi-

larly to the linear case, D̃2 largely disagrees with the true
form D2, departing toward the independence limit, for large
noise intensity, and toward the deterministic limit for small
noise. Notice that if the intensity of noise is too small, one of
the wells of the potential may become inaccessible. Pre-
cisely, let us focus on the insets in the lower panel of Fig. 4.
When one is in the no-fluctuation regime the system is char-
acterized by three fixed points, namely one unstable �at x
=0, which prevails if and only if x=0 is the initial condition�
and two stable points �at x= �a /b�. Minimal noise is able
to make the observable, which we can envisage as a virtual
particle, move off the unstable point to one of the wells, each
one defined by one of the remaining extremes �minima�, but
it gives a very little rate of transition between the regions of
stability. As the noise intensity augments, the rate of transi-
tion increases as well and we are able to detect the finite
values of the KM moments in the vicinity of the unstable
point. This can be adduced by computing the first nonvan-
ishing eigenvalue, , when the FPE is transformed into a
Schroëdinger equation �2�. In first approximation, the eigen-
value  of this bistable potential, is given by

 = �
0

�

dxe�a/�2c��x2+�b/�4c��x4�
x

�

dye−�a/�2c��y2−�b/�4c��y4
.

�46�

For the values presented in Fig. 4,  goes from �0.2448
�for c=0.1� to �6�10−13 �for c=10−4�.

V. FINAL REMARKS

In this manuscript we obtained analytical results about the
impact of the sampling rate on the KM coefficients directly
computed from time series. We analyzed stochastic processes
subject to a linear drift, which already comprise a huge va-
riety of processes. We managed to compute exact expres-
sions for the evolution of conditional moments, from which
we obtained the finite-time KM coefficients and correlation
functions. The first moment and the linear correlation func-

tion are both independent of the noise intensity.
We also analyzed standard nonlinear drift cases, where the

scenery exhibits a sharp change. The moments are now ruled
by a cascade of differential equations which hampers the
obtention of exact analytical solutions. Nonetheless, approxi-
mate expressions valid for small noise intensity were
achieved by means of the adjoint operator approach. Differ-
ently from the linear case, the intensity of the noise affects
every conditional moment and the correlation function as
well. We also showed that by increasing the noise intensity
the functional dependence of the KM heads toward the inde-
pendence regime, which is characterized by a polynomial of
the same order. This fact has notorious consequences in time
series analysis, since one can be brought onto a situation
where independentlike coefficients are obtained, but one is
unable to assign this finding to either an improper sample
rating or a strong noise intensity.

For sampling rates smaller than the relaxation time, in a
steady state approach, our results permit one to sieve the set
of processes giving raise to the heuristic stationary probabil-
ity density function in order to select the appropriate Mar-
kovian differential stochastic process and consequently to
determine the respective parameter values. Furthermore, it
enables the judgment of the validity of the Markovian pro-
posal by supplying precise estimates of higher-order KM
moments. Otherwise, if the relaxation time is shorter than the
sampling rate, the measured KM coefficients will tend to a
polynomial of order matching the order of the moment. This
functional form is independent of the primary stochastic pro-
cess, hence introducing uncertainty in the recognition of the
process. Uncertainties might be hedged by inspecting prob-
ability densities and correlation functions as well as other
measures of dependence such as the relative �Kullback-
Leibler� entropy.
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