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External-noise-driven bath and the generalized semiclassical Kramers theory
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We address the issue of a system that has been tacitly made thermodynamically open by externally driving
the associated heat bath in an attempt to gain better insight regarding many physical situations that are akin to
this problem. This work embodies the study of the quantum effects in the rate of decay from a metastable state
of a Brownian particle which is in contact with a correlated noise-driven bath. We do this by initiating from a
suitable system-reservoir model to derive the operator-valued Langevin equation. This further leads us to the
corresponding c-number analog that includes quantum effects in leading order. Suitable mathematical treat-
ment culminates in the quantum Fokker-Planck equation, the solution to which yields the rate expression.

Finally, we put this to thorough numerical analysis.
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I. INTRODUCTION

Since Kramers proposed the diffusion model for chemical
reactions in terms of the theory of the Brownian motion in
phase space [1], the model and several of its variants became
ubiquitous in many areas of physics, chemistry, and biology
for understanding the nature of activated processes in classi-
cal [2-7], semiclassical, and quantum systems [8—11] in gen-
eral. These have become the subject of several articles
[12-16] and monographs [17,18] in the recent past. The ma-
jority of these treatments concern essentially with an equilib-
rium thermal bath at a finite temperature that simulates the
reaction coordinates to cross the activation energy barrier
and the inherent noise of the medium originates internally.
This implies that the dissipative force, which the system ex-
periences in the course of its motion in the medium, and the
stochastic force arising on the system as a result of the ran-
dom impact from the constituents of the medium arise from
a common mechanism. It is therefore not difficult to antici-
pate that these two entities get related through a fluctuation-
dissipation relation [17,18]. These systems are generally
classified as being thermodynamically closed, in contrast to
the systems driven by external noise(s) in nonequilibrium
statistical mechanics [19]. However, when the reservoir is
modulated by an external noise, it is likely that this relation
gets affected in a significant way. The modulation of the
reservoir crucially depends on its response function and this
makes us to further investigate a connection between the
dissipation of the system and the response function of the
reservoir due to external noise(s) from a microscopic point of
view.

In the present paper, we explore the above connection in
the quantum regime, in the context of activated rate pro-
cesses, when the reservoir is modulated by an external sta-
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tionary Gaussian noise. Specifically, we would like to ex-
plore the role of reservoir response as a function of external
noise on the system dynamics and to calculate the general-
ized Kramers’ rate for the steady state of this nonequilibrium
open system within the framework of the quantum Langevin
equation.

The last few decades have witnessed an extensive study
by several research groups [11,20-25] on the problem of the
quantum Langevin equation for a thermodynamically closed
system due to its frequent appearance in the course of mod-
eling of various phenomena, particularly in the field of laser
and optics [20-23], signal processing [24,25], noise-induced
transport [26-29], spectroscopy, [30-33] etc. In the recent
years, the subject has gained considerable interest due to a
vast experimental progress which allows for the tailoring and
manipulation of quantum matter. In mesoscopic physics, for
instance, superconducting circuits have been realized to ob-
serve coherent dynamics and entanglement [34]. A similar
advancement has been achieved on molecular scales with the
detection of interferences in wave-packet dynamics and the
control of population of the specific molecular states [35].
Typically, these systems are in contact with a large number
of environmental degrees of freedom, for example, electro-
magnetic modes of the circuitry or residual vibronic modes
which give rise to decoherence and relaxation [36].

For microscopic description of additive noise and linear
dissipation that are related by fluctuation-dissipation relation,
the quantum-mechanical system-reservoir linear coupling
model is well established. The standard treatment of quan-
tum dissipation based on linear interaction between the sys-
tem and the reservoir was put forward in early 1980s by
Caldeira and Leggett [37] which was widely applied in sev-
eral areas of condensed matter and chemical physics. Later a
number of interesting approaches to quantum theory of dis-
sipative rate processes such as dynamical semigroup method
for evolution of density operator were proposed in the 1970s
to treat quantum nonlinear phenomena with considerable
success. The method which received major appreciation in
the wide community of physicists and chemists is the real-
time functional integrals [9]. Notwithstanding the phenom-
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enal success of the functional-integral approach, it may be
noted that compared to the classical Kramers’ theory, the
method of functional integrals for the calculation of escape
rate rests on a fundamentally different footing. While the
classical theory is based on the differential equation of mo-
tion for evolution of the probability distribution function of a
particle executing Brownian motion in a force field, the path-
integral method relies on the evolution of quantum partition
function of the system interacting with the heat bath consist-
ing of harmonic oscillators.

The standard approach to open quantum systems consti-
tutes obtaining the reduced dynamics of the system of inter-
est by tracing out the reservoir degrees of freedom from the
conservative system-plus-reservoir dynamics. Alternatively,
the program can be carried out through path-integral expres-
sions for the reduced density matrix [38]. The distinguishing
feature of the dissipative path integrals is an influence func-
tional which describes self-interactions nonlocal in time.
Hence, a simple quantum-mechanical analog to the classical
Langevin equation is not known. Commonly used equations,
such as the master or Redfield equation [39] in the weak-
coupling case and the quantum Smoluchowski equations
[40], rely on a perturbation theory. The recent work of
Ankerhold er al. [41] analyzes the case of the quantum
Smoluchowski equation in the strong fiction regime at low
temperatures starting from an exact path-integral expression.
In intermediate domain, the quantum Monte Carlo tech-
niques have been posited for tight-binding systems, but
achievable propagation times are severely limited by the dy-
namical sign problem [42,43]. Recently, it has been shown
that the influence functional can be exactly reproduced
through stochastic averaging of a process without explicit
memory [44,45]. The formulation turned out to be particu-
larly efficient for weak to moderate friction and low tempera-
tures [45,46], a regime which lies beyond the validity of the
Redfield equations, on the one hand, and beyond the appli-
cability of the Monte Carlo schemes, on the other [42,43].
For nonlinear systems, the main objection of the Monte
Carlo simulation is that the convergence of the stochastic
average for relatively long time is still an unsolved problem,
barring some progress for spin boson systems, by using hi-
erarchic approaches to quantum memory terms [47]. A reli-
able and efficient method to tackle the dissipation in quan-
tum domain is still missing. In this paper, we address the
issue of the long lasting problem of quantum dissipative dy-
namics of a thermodynamically open system, where the as-
sociated heat bath is not in thermal equilibrium, implement-
ing the standard classical statistical mechanical tools that are
particularly used in the context of noise-induced transport.

The physical situation that we consider here is the follow-
ing: at r=0, the reservoir is in thermal equilibrium with the
system, while at 7=0,, an external noise agency is switched
on to modulate the heat bath [48,49]. This modulation makes
the system thermodynamically open. Using a standard
method, we then construct the operator Langevin equation
for an open system with linear system-reservoir coupling.

To proceed with the discussion in an appropriate perspec-
tive, we begin with the note that in an earlier work [50], Ray
Chaudhuri et al. studied the dynamics of a metastable state
of a system linearly coupled to a heat bath which is driven by
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an external noise in the classical regime. The work [50] con-
cerns a derivation of the generalized Langevin and the cor-
responding Fokker-Planck equations to study the escape rate
from a metastable state in the moderate to large damping
regime. In the present work, we have focused on the dynam-
ics of the corresponding situation in a quantum-mechanical
context. The aim of the present paper is thus to explore the
associated quantum effects in the decay rate of a particle
(from a metastable state) which is in contact with a corre-
lated noise-driven bath. However, an exploration in the quan-
tum regime has been done [51] with the bath in equilibrium
where a c-number generalized quantum Langevin equation
has been derived. The present work is different in the sense
that it is quantum mechanical as well as the bath is being
externally modulated via a fluctuating force field.

The layout of the paper is as follows. In Sec. II, starting
from a system-reservoir model, we arrive at the operator-
valued Langevin equation for an open quantum system
where the associated heat bath is modulated by an external
Gaussian noise with arbitrary decaying memory kernel.
Then, we obtain the c-number analog of this operator equa-
tion. In Sec. III we calculate the quantum correction terms
and we derive the quantum Fokker-Planck equation in Sec.
IV. Section V comprises of the calculation of escape rate by
solving the steady-state Fokker-Planck equation incorporat-
ing the quantum effects. The dependence of the escape rate
on various system parameters has been discussed in Sec. VI.
The paper is concluded in Sec. VII.

II. MODEL: LANGEVIN DESCRIPTION OF QUANTUM
OPEN SYSTEM

To start with, we consider a particle of unit mass coupled
to a reservoir comprised of a set of harmonic oscillators with
characteristic frequencies {w;}. Initially (¢=0), the system
and the reservoir are in thermal equilibrium at temperature 7.
At t=0,, an external noise is switched on which modulates
the bath. This is described by the Hamiltonian

P S :
H= g # V@ 2 5+ o= ed) [+ B (1

j=1

where ¢ and p are the coordinate and momentum operators
of the system and {)Ej, ﬁj} are the set of coordinate and mo-
mentum operators for the bath oscillators. The masses of the
bath oscillators are assumed to be unity for convenience. The
system particle is bilinearly coupled to the bath oscillators
through the coupling constant c;. The last term in Eq. (1),
I:I,-sz K;%;€(t), represents the fact that the bath is driven by
an external noise €(¢), which is assumed to be stationary and
Gaussian. €(7) is a classical noise which obeys the statistical
properties that the mean of €(r) is zero and the two-time
correlation function is a decaying function of time, i.e.,

(e(1)=0

and (e(r)e(t')y=2Dy(t—1"). (2)

In Eq. (2), the average is taken over each realization of €(z)
and ¢ is some arbitrary decaying memory kernel. V(§) is the
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potential operator. The coordinate and momentum operators
satisfy the standard commutation relation,

[¢.p]=ifi
and [-xAj,ﬁk] = ih5jk9 (3)

and D is the strength of the external noise €(r). Using the
standard procedure we eliminate the bath variables in usual
manner [17,52] to obtain the operator-valued Langevin equa-
tion for the system variables as

é:ﬁ,
p=-V'I[§0]- f dr' y(t = t)p(t') + ) + w01, (4)
0

where ] is the unit operator and

() =- f dt' o(t—1")e(t’), (5)
0
N

wt) = 2 ngw]g cos wjt, (6)
j=1
N
j=1

and 7() is the internal thermal noise operator given by

N
5.0
)= cjwjz{ [%;(0) = ¢;4(0)]cos w;t + Msin wjt} ,
J=1 wj

(8)

with the statistical properties

(7(1))s=0 9)

and
1
§<f7(t) 7t") + 9(e") (1) os

N
I ho,
== Fotho, coth(—“’L)cos olt—1").  (10)
24 2ksT

At this juncture we wander a bit from the usual track and
highlight the features of (). Several factors, like the normal
mode density of the bath frequencies, the coupling of the
system with the bath, the coupling of the bath with the ex-
ternal noise, and the external noise itself, determine the sta-
tistical properties of 7(z). A scrutiny of Eq. (5) reveals the
familiar linear relation between the polarization and the ex-
ternal field with 7r(¢) and €(r) playing the former and the
latter roles, respectively. With this in view, one may envisage
o(r) as a response function of the reservoir due to external
noise €(z). Although 7(z) is a forcing function stemming out
from an external noise, it has a difference from a direct driv-
ing force acting on the system, and this aspect is clearly
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borne out by the mathematical structure of (). This subtle
difference originates from the actual nature of the bath prop-
erties (rather than system characteristics, as is traditionally
seen), and this is clearly reflected in relations (5) and (7).

It is important to mention that the operator Langevin
equation [Eq. (4)] contains both—an internal noise 7(r) and
the dressed noise m(r) due to the modulation of the bath by
the external noise €(¢), and thus resembles a quantum Lange-
vin equation with an external field. This type of work has
already been reported in literature [53]. In the absence of any
external modulation, the above quantum Langevin equation
boils down to the standard quantum Langevin equation
which applies to an equilibrium thermal bath and has already
been discussed in a comprehensive paper [14].

Here, (--)ps implies quantum statistical average on the
bath degrees of freedom and is defined as

~ Hp
Tr[O exp(— k_T>]
B

<é>QS: H (11)
Tr{exp(— k_l;")J
B

for any bath operator é()ej, p;) where

N 2

p;i 1, .

HB=2{—2L+§w]2»(xj—ch)2] at r=0. (12)
J=1

At this juncture we explore an alternative possibility that
arises out of the physical situation where we could have re-
defined Eq. (8) by an alternative noise term {(z) as

- 5,(0)
=2, cjwf{)ﬁj(O)cos ot + %sin wjt}. (13)

J=1 J

This would lead to the modification of the Langevin equation
[Eq. (4)] to the form

q=p.

p=-V'040]- f dt' Yt —1")p(e") + L) = Y0)§(0) + m(0)].
0

(14)

We note that the above equation is equivalent in form with
Eq. (2.10) of Ford and O’Connell [15]. In this case, the quan-

tum statistical average of Z(t), that is, (2(1‘))QS=O, provided
we choose to work with an initial bath distribution of the
form

N T .2
HB=2|:I—)2L+%CU]2~AJZ<:| at 1=0, (15)
j=1
that is, to say that the bath remains in equilibrium in the
absence of the system. However, in the current formulation
we have addressed the problem tracing the path as suggested
in [52] and have chosen to work in a situation where the bath
is in thermal equilibrium in the presence of the system. The
reason for this choice for us, in the present context, is obvi-
ated by our focus to explore the fluctuation induced barrier
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crossing dynamics of the Langevin particle rather than on its
equilibration. Additionally, we would like to point out that
we are neither looking at the present problem as an initial
value quantum Langevin equation nor we are making any
attempt to explore how the equilibration takes place [54],
rather we try to envisage the barrier crossing dynamics in the
high-temperature quantum regime. Had we visualized this as
an initial value problem, we would have adopted the idea as
put forth in [15]. As a consequence we have incorporated the
term ¥(¢)4(0) in our noise term [Eq. (8)] so that Egs. (9) and
(10) remain valid throughout. For a detailed review on this
aspect we refer the reader to Chap. 3 of Ref. [17].

Let us carry out a quantum-mechanical averaging of the
operator equation [Eq. (4)] to get

(@o= (Do (16)

<15>Q=—<V’[é(t)]>g—<f dt’y(t—t’)ﬁ(t’)>

0
+(7(1)g + (1), (17)

where the quantum-mechanical average (- +), is taken over
the initial product separable quantum states of the particle
and the bath oscillators at =0, |¢{|a;)|a,): - |ay)}). Here,
|@) denotes any arbitrary initial state of the system and {|aj)}
corresponds to the initial coherent state of the jth bath oscil-
lator. (7(t)), is now a classical-like noise term, which, be-
cause of quantum-mechanical averaging, in general, is a non-
zero number and is given by

N

(D)o = E |:Cjw_,2'{ [(Je,(o))Q - Ci<é(0)>Q]COS w;t

j=1
p(0
+(p( ) sin wjt}]. (18)
wA
i
To realize (7(1)), as an effective c-number noise, following
Ray and co-workers [28,29] we now introduce the ansatz
that the momenta (p;(0)), and the shifted coordinate

[(£;(0))p—c{G(0))o] of the bath oscillators are distributed
according to the canonical distribution of Gaussian form

B <ﬁ,(0)>2Q + wlz'[<)2j(0)>Q - Cj<6?(0)>Q]2

P;=N exp

1
(19)

Ansatz (19) is a canonical thermal Wigner distribution func-
tion for a shifted harmonic oscillator that can be obtained as
an exact solution of Wigner equation [55] for a harmonic
oscillator and is always a positive-definite function. The
merit of using such a distribution is that it retains its property
of a pure state nonsingular distribution even at 7=0. How-
ever, in the present work we deal with situations far from the
low-temperature regime. Additionally, the distribution of the
quantum-mechanical mean values of the bath oscillators re-
duces to the classical Maxwell-Boltzmann distribution in the
thermal limit. This also gives us the flexibility to avoid op-
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erator ordering as in Egs. (9) and (10) to derive the noise
properties of the bath oscillators.
Thus, for any quantum-mechanical mean value of opera-

tor <6>Q which is a function of bath variables, its statistical
average (-**)g is

<<é>Q>s=f [<6>ijd{wjz'[<)ej(0)>g - Cj(‘?(o»Q]}d(ﬁj(O»Ql
(20)

In Eq. (19) 71j(w)) is the average thermal photon number of
the jth bath oscillator at temperature 7 and is given by

ho; -l
ﬁj(wj)=[exp(g7{>—l} ) (21)

The distribution P; given in Eq. (19) and the definition of
statistical average imply that the c-number noise (7(1))
given by Eq. (18) must satisfy

((1)g)s=0, (22)

N
s 1 ho; ,
Ut ) o)s= > ch-wjz»ﬁwj coth<—L>cos wt-1").

25 2UegT

(23)

To complete the identification of Egs. (16) and (17) as a
generalized Langevin equation, we must establish the condi-
tions on the coupling coefficients on the bath frequencies and
on the number N of bath oscillators that will ensure that (z)
is indeed dissipative and ¢(7) is genuinely finite. A sufficient
condition for (f) to be dissipative is that it is positive defi-
nite and that it decreases monotonically with time. These
conditions are achieved if N— oo, and if c?wf, CjWjK; and w;
are sufficiently smooth functions of j [19]. As N— 0, one
replaces the sum in Egs. (6) and (7) by integrals over w,
weighted by the density of states p(w) and multiplied by the
coupling functions ¢(w) and (w). The aforesaid conditions
may be achieved in a variety of ways [56], one of the estab-
lished choices being the following [57]. Thus, to obtain a
finite result in the continuum limit, the coupling functions
cj=c(w) an;l_Kj=K(w) are chosen as c(w)=cy/(w\7,) and
r(w)=kyw\ T, respectively. Consequently, y(r) and ¢(r) re-
duce to the following form:

2 o
Y1) =0 f dwp(w)cos of (24)
TeJo
and
(1) = cokof dowwp(w)sin wt, (25)
0

where ¢, and «, are constants and w.=1/7. is the cutoff
frequency of the bath oscillators. 7, may be regarded as the
correlation time of the bath and p(w) is the density of modes
of the heat bath which is assumed to be Lorentzian,
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2 1

w=—"—">5"5- 26
ple) 77w+ 7'22) (26)
The assumptions just stated above are very much akin to
those of the hydrodynamical modes in a macroscopic system
[58]. With these forms of p(w), c¢(w), k(w), y(t) and ¢(r)
take the following forms:

T

c

2
t r t
(1) = @exp<— —) = —exp(— —) (27)
TC TC TC
and

t
olr) = %exp(_ ;>, (28)
with F=c%. For 7,—0, Egs. (27) and (28) are reduced to
Y(@)=2I'8(r) and @(r)=2cokyd(t), respectively. The noise
correlation function [Eq. (23)] becomes

1T (~ h
(DA ghs= 5~ f dwfhe CO“‘(zkwT)
TcJo B

Xcos w(t—1")p(w). (29)

At this juncture, it is important to note that p; given by Eq.
(19) is a canonical Wigner distribution for a displaced har-
monic oscillator which always remains positive and contains
the quantum information of the bath. A special advantage of
using this distribution function is that it remains valid as a
pure state nonsingular distribution even at 7=0. Now, adding
V'({§)) on both sides of Eq. (17) we get the dynamical
equation for the system variable as

g(1) + f di' Y1 =1")q(t") + V'(q) = 9(t) + 7(1) + Qy,
0

(30)
with
Qy=V(g) —(V(@)). (31)

Here, we have written g=(g), and p=(p), for brevity and
n(t)=(7(1))o is a classical-like noise term. Now, one can
identify Eq. (30) as a c-number generalized quantum Lange-
vin equation for an open system where the bath instead of
being at thermal equilibrium is modulated by an external
noise €(f). The quantum Langevin equation is guided by the
c-number quantum noise 7(¢) and a dressed classical noise
7(t). Using Egs. (24) and (25), we obtain
dy(t) co 1

d " xr @(1). (32)
Equation (32) expresses how the dissipative kernel (¢) de-
pends on the response function ¢(z) of the medium due to the
external noise €(r). Since both the dissipation and the re-
sponse function depend critically on the properties of the
reservoir, and especially on its density of modes and its cou-
pling to the system and the external noise source, such a
relation for an open system can be anticipated intuitively. In
the succeeding discussions we will concern ourselves with
the consequences of this relation [see Eq. (52)] in light of the
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Langevin description in Sec. III and the imminent numerical
analysis of the full model potential.

III. QUANTUM CORRECTION TERMS

Referring to the quantum nature of the system in the
Heisenberg picture, we now write the system operators as

d=q+9q,

p=p+p, (33)

where ¢ and p are the quantum-mechanical mean values and
6G and 8p are the operators, and they are quantum fluctua-
tions around their respective mean values. By construction,
(64)9=(p)o=0 and they also follow the usual commutation
relation [ 84, p]=if. Using Eq. (33) and a Taylor-series ex-
pansion around ¢, one obtains

1
Ovlg.0=-2 ;V(”+”(q)<5é”>g, (34)

n=2 "t

where V"*(g) is the (n+1)" derivative of the potential
V(g). The calculation of Qy(g,7) depends on quantum cor-
rection factor (5§") which may be obtained by solving the
quantum corrections. Setting Eq. (33) in Eq. (4) one can
easily show that the quantum correction is given by

. 4 . 1
oq(1) + J dr' y(t—1")6G(t") + V"(q) 84(1) + 2 ;le(q)

0 n=2 "t
X(89" (1)) = 87(1), (35)

where 87(1) = 7(t)— 5(z).

We now consider that the system is confined in a har-
monic potential, i.e., V(q):%ﬂ%qz, where (), is the fre-
quency of the harmonic oscillator. Consequently, Eq. (35)
becomes

S+ f di' 1 —1')84(1") + Q564(1) = 7(r).  (36)

0

The solution of Eq. (36) is

1

8G(1) = hy (1) 54(0) + hy(1) 54(0) + f dt'hy(t—1")87(t"),

0
(37)

where h,(r) and h,(r) are the Laplace transformations of
R\ (s) and 7, (s), respectively, where

_ )
hl(S)_s2+S'7(s)+Q(2)’ (38)

1

() = 5————.
o(s) s2+s9(s) + Q(Z)

(39)
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with  (s) = J“’ Y(t)exp(— st)dt (40)
0

being the Laplace transformation of the frictional kernel (z).
Squaring Eq. (37) and taking the quantum statistical average,
we obtain

(847 (1))gds = (D847 (0))g)s + M3 (D8P (0))g)s
+ hy (D)h(1){{[63(0) 3p(0) + 55(0) 54(0) D o)s

t '
+ 2f dt’f di"hy(t =t )hy(t —1")
0 0

X{(67(t") 67(1") o)s. (41)

A standard choice of initial conditions corresponding to
minimum uncertainty state is

20y = T s
(6G7(0))o = 200 (6p(0))g = 5
(64(0)3p(0) + 3p(0)63(0))p = . (42)
From the definitions of /,(7) and h,(z), we have
R @3)
20 ) i
ho(r) = i f - hy(s)exp(st)ds. (44)
20 ) i

Using the residue theorem, one can easily show that for an
Ohmic dissipative bath, which leads to y(r)=2I"8(¢), and in
the underdamped region (Qy>1T")

r
hy(t) = exp(- Ft){cos Wt + —sin wt |, (45)
W

1
hy(1) = exp(— I't)—sin w1, (46)
W)

where @, == VQj—T"2 Now for the Ohmic dissipative bath,
the double integral in Eq. (41) can be written as

2 J dr' f t dt"hy(t = t")hy(t = 1"){(87(t") 67(1")) o)
0 0

or (™ how ! v
=— | dow|fwcoth dt’ dt”
7™ Jo 2kgT ) Jy 0

sin w(t—1")

Xexp[-I'(z—1")]
1

sin w(t—1")

Xexp[-T'(t-1")] cos w(t' — f”)]

|

or (~ fhw
=— | dwhw coth
' 0 szT
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sin w7 | |2

1 - e cos wt+ (I - iw)
i

X , (47
wz—Qé+2iFw “7)

where we have used Eq. (29) for quantum statistical average
of two-time correlation function of quantum fluctuation term
67)(r) and Eq. (26) for density of modes and 7.— 0 for the
Ohmic dissipative bath. From Eq. (47), we observe that the
time dependence of the mean fluctuations in displacement is
complicated, but it is reduced to a simple form for the time,
which is large compared to (I'"!) and is given by

<5A2> 2r foc d 2 th( hw ) 1
= CO .
T 7eq= " 0 i 2kpT ) (@? = Q) + 4120
(48)

In the weak damping regime (w>1"), one thus obtains Eq.
(49) from Eq. (48),

h hQ
8520 = —— th( - ) 49
(647 20, 207 (49)
In the classical limit, when kzT>7{),, the above expression
reduces to

kT
< 5qu>€ =7 2
q 9(2)

which is the classical equipartition theorem.

IV. QUANTUM FOKKER-PLANCK EQUATION

The classical Kramers’ equation forms the dynamical ba-
sis of our understanding of noise-induced escape rate from a
metastable state. It is interesting to note that although classi-
cal Kramers’ equation was proposed more than 60 years ago,
hopeful developments have been recently reported in the di-
rection of quantum-mechanical analog of Kramers’ problem.
Quantum Kramers’ theory of activated rate processes was
developed primarily within a path-integral framework. The
validity of the major results is restricted to activated tunnel-
ing regime. The formation of the quantum Langevin equation
as developed in the earlier section is now extended to formu-
late a generalized quantum Kramers’ equation which is valid
in the deep tunneling as well as in the non-Markovian regime
of a thermodynamically open system. We consider Eq. (30)
and rewrite V(g) as a sum of linear and nonlinear terms by
expanding it in a Taylor series, say, around the bottom of the
harmonic well at g=0 as

V(g) = V(0) + 3056° + V(q), (50)

where V)(g) is the total nonlinear contribution and Qf refers
to V"(0). With the help of Eq. (50), the Langevin equation
may be rewritten as

t

G+Q5q + f dt'y(t=1")q(t") = = Vylq) + Qy + n(t) + (7).
0

(51)

The two potential dependent terms on the right-hand side of
Eq. (51) can be evaluated as a function of time 7 so that we
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may treat the entire right-hand side including noise terms
&t)=n(t)+m(r) as an inhomogeneous contribution. We
therefore write

2

G+05q+ f dt' y(t—1")q(t") = Qr(t) + n(t) + 7(1),
0

or ij=—Q(2)‘1_f dr’y(t = 1")q(t") + Q7(1) + (1)
0

—f dr'o(t—1")e(t"), (52)
0

where Q;=0Qy—-V,. The Laplace transform of Eq. (52) al-
lows us to write a formal solution for the displacement of the
form

q(1) ={q(1)); + f di'H(t 1) (1) = 27,0 f dt'H(t

0 Co 0
' Ko ' '
—t"e(t")——7.| di'Hy(t—1t")e(t'), (53)
Co 0

where we have made use of relation (32) explicitly. Here,

(q(0) = x,(1q(0) + H(1)g(0) + G(1), (54)

G(1) =f di' H(t —t")Q4(t), (55)
0

with ¢(0) and ¢(0) being the initial position and initial ve-
locity of the oscillator, respectively, which are nonrandom
and

t

X, (=1 —Q%f H(t')dt' . (56)
0

The kernel H(z) is the Laplace inversion of

1

R p——
® s2+7(s)s+ﬂé

(57)

where ¥(s)=[gexp(—st) ¥(1)dt is the Laplace transform of the
friction kernel y(z) and

d’H(?)

H,(t) = 7

(58)

The time derivative of Eq. (53) yields

C](f)=<6](f)>s+f dt’Hl(t—r’)n(t’)—@Tcﬂéf dr'Hy(t

0 Co 0

—te(t') - ?ch dr' Hy(t—t")e(t'), (59)
0 0

where  (§(1))s = Hy(1)§(0) — Q3H(1)q(0) + g (1), (60)

with  g(1) = G(¢)
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dH
and H(t)=—1,

d&’H
Hi(t) = —~. 61
” 5(1) P (61)

Next, we calculate the variances. From the formal solution of
q(t) and v(#)[=¢(?)], the explicit expressions for the vari-
ances are obtained, which are given below,

(Tzq(f) =([q(1) = (g())s])s= Zf dtlH(tl)f 1 dtH(1,)
0 0

t

Ko 2 ?
X{n(t) (1)) + 2| — 7.0 f
Co

5l
dtlH(tl)f dnH(t)
0 0

X(e(t))e(ty)) + 2(@7'0)2][ dlez(fl)jtl dtH,(t,)
0

Co 0

K 2 t 1
X(e(tl)e(tz))+2(—07'c) Q) f dn,H(t)) f dtyHy(1,)
0

€o 0

X(e(t))e(ty)), (62)

Uiv(t) ={[v(t) = ((®)s]s= 2J dtlHl(tl)f | dt,H,(1,)
0 0
X{n(t)) (ty))

p 2 [t 4
+2<_OTCQ%) fdlel(h)f dt,H (t)){e(t))e(ty))
0

€o 0

Co

K 2t i
+2<—OTC> f dt1H3(t1)f dt,Hy(1,){e(t)) €(t,))
0 0

2 ‘ f
+2<?Tc> QéJ dtlHl(tl)f dtyH;(1)){e(t))€(ty)),
0 0

0
(63)

and  03,(1) = ([g(1) = {q(1)s][v (1) = W(D)sD)s = 365,(1),
(64)

where we have assumed that the correlation functions of the
noises 7(¢) and e(¢) are symmetric with respect to the time
argument and have made use of the fact that 7(r) and €(z) are
uncorrelated. Having obtained the expression for the statisti-
cal averages and variances, we are now in a position to write
down quantum Kramers’ equation which is a Fokker-Planck
description of probability density function P(q,v,t) of the
quantum-mechanical mean values of the coordinate and the
momentum operators of the particle. Assuming the statistical
description of the noise 7(r) and €(r) to be Gaussian, we
define the joint characteristic function P(u, p,f) where (¢, r)
and (v,p) are the Fourier transform pair of the variables.
Then, using the standard procedure, we arrive at the equation
of motion for probability distribution function P(u,p,?),

which is the inverse Fourier transform of ﬁ(,u,p,t),
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LD w4 d0lPlg0]+ 2T @)+ 00
7
- R0+ 2001 (g.0.0) + 0
v Jv
&*P
e (65)
where
J
7o) =< in ¥, (662)
Y(t)= Hl(;) l 1-05 f I dt’H(t')} +H (1),  (66b)
&10 0
~  —HOH, () + H; (1)
HOE 0 , (66¢)
1 1 !
NO =3 {— Q—%gmHz(r){ 1-03 fo H(r’)dﬂ}
+ H%(t)G(t)] , (66d)
) =) GO, 0] (66¢)
(1) = B0, (1) + )02, () + 2620, (661)

¢(t) =0 zv(t) + }’(t)ozv(t) + Q(z)(t)oz (1) - 012,0([)7
q q 99

where V(g) is the renormalized potential linearized at ¢=0,
the frequency being ﬁ%(t) as given in Eq. (66¢). The Fokker-
Planck equation [Eq. (65)] is the quantum-mechanical ver-
sion of classical non-Markovian Kramers’ equation for an
open system and is valid for arbitrary temperature and fric-
tion. It is interesting to note that due to its explicit depen-
dence on Q(¢), the quantities g(z), (), and N(¢) manifestly
include quantum effects through the nonlinearity of the sys-
tem potential. In classical limit, (kzT> 7)), ¢(¢) and iz)
can be obtained by applying classical fluctuation-dissipation
relation in Egs. (66f) and (66g).

To proceed further it is worth noting that the classical-like
stochastic differential equation [Eq. (52)], and hence, the
generalized quantum Fokker-Planck equation [Eq. (65)] con-
tain essential quantum features through the term 7(r) which
represents the quantum noise of the heat bath and another
term Qy which essentially arises due to the nonlinear part of
the potential. The €(f)-containing term in Eq. (52) represents
the fact that the bath is modulated by an external noise and
consequently the system is acted upon by an effective noise,
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W(t):—Jldt’gD(t—t’)e(t').

0

At this point it is interesting to note the form of Eq. (65) for
a harmonic potential, for which Q;(r)=0. In this case, Eq.
(65) reduces to the form

P dp ~,  dP J sP
P v—aq +Q4(1)q P +\ (1) PR (vP) + ¢(1) 02
#P
DS (67)

We now discuss the asymptotic properties of ¢(z) and i(r)
which in turn are dependent on the variances 0"21(1(1‘) and
olvu(t) as t— o since they play a significant role in our fur-
ther analysis that follows. From Egs. (62) and (63) we may
write

Uzq(l) = UZE;)(I) + GZEIG) (1)

and o2, (0) = 20(1) + 21),

where i denotes the part that corresponds to the internal noise
7(t) and e corresponds to external noise €(r). Since the av-
erage velocity of the oscillator is 0, as t— %, we see from Eq.
(60) [with g(r)=0 for harmonic oscillator] that H(¢) and
H,(¢) must be 0 as r—c. Also, from Eq. (54) [with G(z)
=0 for harmonic oscillator] we observe that the function
X,(1) must decay to zero for long time. Hence, from Eq. (56)
we see that the stationary value of the integral of H(r) is
1/Q2, ie.,

* 1
J H(t)dt = E (68)

0 0

Now for harmonic oscillator, oﬁfj)(t) and a'iff)(t) of Egs. (62)
and (63) can be written in the form [see Eq. (49)]

o5 (=2 J diyH (1) J i) e 7))
0 0

t 2
—Qﬁ(fo dt'H(t’)) } (69)

and 0'51(;[)([) = 2J dtlHl(tl)f | dtH (1) n(t)) 7(t,))
0 0

1 Q)
= Eﬁﬂo coth( 2kBT)[1 —Hi(1) - Qé[—ﬂ(t)].
(70)
From the above two expressions [Egs. (69) and (70)], we see
that
4 h Q)
o2 (o) = — th( 0), 71
w () =50 0 ey 7
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02 (o0) = —mo coth( L ) (72)

2kyT

The classical limit of Eq. (71) is 0'2’)(00) kBT/Q2 (kgT
>H(),), which is the classical equlpartltlon of energy, and
the classical limit of Eq. (72) is 0%1()’)(00) kgT. It is important
to note that these stationary values are not related to the
intensity and correlation time of the external noise.

We next consider the parts oﬁée)(t) and olv,(f)(t) due to the
presence of external noise. The Laplace transform of Eq.
(53) yields the expression

g(s) = (q(s))s = H(s) 7(s) - —T O3H(s)&(s)
Co
_ 50 2H(s)Es), (73)
Co
where
(q(s))s= 1 Qﬁ@ q(0) + H(s)¢(0). (74)

From the above equation [Eq. (73)], we can calculate the
variance o'zq in the Laplace transformed space which can be
identified as the Laplace transform of Eq. (62). Thus, for the

part 0'2(;), we observe that oéq (s) contains terms like

[(Kko/ co) T.Q2H(5)]X(@(s)). Since we have assumed the sta-
tionarity of the noise €(r), we conclude that if ¢(0) exists
[where c(1—t")=(e(t)e(t'))], then the stationary value of
o'(zmg)(t) exists and becomes a constant that depends on the
correlation time and the strength of the noise. Similar argu-
ment is also valid for o‘iff)(t). Now summarizing the above
discussion, we note that (i) the internal noise-driven parts
o'fm(t) and ofv(t), that is, o'(zig)(t) and o‘iff)(t), approach the
fixed values which are independent of the noise correlation
and intensity at 17— o0 and (ii) the external noise-driven parts
of the variances also approach the constant values at the
stationary limit (r— o) which are dependent on the strength
and the correlation time of the noise. Hence, we conclude
that even in the presence of an external noise, the coefficients
of the Fokker-Planck equation [Eq. (67)] do exist asymptoti-
cally and we write its steady-state version for the asymptotic
values of the parameters as

IP IP > P #P
—v£+92q(9— + 7—(vP) () T+ Yl )ﬁ =0,

(75)

where v, Qg, ¢(), and () are to be evaluated from the
general definition [Egs. (66a), (66¢), (66f), and (66g)], re-
spectively, for the steady state.

The general steady-state solution of the above equation

[Eq. (75)] is
]7 (76)

P ( )_ l |: U2 Q—
(0= 7P 2p, T 2Dy + =)
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where Dj= @ (77)

and Z is the normalization constant. The solution [Eq. (76)]
can be verified by direct substitution. The distribution [Eq.
(76)] is not an equilibrium distribution. This stationary dis-
tribution for the nonequilibrium open system plays the role
of an equilibrium distribution of the closed system which
may, however, be recovered in the absence of any external
noise term.

Some further pertinent points regarding the rate theory for
nonequilibrium systems may be put in order. It is well known
that the equilibrium state of a closed thermodynamic system
with homogeneous boundary conditions is time independent.
The open, that is, the driven system, on the contrary, may
demonstrate complicated spatiotemporal structures or may
settle down to multiple steady states. The external noise may
then include transitions between them. It is, however, impor-
tant to realize that these features originate only when one
takes into account the nonlinearity of the system in full, and
the external noise drives the system directly. Second, in most
of the open nonequilibrium systems, the lack of detailed bal-
ance symmetry gives rise to several problems in the determi-
nation of the stationary probability distribution for multidi-
mensional problems. At this juncture, three points are to be
noted. First, for the present problem, we have made use of
the linearization of the potential at the bottom and at the top
of the barrier (as is done in Kramers’ development [12] and
in most of the post-Kramers’ one [1]) which precludes exis-
tence of the multiple steady states. Second, the external noise
considered here drives the bath rather than the system di-
rectly. Lastly, the problem is one dimension. Thus, a unique
stationary probability density, which is an essential require-
ment for the mean fast passage time of flux over population
method (as in the present case) for the calculation of rate and
which is readily obtainable in the case of closed nonequilib-
rium system, can also be obtained for this open nonequilib-
rium quantum system.

V. KRAMERS’ ESCAPE RATE

We now turn to the problem of decay of a metastable
state. To this end we consider as usual a Brownian particle
moving in a one-dimensional double-well potential V(g). In
Kramers’ approach [1], the particle coordinate ¢ corresponds
to the reaction coordinate and its values at the minimum of
the potential V(g) denote the reactant and product states. The
maximum of V(gq) at g,, separating these states corresponds to
the activated complex. All the remaining degrees of freedom
of both the reactant and solvent constitute a heat bath at a
temperature 7. Our object is to calculate the essential modi-
fication of Kramers’ rate in the semiclassical regime when
the bath modes are perturbed by an external random force
under the condition that the system has attained a steady
state.

Linearizing the motion around the barrier top at g=g;, the
Langevin equation [Eq. (52)] can be written as

y=v,
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5= 03— [y )+ 0+ 70, 9
0

where y=¢—gq; and the barrier frequency le, is defined by
V(y) =V, - 30% Q>0 (79)

Correspondingly, the motion of the particle is governed by
the Fokker-Planck equation [Eq. (67)],

P i ~  IP d &’P
E =— vﬁ - le,(t)ya—v + 'yb(t)g(vP) + d)b(t)ﬁ_vz
PP
+ wb(t) ay v ) (80)

where the subscript b indicates that all the coefficients are to
be calculated using the general definition [Egs. (66a)-(66g)]
for the barrier top region.

It is apparent from Egs. (75) and (80) that since the dy-
namics is non-Markovian and the system is thermodynami-
cally open, one has to deal with the renormalized frequencies

ﬁo and ﬁb near the bottom and the top of the well, respec-
tively. Following Kramers’ [1], we make the ansatz that the
nonequilibrium steady-state probability, P,, generating a
nonvanishing diffusion current j across the barrier, is given
by

s _
P(q.,v) =exp| - ZU—Db+DbZ(—Z(w) ]F(q,v), (81)
where Db=M (82)

Yo

and V(q) is the renormalized linear potential expressed as

Vig) = V(go) + %ﬁg(c] —qp)*, near the bottom,

V(g)=V(g,) - 305(q—q,)%, near the top,  (83)

with ﬁé,ﬁ§>0. The unknown function, F(q,v), obeys the
general boundary condition that for g — o, F(q,v) vanishes.

The form of the ansatz in Eq. (81), denoting the steady-
state distribution, is motivated by the local analysis near the
bottom and the top of the barrier in Kramers’ sense [1]. For
a stationary nonequilibrium system on the other hand, the
relative population of the two regions, in general, depends on
the global properties of the potential, leading to an additional
factor in the rate expression. Although, Kramers’ type ansatz
[1], which is valid for the local analysis, such a consideration
is outside the scope of the present treatment, we point out a
distinctive feature in the ansatz given in Eq. (81) vis-a-vis
Kramers’ ansatz [1]. While in the latter case one considers a
complete factorization of the equilibrium (Boltzmann) and
the dynamical parts, the ansatz in Eq. (81), on the contrary,
incorporates the additional dynamical contribution through
dissipation and strength of the noise into the exponential
part. This modification of Kramers’ ansatz (by dynamics) is
due to the nonequilibrium nature of the system. Thus, unlike
Kramers, the exponential factor in Eq. (81) and the stationary
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distribution in Eq. (76), which serve the purpose of a bound-
ary condition, are characteristically different. While a global
analysis may even modify the standard Kramers’ result, our
aim here is to understand the modification of the rate due to
the modulation of the bath driven by an external noise in the
semiclassical regime but within the purview of Kramers’
type ansatz. The internal consistency of the treatment, how-
ever, can be checked by recovering the standard Kramers’
result when the external noise is switched off (in the classical
regime).

From Eq. (80), using Eq. (81), we obtain the equation for
F(y,v) in the steady state in the neighborhood of ¢, as

. M) ﬁ[D_ ]E
(“'Db”@/ Dy () M |5y
PF PF
+ ¢>b(°°)a—vz + %(”)M =0. (84)

We then make use of the transformation, u=v+ay,y=qg—q,
where a is a constant to be determined, obtained from Eq.
(84),

d*F D,
{p() + alﬁb(w)}ﬁ - {Db+—¢b(oo)

m@» dF

1+ —— —=0. 85
+{yb+a< + D, vl (85)
Substituting

D, ~Zy+{yb+a<l+$)}v=—,3u (86)

Oy

—
Dy, + () b

(with B being another constant to be determined), we obtain
the ordinary differential equation for F(u),

d’F dF
d—v2+AuE=0, (87)
B
h A=——7—"—"— 88
T g v an ) o

and the two constants 8 and a must satisfy the simultaneous
relation

D, ~2

— lBa = —Dh N l,bb(oo) Qb, (89)
—B:yh+a<1+¢gzo)>. (90)

This implies that the constant ¢ must satisfy the quadratic
equation

D D ~
Dyt $() 2 — b _(Ro0,  (91)
D, Dy, + ()
which allows
D —
ae=———"——(—y, + Ny +402). (92)

2[Dy, + ()]
The general solution of Eq. (87) is
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u 2
F(u):sz exp(— ATZ)dz+F1, (93)
0

where F| and F, are the constants of integration. We look for
a solution which vanishes for large g. For this to happen, the
integral in Eq. (93) should remain finite for |u|— +c. This
implies that A>0, so that only a_ becomes relevant. The
requirement P,(g,v) —0 for g— +% yields

F1=F2<\/£). (94)
Thus, we have
F(u) = [ \/ =+ f exp( )dz:| (95a)

and correspondingly

u 2
Pb(QsU)=F2|:\/%+J eXP(——A2Z )dz]
0

v Vg
Xexp|:— { 2D, + Dy + 0y() }] . (95b)

The current across the barrier associated with this distribu-
tion is given by

+00
Jj= f vPL(g=qp.v)dv, (96a)

—00

which may be evaluated using Eq. (95b) and the linearized

version of V(g), namely, V V(qb)—- 02 (q-q5)%
2m \"? Vigs)
j=F,)\ ——— | D - . 96b
/ 2(A+D,;‘> bexP{ Dyru | )

To determine the remaining constant F,, we proceed as fol-
lows. We first note that as ¢ — —2, the pre-exponential factor
in Eq. (95b) reduces to the followmg form:

Vo [l e ol o

We then obtain the reduced distribution function in g as

Vig)
Dy, + ()
where we have used the definition for the reduced distribu-

tion as Py(q)=/*2P(q,v)dv. Similarly, we derive the re-
duced distribution in the left well around g = g,, with a lin-

_ D, 12 i
Py(qg — — ) =27F, X exp| — , (98)

earized potential ‘7q=V(q0)+%ﬁ§(q—qo)2 using Eq. (76) as

V(gy)
P o] -
03(q - qo)? }

X‘”‘pl" 2Dy + d()

with the normalization constant 1/Z, where

(99a)
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l - ﬁ0 Pxp{ V(go)

Z  2m\Dy[Dy + ()] Dy + ()
The comparison of the distributions [Egs. (98) and (99a)]
P, (q0)=P,(qp), gives

] . (99b)

near ¢g=q, that is,

v ( A ) 0, { Vigy) }
== 7 exp .
Dy ) 2VD[Dy + ()] Dy + ()
(100)

Hence, from Eq. (96b), the normalized current or the barrier
crossing rate k is given by

QO D, ( A

)1/2 [ E, }
k= ZT{DO + p(0)}?\ 1 + AD, =P Dy+ (%) |
(101)

where E, is the activation energy, E,=V(g,)—V(q). Since
the temperature term due to the thermal noise, the strength of
the external noise and the damping constant is buried in the
parameters Dy, Dy, i, i, and A, the generalized expression
looks somewhat cumbersome. We point out that the sub-
scripts 0 and b in D and ¢ refer to the well and the barrier
top region, respectively. Equation (101) is the central result
of the present work. The dependence of the rate on the pa-
rameters can be explored explicitly once we consider the
limiting cases. For simplicity, we highlight the specific cases
when the external noise €(7) is assumed to be & correlated,
that is,

(e(t)e(t'))y=2Do(t—1").

In such a situation, after some lengthy, however, straightfor-
ward algebra, one gets

(102)

h #Q,\ Dk}
2 (00) = —— th( 0) =2, 103
70 =50, 2,r) T2 (103)
#Q 7Q
02, () = —Ocoth( 0 ) + Dxg, (104)
2 kT
and o7, () =0. (105)

These variances yield ¢(), (), and certain other relevant
quantities as

P(0) = 'y{ %ﬁﬂo coth( iy ) + DK0:| (106a)

2kgT
and (») =0, (106b)
which gives
hQ,
DO=M——ﬁQO cot h( ) +Dxi. (106c¢)
Y 2kpT

Hence, from Eq. (76) we see that the steady-state distribution
is given by
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— 1 022 + 12
Pula0) = exp| - o

(107)

nQ
hQyq coth( ¢ ) +Di
2kgT

In the absence of external noise (D=0) and in the classical
regime (kgT>h{()), the above expression reduces to

M] (108)

~ 1

P (q,v)=—exp| —
5(q.0) 7 p|: 2UesT

which is the correct equilibrium distribution for a classical

harmonic oscillator. In writing the above distribution func-

tion we have made use of the fact that for the Markovian

process ﬁ(2)=ﬂ(2). From the above expression [Eq. (108)], we
see that the steady-state probability distribution function
does not depend on the correlation time of the thermal noise
but depends clearly on the strength and the coupling of the
external noise.

We now return to our generalized rate expression [Eq.
(101)]. For the present case, we have

(=) = () =0, (109)
1 Q)
Dy =~£Q, coth( °> + DK, (110)
2 2kyT
1 Q) 5
Db= _th coth +DK0, (111)
2 2kgT
Q=02 0}=07, (112)
A= B , (113)
5 1 hQy, N
2 2kyT
2 4
S So
and a_:—;— Z+Qi. (114)
Using all these values, we obtain from Eq. (101)
Q)
i 0, { ct o 2 CS] Q, CochkBT + D«
= _— + —_——
2w, 4 2 70, )
) coth + Dk
2kyT
E
Xexp| — 0 (115)

AN
—h{),;, coth + Dk
2 2kpT

The high-temperature limit (kgT>%{),,%),), the above
semiclassical rate [Eq. (115)], is reduced to
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FIG. 1. (Color online) Variation of rate (k) with ¢, for different
temperatures with D=1.0, kz=1.0, A=1.0, ky=1.0Q¢=1.0, E,

=2.25, and Q,=3.0.

o [[d .]" } { Ey }
koo = — 2| 1 24021 =0 fexp| - —20—|.
classical 27TQb|:{4 b 2 exp 2k3T+DK(2)

(116)

If we set the external noise intensity D=0, that is, when the
external noise is absent, the above expression reduces to the
traditional Kramers’ expression with c%:F .

Now, the semiclassical contribution (when the external
noise is & correlated) toward the escape rate is given by

(117)

ksemiclassical =k- kclassical-

In Sec. VI, we essentially set Egs. (115) and (116) to rigor-
ous numerical test and analyze the results obtained. In con-
clusion to this section, we point out that had we chose to
work with purely Gaussian white noises (which are delta
correlated) in both external driving and the internal force
fields, we would have arrived at the same result as obtained
by Ray Chaudhuri et al. in Ref. [50].

VI. RESULTS AND DISCUSSION

To illustrate the applicability of our formulation proposed
above, we subject it to a detailed numerical analysis. In do-
ing so, we solve Egs. (115) and (116), numerically, to obtain
the quantum and the classical rates, respectively. We study
the dependence of both these rates on different parameters
that are characteristic of the open quantum system.

The first of such result is obtained by analyzing the varia-
tion of the quantum and classical rates with ¢, (where ]
=y is the dissipation constant). In Fig. 1, we demonstrate the
variation of the rates at three different values of 7. Figures 2
and 3 show the dependence of the rates on various values of
ko and D. In all the three cases we observe the classical rate
to be always lower than the corresponding quantum rate, as
the case should be. Additionally a decrease in both quantum
and classical rates is envisaged as the dissipation is in-
creased, and as a common feature we observe that these rates
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054 k=15

—— Semiclassical
—— Classical
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Rate (k)

0.0 . T . T : T : T

FIG. 2. (Color online) Variation of rate (k) with ¢, for different
ko with D=1.0, kz=1.0, #=1.0, T=1.0, Qy=1.0, Ey=2.25, and
Qb=3.0.

fall off in a nonexponential manner since we plot the varia-
tion of the rates with ¢ instead of c(z). Figure 1 clearly shows
that an increase of temperature increases both the rates—a
commonly observed phenomenon. A close inspection of
Figs. 2 and 3 reveals that both the quantum as well as the
classical rates increase with increase of k, and D values. This
is due to the fact that both k, and D, as in Egs. (115) and
(116), are statements of effective temperatures for the sys-
tem. Thus, the effect of variation of these quantities on the
rate is expected to be akin to the effect of T variation on the
rates.

Figures 4—6 are the variations of rates (both classical and
quantum) for different values of ¢,, D, and ki, respectively.
As a common observation, in all the three cases, we envisage
a monotonic increase in both the rates with the temperature,
T, of the system, as is expected to be. While at lower T
values, the extent of increase in the classical rate is steeper

0.45

0.40 4 D=1.5

0.35

E —— Semiclassical
0.30 —— Classical
0.25 4

0.20

Rate (k)

0.15
0.10

0.05

0.00 . T : T - T T T

0

FIG. 3. (Color online) Variation of rate (k) with ¢, for different
D with kz=1.0, £=1.0, T=1.0, ky=1.0, Qy=1.0, E,=2.25, and
Qb=3.0.
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FIG. 4. (Color online) Variation of rate (k) with T for different
co with D=1.0, kz=1.0, 4=1.0, T=1.0, ky=1.0, Qy=1.0, E;=2.25,
and ,=3.0.

compared to the same for the quantum rate at the correspond-
ing temperature. At high 7 values we experience a clear dem-
onstration of the quantum-classical correspondence. In Figs.
5 and 6 we observe that for an increase in D and k, values,
both the rates increase. This corroborates well with the the-
oretical standpoint that both D and k; are measures of effec-
tive temperature for the system and that the effect of varia-
tion of these will lead to the same consequence as the
variation of 7, as have been envisaged earlier as well.

Figures 7 and 8 represent the variation of the rates with D.
Here, we observe that there is a net increase in both the
quantum and classical rates as expected. The rates of in-
crease for both classical and quantum rates occur almost
similarly.

The results obtained so far are quite encouraging and
clearly put forth the fact that the predictions made by our
formulation are correct as far as their numerical implemen-
tation is concerned.

0.45

0.40 | . .
——— Semiclassical

Classical

0.35
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0.20
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0.15
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0.05

0.00

0.0 0.5 1.0 1.5 2.0

FIG. 5. (Color online) Variation of rate (k) with T for different D
with ¢o=1.0, kz=1.0, A=1.0, T=1.0, ko=1.0, Qy=1.0, Ey=2.25,
and ,=3.0.
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FIG. 6. (Color online) Variation of rate (k) with T for different
ko with ¢=1.0, kz=1.0, i=1.0, T=1.0, D=1.0, Qy=1.0, Ey=2.25,
and ,=3.0.

VII. CONCLUSIONS

The study of thermodynamically open systems has been a
subject of immense research interest during the past few de-
cades. In this paper, we explore the possibilities associated
with a system that has been made thermodynamically open
by externally driving the bath rather than the system itself.
There are many physical situations that are worth exploring
for a better insight regarding such systems. The case of a
unimolecular isomerization of a molecular species, A— B, is
an interesting case that may come under the purview of such
a study. If this process is carried out in a photochemically
active solvent, which in this case acts as the heat bath, the
solvent is subject to a monochromatic light of fluctuating
intensity and of a frequency that perturbs only the molecules
comprising the solvent, while the actual reactant molecules
remain unperturbed by this external field. As a consequence

0.45
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Classical

0.35
0.30
0.25
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Rate (k)

0.15
0.10 4

0.05

FIG. 7. (Color online) Variation of rate (k) with D for different
T with co=1.0, kz=1.0, h=1.0, kg=1.0, Qy=1.0, E4=2.25, and
Qb=3.0.
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FIG. 8. (Color online) Variation of rate (k) with D for different
¢o with T=1.0, kz=1.0, h=1.0, ky=1.0, Qy=1.0, Ey=2.25, and
Qb=3'0'

of this external disturbance, the solvent heats up due to the
conversion of light energy into heat energy by the radiation-
less relaxation process resulting in the generation of an ef-
fective temperature like quantity owing to the constant input
of energy. Since the fluctuations in the light intensity polarize
the solvent molecules, the effective reaction field around the
reactants gets modified. It is noteworthy that a plethora of
such isomerizations or interconversions take place by sur-
mounting an internal rotational energy barrier of approxi-
mately 0.05 eV [59]. The traditional theories of rate pro-
cesses often attribute this energy requirement to be satisfied
by collisions with solvent molecules. However, it is not al-
ways mandatory that the reaction rates associated with such
isomerizations be enhanced via a collisional route only. In
this work, on the contrary, we put forth an alternative idea of
a suitable photochemically active solvent that may bring
about the energy transfer in an effective manner as illustrated
above and effectively enhance the reaction rate. We refer the
readers to Ref. [59] for a detailed discussion along these
lines.

In this paper, we have attempted to bring to the fore the
quantum effects associated with the decay rate from a meta-
stable state of a particle which is in contact with a correlated
noise-driven bath. We have achieved this by starting with a
system-reservoir model to arrive at the operator-valued
Langevin equation for an open quantum system where the
associated heat bath is modulated by an external Gaussian
noise with arbitrary decaying memory kernel. In this way, we
have reached the c-number analog of this operator equation
following the method of Ray et al. [28,29] and calculated the
quantum correction terms. This was succeeded by a deriva-
tion of the quantum Fokker-Planck equation. Finally, we
have applied our formulation to numerical tests and have
analyzed our results.
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