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Noise-induced enhancement of stability in a metastable system with damping
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The mean first passage time of a Brownian particle from an initial unstable state in a metastable system with
damping is investigated. The system is analyzed in the low to high damping regime, and the role played by the
damping parameter is studied. We observe the noise enhanced stability effect for all the initial unstable states
under study and for all values of the damping parameter y investigated. The curves show a behavior of the
mean first passage time vs y very close to that observed for an overdamped particle in the presence of colored

noise as a function of the correlation time.

DOI: 10.1103/PhysRevE.82.041120

I. INTRODUCTION

The study of nonlinear dynamical systems in the presence
of external noise has led to the discovery of a number of
counterintuitive phenomena, with a constructive role of the
noise and high fundamental and practical interests in many
scientific areas.

One of these effects is the noise enhanced stability (NES).
This effect is observed in potential profiles with metastable
states. The system stays close to the potential well for a
larger time than in the deterministic case (dynamical time)
and the average residence time shows either a nonmonotonic
or divergent behavior. The observed nonmonotonic resonan-
celike behavior proves to be different from the monotonic
one of the Kramers theory and its extensions [1,2]. This en-
hancement of stability, first noted by Hirsch er al. [3], has
been observed in different physical and biological systems
[4-12]. Specifically, this effect belongs to a highly topical
interdisciplinary realm of studies, ranging from condensed-
matter physics to molecular biology or to cancer growth dy-
namics. Recently, the NES effect has been studied in fluctu-
ating bistable potentials [13], ecological systems [14], time-
delayed metastable systems [15], magnetic systems [16],
overdamped and underdamped Josephson junctions [17], and
experimentally detected in an oscillator chemical system (the
Belousov-Zhabotinsky reaction) [18] and in underdamped
Josephson junctions [19].

When considering a Brownian particle moving in a meta-
stable fluctuating potential, the NES effect is always ob-
served, regardless of the unstable initial position of the par-
ticle [6]. However, from a theoretical point of view, the study
of the role of different unstable initial conditions in nonfluc-
tuating potentials, as the one studied here, provides a better
understanding of the occurrence of the NES phenomenon. As
shown in [6,20], depending on the initial conditions, two
different dynamical regimes can occur: one is characterized
by a nonmonotonic behavior of the average escape time as a
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function of noise intensity and the other features a diver-
gence of the mean escape time when the noise intensity tends
to zero, implying that the Brownian particle remains trapped
within the potential well in the limit of small noise intensi-
ties.

In static potentials, the NES is characterized by mean first
passage time (MFPT) values greater than deterministic ones
for the Brownian particle which reach a given far boundary
starting from an initial unstable position beyond the potential
well [6,20]. For any of these unstable initial positions it is
possible to define a “NES range” given by the interval of
noise intensity values for which the NES effect is observed
[5,6]. Concerning the initial unstable conditions, the physical
system can be brought in this nonequilibrium unstable state
by a sudden change of control parameters. Examples of such
situations include spinodal decomposition in the dynamics of
phase transitions and the process of laser switch-on (see
Refs. [4,13] in [6]). To complement the theoretical analysis
of transient dynamics in metastable systems we introduced in
[20] a new signature of the NES effect: the presence of a
minimum in the behavior of a generalization of the
Lyapunov exponent for stochastic systems as a function of
the noise intensity. Of course this behavior depends on the
initial conditions. From experimental point of view, as far as
we know, the majority of the observations of the NES effect
concerns experiments with fluctuating barriers and with ini-
tial conditions in the metastable state. However, it may be
possible to put the experimental setup in an initial unstable
nonequilibrium condition (see Ref. [6]). In a recent experi-
mental work on the Belousov-Zhabotinsky reaction [18] it
has been observed a noise-induced stabilization characterized
by a decrease of the maximum Lyapunov exponent (see Ref.
[20]) and an increase of the passage time of the laminar
region (see Ref. [3]). The dynamics of this chemical reaction,
in fact, can be described by a Langevin equation with a fixed
metastable potential profile.

The present paper is a continuation of the work in [20,21],
where noise-induced enhancement of stability in a meta-
stable potential in the overdamped limit was studied. There it
is shown a clear divergent behavior of the MFPT as a func-
tion of the noise intensity at some initial positions x,
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FIG. 1. (Color online) The cubic potential U(x)=ax>—bx> with
some of the initial positions investigated (dots), namely, x,
=1.2,1.3,1.4,1.5,1.6. The position x.=1.5 represents, for the over-
damped motion in the presence of white noise [see Eq. (2)], the
critical initial position which separates the set of the initial unstable
states producing divergency for D — 0 from those which give only a
nonmonotonic behavior of the average escape time [6,8,20,21].

namely, for x,.<xo<x. [with x,,, as the position of the
potential maximum and x,. as the position where the potential
shape intersects the x axis (see Fig. 1)]. This behavior had
been already reported in [6,8]. The results are presented as a
signature of noise enhanced stability effect. This approach
allowed for the characterization of the stochastic equilibrium
position [20] and motivated the investigation on how the
realistic noise sources modify the escape process [21]. The
purpose of our study is to introduce damping in the system
and extend the results presented in [20]. In particular, we are
interested in how the damping affects the divergent behavior
there shown and how the critical point x, depends on the
damping.

Specifically, by decreasing the value of the damping pa-
rameter, we observe the following: (i) a shift of the increase
of the mean first passage times (NES effect) toward higher
noise intensities, (ii) a decreasing of the value of the MFPT
maximum; (iii) a decrease of the critical initial position, xj,
which separates the set of the initial unstable states giving
rise to divergence of the MFPT for noise intensity D—0
[6,8,20,21] from those which give nonmonotonic behavior
with a maximum of MFPT; and (iv) a trend to the disappear-
ance of the divergent dynamical regime for given initial po-
sition.

These peculiarities of the behavior of the MFPT appear
similar to those observed in the study on the correlation time
of the Gaussian colored noise for an overdamped Brownian
particle moving in a metastable potential [21]. In particular,
by decreasing the damping parameter in our system, the be-
havior of the MFPT from the initial unstable state as a func-
tion of the white-noise intensity is quite similar to that ob-
tained by increasing the correlation time 7, of the colored
noise in the overdamped case.

II. MODEL AND RESULTS

The starting point of this study is the Langevin equation
of motion,

dU(x)

dx

+&(1), (1)

X+ yx=—

where &(7) is the white Gaussian noise with the usual statis-
tical properties: (£(r))=0 and (&(r)&(¢"))=2yDS(t' —t), where
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FIG. 2. (Color online) Log-log plots of the mean first passage
time 7 as a function of D for different values of the damping,
namely, vy=0.1,1,20, and for the initial positions x,
=1.3,14,1.5,1.6,1.7. The panels (a)-(c) show the values rescaled
in time to allow the comparison with the overdamped case [panel
(d)] obtained by numerical simulation in Eq. (2).

vD gives the noise intensity with D as a dimensionless tem-
perature.

The potential U(x) used in Eq. (1) is U(x)=ax?>-bx?, with
a=0.3 and »=0.2. The profile has a local stable state at x
=0 and an unstable equilibrium state at x=1 (see Fig. 1). We
are interested in computing the average escape time of the
system starting from an unstable position beyond the poten-
tial well. The evaluation of the MFPT values, 7, as a function
of the noise intensity has been performed by averaging over
N=20 000 realizations the times ¢#; spent by the particle to
reach the exit boundary x; in each trajectory calculated from
the stochastic differential equation [Eq. (1)], 7=1/NZt,. The
absorbing boundary for the escape process is set at xy=2.2
and the maximum simulation time at f.,,,=20,000 in arbi-
trary units. We choose to plot the results when all the real-
izations reach the absorbing boundary within the maximum
simulation time, and, consequently, some of the shown
curves are interrupted at some D values. This means that the
shown MFPT values are calculated with the complete statis-
tics. The chosen values of ¢,,, and N are large enough that
they do not affect the shape of the plotted curves but only the
maximum 7 values that are possible to calculate without am-
biguity in the divergent behavior cases. For all the initial
unstable states (some of them visible in Fig. 1) and all the
damping parameters considered we find an increase of the
MFPT 7 with respect to the deterministic values.

Figure 2 shows the calculations of 7vs D performed with
different damping parameters (y=0.1,1,20) and a compari-
son with the overdamped case [panel (d)] obtained by nu-
merical simulation of Eq. (2). We see that, as expected at
high damping, the mean first passage time 7, rescaled by a
factor 7, reproduces the overdamped behavior studied in [20]
by integrating the corresponding Langevin equation
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dU(x)
-—
dx

&), (2)

where &(r) is a white S-correlated Gaussian noise with zero
mean and the time ¢ is here rescaled as t/y—t. For very
small D, the noise barely affects the dynamics and most of
the particles escape approximately at the deterministic es-
cape time, except a few ones which remain trapped into the
potential well and cause the divergence. This seems to con-
tradict the constant behavior of the MFPT for D—0, as
shown in Fig. 2. This is due to the fact that the probability
that some particle is temporary trapped is very low and
strongly decreases with the noise intensity. Therefore, be-
cause of this, we do not observe such particles in simulations
and the average escape time becomes equal to the determin-
istic time with a flat behavior of MFPT for D— 0 (see Ref.
[8] for details).

Due to the limited number of particles in computer simu-
lations, all curves of MFPT as a function of D in Figs. 2 and
4, at very low noise intensities, show the same flat behavior.
If we increase the noise, we reach a point where in the simu-
lations at least one realization moves backward and the
Brownian particle enters the potential well. Depending on
the value of the unstable initial position and damping, it is
possible then that this particle remains into the well for all
our observation time. This is the case of small x, and high
damping [see, for instance, the curves for xy=1.3 or 1.4 in
Fig. 2(c)]. Increasing the noise we reach a value high enough
to guarantee the observation of the thermal escape of the
particle out of the well, after entering in it. Beyond this
point, a monotonous decreasing of the mean passage time is
observed. However, at larger values of x( or smaller damping
all the particles reach the adsorbing boundary within our
observation time.

As seen in all panels of Fig. 2, the 7 versus D curves show
either a nonmonotonic behavior with a well visible hump at
moderate values of the noise intensity or a divergent behav-
ior. Both behaviors are a signature of the NES effect, which
is understood as an increase of the mean first passage time
with respect to the dynamical time [6,20].

Figure 3 complements our information on the dynamics of
the system given in Fig. 2. There we plot the standard devia-
tion o of the passage time probability distribution [Figs.
3(a)-3(c)] (6?=1 /NEtf— 7). For high values of the damping
parameter, we notice a huge increase of the o for low values
of noise intensity, demonstrating a strong enlargement of the
distribution when the particle feels a noise intensity compa-
rable with the height of potential barrier. As a general re-
mark, o follows the same trend as 7: divergent behavior
when 7 diverges and nonmonotonic behavior in the case of
purely NES effect.

Figure 3(d) shows, for the y=1 case, the fraction of par-
ticles N;/N reaching within 7_,,, the threshold position x;
=0.5 into the potential well. This threshold position x; corre-
sponds to the concavity change of the potential and is con-
sidered for this reason as a reference indicator for the effec-
tive entrance of the particle into the well. This ratio depends
on the initial position, goes to zero at low noise intensities,
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FIG. 3. (Color online) Log-log plot of the standard deviation o
as a function of D for y=0.1,1,20 [panels (a)-(c), respectively] and
the same initial positions in Fig. 1. Panel (d): semilogarithmic plot
of the fraction of particle N;/N entering the potential well, within
the maximum simulation time 7 as a function of the scaled noise
intensity D.

max»

and approaches the value of 0.5 at high enough noise inten-
sity values.

Figure 4 shows more clearly the effect of decreasing the
damping for a given initial position. The most important ef-
fect is the lowering of the maximum 7 values. At high values
of the noise intensity the mean first passage time decreases
monotonously and the slope of this limit curve becomes flat-
ter by decreasing the damping. This means that the lowering
of the 7 values in the NES region at intermediate noise val-
ues for decreasing damping is partially compensated by a
larger noise intensity interval involved in the NES. The ef-
fect of the finite damping is therefore, on one hand, to reduce
the NES in the escape process and the divergent behavior, on

FIG. 4. (Color online) Log-log plot of the MFPT 7 as a function
of D for fixed initial positions (xg=1.2,1.3,1.4,1.5) and for differ-
ent values of the damping parameter, namely, vy
=0.18,0.32,0.56,1. We see how the divergent trend depends on y
for a fixed x value. This means that the critical position x depends
on the damping parameter x.=x(7y).
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the other hand, to shift the stability increase toward increas-
ing values of the noise intensity.

We will focus now on the divergent behavior of the MFPT
exhibited by the system. In the high damping regime, this
divergence is observed for x,,<xo<x, and the curve is
nonmonotonic for xo=x,., where x,,,=1 and x.=1.5. By de-
creasing the value of vy we observe [see Figs. 2(a) and 2(b)]
a displacement of the maximum MFPT toward higher values
of noise intensity and a correspondent shift of the critical
initial position x: toward lower values. In fact, the initial
position xp=1.4 presents a clear divergent behavior for D
—0 in Fig. 2(c), while in Figs. 2(a) and 2(b) the curves for
the same position show nonmonotonic behavior. Figure 2(a),
where y=0.1, shows NES humps for all the initial positions
without any divergence.

We note that the quantity x,. was theoretically defined for
the overdamped metastable system in Refs. [6,8,20]. Here, x.
is the same peculiar quantity, which discriminates between
the initial positions giving divergence in the MFPT as D
— 0 and those which give finite nonmonotonic behavior of
MFPT as a function of D in the underdamped system.

Because of no exact expression of MFPT available in the
underdamped case, we solve the problem of finding x, by
numerical simulations of the Langevin equation describing
the transient dynamics of the metastable system. Specifically,
we analyze the behavior of MFPT as a function of D, for
fixed damping parameter y and different initial positions
(Fig. 2) and for fixed initial position and different values of y
(Fig. 4). We are able to find, within a good accuracy, the
values of x. and 7y such that the curves corresponding to
initial conditions within the range x,,, <xo<x. have diver-
gent behaviors. In particular, for instance, the average of the
values corresponding to the two next curves of Fig. 4(b),
which show different behaviors (divergent for y=0.56 and
not divergent for y=0.32), gives the critical value of 7y,
[0.44=(0.32+0.56)/2 in Fig. 4(b)], corresponding to x
equal to the fixed initial condition considered (x,=x,=1.3 in
this example).

Our numerical simulations should be seen as numerical
experiments and the results presented might depend, as in a
real experiment, on the observation time and the number of
samples. Since we present results for all the particles arriving
the absorbing barrier within ¢,,,,, both number could affect
our results. However, the critical initial position x: does not
depend on the observation time. What depends on the obser-
vation time is not the critical position but, instead, all the
maximum values of MFPT of the curves showing divergent
behavior. In other words, from inspection of Figs. 2 and 4 it
is easy to recognize all the curves having divergent behavior
from those with finite behavior. This peculiar scenario (di-
vergent and not divergent curves) does not change because of
tmax-

If we decrease the damping, at low noise intensities, the
particles entering the potential well will escape more easily
than in the overdamped case. This is due to the inertial term,
which allows the particle to preserve the acquired energy for
enough long time (~1/7) so that the escape will occur.
Therefore, the trapping effect, which is responsible for the
divergent behavior for any initial unstable state within the
range X, <xo<x,, will happen with smaller and smaller
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FIG. 5. (Color online) Critical initial position as a function of
the damping parameter . By increasing the damping, x\ tends as-
ymptotically to the overdamped value x.=1.5.

probability by decreasing the damping parameter [see, for
instance, Fig. 2(a) (y=0.1) where no divergence is ob-
served].

Figure 4 shows more clearly this trend. We note that the
critical initial position becomes a function of the damping
parameter [x:=x.(y)]. In fact, in the different panels it is
possible to note how the curves with different dampings
show or not divergent behavior for low values of the noise
intensity D. In particular, in Fig. 4(b) (initial position x,
=1.3) we can see how the curves completely loose the diver-
gent behavior by decreasing the value of the damping from
y=1 to y=0.18.

The previous description can be summarized in Fig. 5
where it is evident that the critical initial position x. is an
increasing saturating function of the damping parameter 7.
For increasing values of v, i.e., from low to high damping
regime, x tends asymptotically to the value x.=1.5, which is
the critical initial position in the overdamped dynamical re-
gime. Our results have many similarities to those obtained
for the case of an overdamped system in the presence of
Gaussian colored noise [21]. These similarities could be as-
cribed to the fact that the correlation time in the overdamped
regime (with colored noise) and the inertia in the under-
damped regime (with white noise) play a similar memory
effect in the dynamics of the system. In fact, the inverse of
the damping parameter represents the time scale for energy
conservation in the inertial dynamics. On the other hand, the
correlation time of the colored noise fixes a time scale in
which fluctuations preserve their features. The results here
presented suggest that the two “preservation features” give
similar behaviors in the MFPT from unstable initial position
in a metastable system.

III. CONCLUSIONS

In this work we analyze the effect of the damping on the
enhancement of stability phenomenon for a Brownian par-
ticle starting from unstable initial position and moving in a
metastable system. We analyze different initial unstable po-
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sitions. We observe NES effect for all the initial positions
investigated. We also see an increase of the NES range, i.e.,
the interval of the corresponding values of the noise intensity
for which the effect is observed for decreasing values of the
damping. In fact, the NES effect is always present when a
particle is initially located beyond the local potential maxi-
mum in the escape region. The critical initial position, which
discriminates between divergent and nonmonotonic behavior
of MFPT at very low temperatures, is a function of the
damping parameter. For small damping we find a purely non-
monotonic behavior of MFPT for all the initial unstable po-
sitions investigated and within the maximum simulation
time. The range of the noise intensity values where the NES
effect appears is shifted toward higher values for decreasing
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damping. By controlling the damping parameter, it is pos-
sible to find the dynamical regime where the NES phenom-
enon could be revealed in experiments of transient dynamics
of metastable systems with damping.

Lastly, the peculiarities of the behavior of the MFPT ap-
pear to be similar to those observed for an overdamped
Brownian particle in a metastable potential in the presence of
colored noise.
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