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Nonaffine heterogeneities and droplet fluctuations in an equilibrium crystalline solid
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We show, using molecular-dynamics simulations, that a two-dimensional Lennard-Jones solid exhibits drop-
let fluctuations characterized by nonaffine deviations from local crystallinity. The fraction of particles in these
droplets increases as the mean density of the solid decreases and approaches =20% of the total number in the
vicinity of the fluid-solid phase boundary. We monitor the geometry, local equation of state, density correla-
tions, and Van Hove functions of these droplets. We provide evidence that these nonaffine heterogeneities
should be interpreted as being droplet fluctuations from nearby metastable minima. The local excess pressure
of the droplets plotted against the local number density shows a van der Waal loop with distinct branches
corresponding to fluidlike compact and stringlike glassy droplets. The distinction between fluidlike and glassy

droplets disappears above a well-defined temperature.
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I. INTRODUCTION

Crystalline solids typically exhibit local nonaffine defor-
mations when driven by external stresses. In many instances
these nonaffine deformations can be described in terms of a
density of dislocations; however, such a description is prob-
lematic when the density of dislocations is large enough that
their cores overlap [1]. Since the overlapping cores of the
dislocations have the character of a fluid, it has been sug-
gested that these excitations should be thought of as fluidlike
droplets [2-5]. This has proved a useful interpretation, espe-
cially since amorphous solids, for which dislocations are dif-
ficult to define, also show such localized deformations under
shear.

Just as dislocations in a solid can be thermally excited in
the absence of external drive, it is reasonable to ask whether
these fluidlike droplet fluctuations [6] can arise in the ab-
sence of external perturbation, especially when close to the
fluid-solid phase boundary. Droplet fluctuations have been
studied in great detail for simple Ising systems undergoing a
first-order transition where they are known to influence the
asymptotic behavior of dynamic correlations and introduce
subtle essential singularities in the equilibrium free energy
[7]. The nature and role of droplet fluctuations in solids, on
the other hand, has not received similar attention. In this
paper, using a molecular-dynamics (MD) simulation of a
two-dimensional (2D) Lennard-Jones (LJ) solid, we show
that, indeed, thermally excited droplet fluctuations do exist
close to melting. We characterize the local droplet fluctua-
tions using a nonaffine order parameter [8] and further clas-
sify them as being fluidlike or “glassy” (reflecting the whole
family of noncrystalline metastable configurations).
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We report MD simulations of a 2D single-component sys-
tem with the atoms interacting via LJ potential, viz.,

o(r) = 4€(arr)'* = (a/n)°], (1)

where € and o set the scale of energy and length, whereas
To=(ma?/ €)' sets the scale for time with m as the mass of
the particles. We use e=o=7,=1 without loss of generality.
The phase diagram of this system as obtained from an earlier
Monte Carlo study [9] is shown in Fig. 1 in the scaled tem-
perature 7-number density p plane. First-order liquid-solid
and gas-solid boundaries are shown. In Fig. 1 we have also
shown the p and T values at which we have obtained our
results from equilibrated configurations. All our state points
lie in the single phase region where one always obtains an
equilibrium triangular solid. Data showing any evidence of
local melting of the solid are discarded.

1F 5600000000
0000000000
0.8 | 00000000000 1

{ ! 1 l 000000000000

0.6

+

000000000000 -

S | v00000000000
600009600000

0.4 000000000000 1

000000000000

0.2 :

FIG. 1. Phase diagram of 2D Lennard-Jones solid as given in
[9]. The first-order boundaries are shown by solid lines. Open
circles indicate the 7 and p values at which we have performed MD
simulations.
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The main results of this paper are summarized below:

(1) We show that there is a significant fraction of non-

affine droplets in a 2D solid as the density is reduced; the
fraction of particles in droplets reaches about 20% at melt-
ing.
(2) The droplets are characterized by density and excess
pressure over the solid, with positive excess pressures asso-
ciated with string-like droplets and negative ones associated
with compact droplets.

(3) The density fluctuations of the droplets obey a distinct
fluctuation-response relation associated with the susceptibil-
ity of the droplet.

(4) The excess pressure of a droplet of a given size, as we
move across the phase diagram, depends on the shape of the
droplets and is a nonmonotonic function of the density at low
temperatures. At high temperatures, this increases monotoni-
cally with density.

(5) Finally, we show that the equal and unequal time den-
sity correlations within the droplets are liquidlike for the
compact and glassy for the stringlike droplets.

Taken together, these results suggest that the nonaffine
droplets should be viewed as fluctuations arising from
nearby metastable liquid and glassy minima. The rest of the
paper is organized as follows. In the next section we give
details of our MD simulations and the data analysis scheme
we use to identify nonaffine droplets. We next describe our
results for the droplet shape, local thermodynamics, and den-
sity correlations. Finally, we discuss the significance of our
results and conclude.

II. SIMULATION AND DATA ANALYSIS

Our MD simulations are carried out both in the canonical
NVT and microcanonical NVE ensembles using a velocity
Verlet algorithm [10] with a time step of 10~*. Starting from
a system of 10* particles arranged in a regular triangular
lattice at desired p=N/V, we have chosen the initial velocity
of each particle from a Maxwell-Boltzmann distribution at
temperature 7. We equilibrate the system at 7 for an initial
2% 10° MD time steps. We then switch to a constant NVE
ensemble and collect data for another 10° MD time steps,
storing configurations at regular intervals. For our system,
fluctuations of T are of order 1 in 107, At a fixed T and p we
analyze configurations of particles using a local measure for
nonaffineness (y) defined as the residual deformation of a
region () surrounding a particle that is left over after fitting
the best affine strain measured with respect to the ideal tri-
angular lattice at T, p [8]. The neighborhood (), defined us-
ing a cutoff distance A and consisting of n particles, centered
at any tagged particle O at r in the initial configuration is
compared with that of the same particle at time . We obtain
the local strain €; which maps as nearly as possible all the n
particles from the initial to the instantaneous configuration at
t. This is done by minimizing the (positive) scalar quantity,

Y= S {rﬁ;m—ra(r)—E (8;+ &) [7(0)
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FIG. 2. (a) Probability distribution of the nonaffine parameter y
for T=0.4 at several densities. For these values of p, P(x)’s are
bimodal; the contribution to the first peak is shown on the left and
for the second peak it is shown on the right (note change of scale).
(b) Comparison of P(y) with that of a harmonic solid Pj,.(x)-
(Inset) Plot of Pg,,=P(x) for x> x; and zero otherwise.

with respect to €;. Here, the indices i and j=x,y and rf;(t)
and 71(0) are the ith component of the position vector of the
nth particle in the initial and instantaneous configurations,
respectively. Any residual value of yq(r,7), which has units
of o2, is a measure of nonaffineness. We have chosen A
=2.5 as our coarse-graining length. We compute the prob-
ability distribution P(x) [Figs. 2(a) and 2(b)] of the coarse-
grained .

Explicit calculations show that y is large near defects
such as vacancies and dislocations which result in a change
in local coordination. For p> 1.0, where the solid is expected
to be almost harmonic, P(y) shows a single peak for y
=1.0 [11]. As the density of the system is decreased, this
peak becomes shorter and broader, and a second peak
emerges for 2.5= y=5.0. This second peak becomes more
prominent as the system approaches the liquid-solid phase
boundary. Inspection of the configurations of the particles
with large y values contributing to the second peak in P(y)
shows that these typically represent changes in the local to-
pology where a pair of particles from the next-near-neighbor
shell becomes closer than their nearest neighbors, thereby
increasing the local density.

To identify the truly anharmonic droplet fluctuations at
given p and 7, we need to subtract out contributions to y
coming from purely harmonic distortions. In order to do this
we note that for a harmonic solid, P(x) is unimodal and has
a scaling form P(x;T,p)=P(xk/A%kzTp), where k is the
spring constant of the harmonic solid. The spring constant of
the reference harmonic solid was chosen to match the prob-
ability distribution of the lattice parameter in the LJ solid,
obtained from the curvature of the first peak in the (angle
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FIG. 3. Plot of the fraction N./N of particles in nonaffine drop-
lets as a function of p. The open symbols correspond to all the
nonaffine particles based on the threshold criterion described in Fig.
2(b), while the filled symbols correspond only to particles with
value of y within the second peak in Pgp(X)-

averaged) pair distribution function g(r) of the solid. The
probability distribution of y of the equivalent harmonic solid
P.m(x) was multiplied by a constant until the area of the
curve matched the area of the first peak of P(x). This proce-
dure yields a threshold y, above which there is no nonaffine-
ness in the reference harmonic solid, and therefore any non-
affineness in the LJ solid above this value must necessarily
be attributed to anharmonic fluctuations. This subtraction
scheme results in the distribution Pg,(x) of purely equilib-
rium droplet fluctuations in a solid at constant p and T [Fig.
2(b), inset].

II1. RESULTS

We have used the above definition of nonaffine particles
to carry out the rest of our analysis. The fraction of particles

compact
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FIG. 4. (Color online) (a) Snapshot of a typical particle configu-
ration in the LJ solid at 7=0.4 and p=0.92. The black filled circles
denote nonaffine particles, while the rest of the particles are dots
(see text). Stringlike and compact droplets are pointed out using
red/light gray and blue/dark gray arrows, respectively. Closeup of
(b) stringlike and (c) compact droplets showing triangulated neigh-
borhoods. While defining droplets, we also include the nearest-
neighbor shell around every nonaffine particle. This spatial coarse
graining improves statistics.

in droplets N./N is typically small but increases with de-
creasing average density, reaching approximately 20% close
to melting [2] (see Fig. 3). This might seem too large at first;
however, note that this is consistent with typical dislocation
densities in 2D solids close to melting [12,13]. We expect
this droplet fraction to be much lower in three dimensions.

A. Droplet size and shape

The droplets have a distribution of sizes, shapes, density,
and internal pressure; we compute these quantities using
standard cluster counting techniques and local Delaunay
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FIG. 5. (Color online) (a) Excess pressure Ap,. vs density p, of the clusters as a scatter plot at densities p=0.88—1.0 shown in different
colors (shades of gray). Inspection of the individual droplets corresponding to each of the colored dots shows that for Ap.>0 droplets tend
to be stringlike, while Ap,<<0 gives rise to compact droplets. (b) The radius of gyration R, of the droplets as a function of the number of
particles in the droplets n. for several T=0.35 (open squares), 0.40 (filled squares), 0.45 (open circles), and 0.50 (filled circles). The data
points for 7>0.35 have been each shifted by 1 to make them visible. Note that while Rg~ni/2 for (i) Ap.<<O0 it is linear for droplets with

(ii) Ap.>0 shown in each case by solid red/dark gray lines.
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FIG. 6. (Color online) (a)—(d) Scaling plots of logyy R,/n; vs logq n, for +ve (red circles) and ~ve (blue squares) values of Ap, at four
different temperatures 7=0.35 (a), 0.40 (b), 0.45 (c), and 0.50 (d). We have used v=0.64, the value appropriate for (branched polymer) lattice
animals in two dimensions. For small n., R,/ n. goes to a constant value, whereas for larger n, it crosses over to two separate asymptotic
forms depending on the sign of Ap,. In (a) we have also shown the expected asymptotic behavior for compact (solid line) and stringlike
(dashed line) droplets. For large n. we have less statistics and therefore larger errors. As T increases, the difference between the two

asymptotic forms becomes less distinct.

analysis [14]. The number of particles in the droplets n, is
exponentially distributed with a mean that increases toward
the liquid-solid phase boundary.

In Fig. 4(a) we have shown a typical snapshot of the LJ
particles for p=0.92 and 7=0.4. To eliminate unimportant
random fluctuations we show only droplets with n.>7. The
snapshots show both compact and stringlike morphologies.
The droplets are dynamic; they coalesce and dissociate while
continuously fluctuating in shape and size.

To understand shape and size fluctuations of the droplets
we need to obtain local densities and pressure. We do this by
constructing a local Delaunay net [14] of nearest-neighbor
particles [see Figs. 4(b) and 4(c)]. The area of the droplet A,
is then the sum of the areas of the Delaunay triangles and the
density p.=n./A.. To obtain the internal pressure of the
droplet, p., we compute the virial (F;;-r;;), where F;; and r;;
are the nearest-neighbor forces and distances, respectively,
for particles i and j belonging to the droplet. The average
(---) is over all the particles n, in the droplet. The droplets
are characterized by a distribution of p, and excess pressures,
Ap.=p.—p, where p is the mean pressure of the surrounding
solid. Figure 5(a) shows a scatter diagram of the excess pres-
sure versus the density in the cluster. We find that the drop-
lets with high p, (hence large x) and large (positive) Ap,. are

stringlike, whereas droplets with low p. and Ap.<0 are
compact [Fig. 5(a)]. To study the behavior between these two
extremes, we argue that these drops resemble 2D lattice ani-
mals with excess pressure [15,16]. This analogy suggests that
the mean radius of gyration R (n.,Ap.,T) obeys a crossover
relation,

2_ dvp= 2
R, =n."F(pn."), 3)

where p=Ap.0?/kyT. Note that our sign convention for the
pressure implies that p>0 corresponds to deflated droplets.
Further note that in [15] the number of boundary particles is
kept fixed which is a different ensemble from ours where the
total number of particles in the droplets n, is fixed.

The crossover scaling function asymptotes to F(x—0)
=const and F(x— *o)=x%_ The scaling form takes into
account the natural scaling p ~A;l ~R™2, where A, is the
area of the droplet. As x—0 (i.e., small p and/or n.) we
expect that the droplet is a branched polymer with »=0.64 in
two dimensions [17]. This expectation is also borne out by
the particle snapshot shown in Fig. 4. The exponents 6. take
values such that R,~n, for x— o (stringlike) and Rg~ni/2
for x— —o (compact). In Fig. 5(b), panels (i) and (ii), we
have plotted R, vs n. for four values of 7. In each case we
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FIG. 7. (Color online) (a) Scatter plot of p.. vs p, of the droplets at 7=0.40 [red (gray) dots, the same data as in Fig. 5(a)] whose mean
shows a dependence similar to an equation of state (green/light gray curve). The equilibrium equation of state of the solid is shown as a
blue/dark gray curve for comparison. (b) The scaled excess pressure p as a function of mean density p, for n.=20 particle clusters for 7'
=0.35-1.0 in different colors (and symbols). The data for 7> 0.35 have each been shifted by 4 for a unit increase in 7 to make them visible.
Note the prominent loop showing two distinct branches at low temperatures, which disappears as T increases. We have obtained similar data

for other values n,.

have carried out a restricted average of the data separately
over (i) Ap.<0 and (ii) Ap.>0 to improve statistics. We
have also plotted, in the same graph, the expected asymptotic
dependence showing that our data are consistent with Eq.
(3). Unfortunately, the lack of sufficient statistics for clusters
with large n, prevents us from making a full comparison of
the scaling predicted by Eq. (3) in the form of, say, a data-
collapse plot [15]. To obtain better statistics one needs to
simulate yet larger systems for much longer times. Neverthe-
less, the crossover to asymptotics is illustrated in Fig. 6
where the data in Fig. 5(b) are replotted after factoring out
the small n. branched polymer behavior. As T increases, the
crossovers appear at larger n.. Therefore, the exponents do
not reach their expected asymptotic values even for the larg-
est droplets available (n,~ 10%), although the trends away
from their x— 0 limit are readily apparent,

B. Local thermodynamics of droplets

The scatter diagram in Fig. 5(a) suggests that there might
be a thermodynamic interpretation of the local density and
pressure of the droplets. In a bulk solid, local thermodynamic
equilibrium demands that the local variations in the density
are related to the pressure computed from the variation
JdF/dp of the Helmholtz free energy F with respect to the
density via the equation of state (EOS) of the solid at the
ambient temperature. Further, within linear response, the
generalized susceptibility G obtained from the slope of the
EOS is related to the g=0 component of the equal time cor-
relation  function kzTG(q=0)=C(q=0, t=0)=[dr({5p(r
+x)dp(x)), where 8p is the deviation from the mean density
[18]. We check whether analogous thermodynamic relations
hold for the droplets taken as a subsystem in contact with the
rest of the solid. We want to see how far these thermody-
namic considerations apply to our configurations of droplets,
with the caveat that these averages are over a restricted en-

semble and therefore do not affect the equilibrium thermo-
dynamics of the bulk solid.

For fixed p and T for the solid, the density p. and pressure
p. of the droplets are shown as a scatter plot in Fig. 7(a). The
averaged curve [green (light gray) line in Fig. 7(a)] has a
locus, p. vs p., which is distinct from the EOS of the equi-
librium solid [blue (dark gray) line in Fig. 7(a)].

A plot of the scaled excess pressure p with the mean
droplet density p,. [Fig. 7(b)] for a fixed particle number n,
shows a prominent nonlinear feature akin to a van der Waals
loop in the equilibrium pressure-density curve at a typical
first-order transition, say, between gas and liquid. The two

FIG. 8. (Color online) Snapshots for 7=0.4 and p=0.92 at 0,
100, 150, 200, 250, 300, 350, 360, and 370 MD steps [(i)—(ix)] of a
portion of our simulation cell showing the dynamics of two chosen
droplets. The colors red (light gray) and blue (dark gray) denote
+ve and —ve excess pressures, respectively. Note that stringlike
droplets have Ap.>0, while relatively compact droplets have Ap,.
< 0. Note also the dissociation of a (red/light gray) stringlike drop-
let into a (blue/dark gray) compact and a smaller (red/light gray)
stringlike droplet [(iv) — (v)].
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FIG. 9. (Color online) The fluctuation-response ratio y shown as
a function of n,. for droplets with +ve (filled circles) and —ve excess
pressures; p is independent of n., with an intercept «7. We verify
this by plotting the intercept versus 7 for all the droplets (inset) for
T=0.5. The filled and unfilled squares correspond to the +ve and
—ve p branches, respectively.

branches in the curves shown in Fig. 7(b) correspond to
compact (liquidlike) and stringlike (glassy) droplets as dis-
cussed above. Integrating this pressure-density curve at fixed
n, gives the work done by thermal fluctuations in creating
a droplet of size n.. We find that at low temperatures, large
excess pressure tends to convert compact droplets to stringy
ones and vice versa (Fig. 8) over a characteristic relaxation
time. Droplets are also seen to dissociate into distinct string-
like and compact fragments with appropriate values for
the excess pressure. Quite analogous to the familiar gas-
liquid transition, this metastable “van der Waals loop” van-
ishes at higher temperatures beyond a “critical point” which
exists somewhere in the range 7=0.9-1.0. Above this
temperature the distinction between compact and stringlike
droplets disappears. We find that the generalized susceptibil-
ity G obtained from the slope of dp./dp. is proportional
to fluctuations of the density <5p(2,)=((pc— p.)?), where (---)
denotes a time average. The fluctuation-response ratio 7y
=(8p>n./ (p2dp./ 3p,) should be independent of n,, with an
intercept which should be proportional to the temperature 7.
This is shown in Fig. 9 where y for the +ve and —ve p
branches in Fig. 7(b) are shown separately using filled and
open circles, respectively. While vy is indeed a constant, the
intercept plotted versus T for all the droplets for the two
branches is approximately linear in 7. This is the metastable
analog of the equilibrium fluctuation-response relation dis-
cussed above, suggesting that the droplets are fluctuations
from a metastable state describable by a free-energy func-
tional.

C. Density correlations

We now study density correlations within each droplet to
further characterize compact and stringlike droplets. Note
that these droplets have a finite lifetime 7(n.); a plot of 7 vs
n,. for fixed p and 7 is shown in Fig. 10. To obtain 7, we have
collected the times each constituent particle continues to be-
long to a droplet. As the droplet fluctuates, particles from the
periphery continuously attach to and detach from the droplet
leaving a set of particles at the core intact. This is clear from

PHYSICAL REVIEW E 82, 041115 (2010)
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FIG. 10. Lifetime 7 vs n, for droplets at p=0.92 and 7=0.4.
Larger droplets survive longer. Note that the error bars, which are
approximate and same for all the points, show the typical variation
in lifetimes obtained from the width of the distribution of 7. Errors
are difficult to estimate for droplets with large n, due to the lack of
sufficient statistics and may be larger than shown. The dashed
straight line is a guide to the eye.

the snapshots shown in Fig. 4. We define 7 as the persistence
time of these core particles. Our analysis for different p’s
shows that the dense stringy clusters live longer. To obtain
good statistics for the equal and unequal time density corr-
elators, we therefore need to look at large and long-lived
droplets. Figure 11 shows the equal time density correlations
g(r). First of all g(r)’s in both branches show features asso-
ciated with an amorphous structure with a first peak value
which is much reduced from that of the full solid. Note that
while the low-density droplets are more liquidlike with
smoothened peaks, the high-density droplets are glassy
showing a prominent split second peak. We have also com-
puted the self-part of the Van Hove correlation functions
G,(1)=(p(0,0)p(0,1)). This is shown in Fig. 12. While G,(z)
relaxes exponentially for the low-density liquidlike droplets,
the high-density droplets show non-Debye relaxation. We
show that as the lifetime of the droplets increases, a promi-
nent B-relaxation-type plateau begins to develop. This, how-
ever, gets cut off by the finite lifetime of the droplets in the
solid.

FIG. 11. Typical pair distribution function g(r) for particles in
nonaffine droplets at p=0.88 and 7=0.40, drawn separately for
Ap.>0 (solid line) and Ap,<0 (dashed line). g(r) for the high-
density droplet has been shifted by 0.5 to make it visible. Both
g(r)’s show less crystalline structure than the solid (inset).
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FIG. 12. The self-part of the Van Hove function G(z) as a
function of time for the same droplets whose g(r) is given in Fig.
11. Note the prominent plateau for the high-density droplets, which
is cut off by the finite lifetime of the droplet. Inset: development of
the plateau in G(¢) with the lifetime of the droplets over which
G,(1) is averaged [lines with mean 7 from 50 (bottom) to 200 (top)
X 1073 LJ units].

IV. DISCUSSION AND CONCLUSIONS

We have shown in this paper that the excitations of an
equilibrium solid at high temperatures can be interpreted as
arising from a distribution of nonaffine droplets whose mean
size and lifetime increase as one approaches the liquid-solid
phase boundary. These droplets are characterized by density,
internal pressure, and shape. The shape of the droplets
crosses over from being compact to stringlike as the density
increases. The observed relationship between the local pres-
sure and density of the droplets in the form of an “equation
of state” and the fluctuation-response relation of the local
density strongly suggests that these nonaffine droplets arise
as fluctuations from a metastable liquid or glass. Consistent
with this we find that the high-density droplets have a g(r)
and a Van Hove function resembling that of glasses. Our
main concern in this paper has been to provide evidence that
droplet fluctuations of metastable liquid or glass exist in a
crystalline solid and to characterize their shapes and local
thermodynamic parameters. How do these fluctuations influ-
ence the properties of solids? We hope to systematically
study and answer this question in the future. Some of the
specific areas where the impact of droplet fluctuations may
be observable are discussed below.

PHYSICAL REVIEW E 82, 041115 (2010)

For example, we wonder whether our results hint at the
presence of a metastable liquid-glass critical point. While
Fig. 7(b) is certainly suggestive, we must remember that the
size of the nonaffine droplets is typically small with n,
~ 100 even for the largest droplets. A careful finite-size scal-
ing analysis needs to be carried out in order to determine
whether this feature survives for larger droplet sizes. The
nature of the melting transition in the two-dimensional LJ
system remains unclear in spite of being the subject of many
investigations [9,19-21] over several decades. Early simula-
tions obtained first-order liquid-solid and gas-solid transi-
tions with prominent coexistence regions [9,19]. While at
low temperatures near the triple point (7=0.4), one obtains
a first-order melting transition [19]; at higher temperatures
(T~ 1) one obtains a much reduced coexistence region [20]
with some characteristics of continuous [22] melting. At still
higher temperatures, the melting transition appears to be un-
equivocally driven by dislocation unbinding [21]. Exactly
how and at what temperature one obtains this change in the
nature of melting is, as yet, unknown. While we do not ad-
dress this question in the present paper, we speculate that
droplet fluctuations may have a strong influence on the dy-
namics of melting. The presence of metastable critical points
is known to crucially influence the dynamics of first-order
transitions, e.g., the important problem of protein crystalliza-
tion [23,24].

We expect these nonaffine droplets to also play an impor-
tant role in the rheology of solids under applied stresses; our
preliminary work in this direction is consistent with this ex-
pectation. We would also like to inquire whether it is pos-
sible to observe these droplet excitations in a real experimen-
tal situation in two and three dimensions. Such excitations, if
they exist, may be difficult to disentangle from the contribu-
tions coming from a density of dislocations and grain bound-
aries. Perhaps direct visualization of droplet fluctuations in
colloidal crystals is the best way to study these effects [25].
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