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We present results from extensive three-dimensional molecular dynamics �MD� simulations of phase sepa-
ration kinetics in fluids. A coarse-graining procedure is used to obtain state-of-the-art MD results. We observe
an extended period of temporally linear growth in the viscous hydrodynamic regime. The morphological
similarity of coarsening in fluids and solids is also quantified. The velocity field is characterized by the
presence of monopolelike defects, which yield a generalized Porod tail in the corresponding structure factor.
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The nonequilibrium evolution of a phase-separating bi-
nary mixture, A+B, is a complex nonlinear process �1�. This
problem has attracted much research interest both computa-
tionally �2� and experimentally �3�. The growth of A-rich and
B-rich domains during phase separation is a scaling phenom-
enon. The two-point equal-time correlation function,
C���r , t�, which characterizes the domain morphology and
growth, scales as C���r , t�=g�r /��t�� �4�. Here, g�x� is a
scaling function independent of time. The average domain
size ��t� grows with time t as ��t�� t�.

The growth exponent � depends upon the transport
mechanism which drives segregation. For diffusive dynam-
ics, �� t1/3, which is referred to as the Lifshitz-Slyozov �LS�
law �1�. The LS behavior is the only growth law expected for
phase-separating solid mixtures. However, for fluids and
polymers, one expects faster growth at large length scales
where hydrodynamic effects are dominant. For d=3, convec-
tive transport yields additional growth regimes �5� with

� = 1, ��t� � �in,

� = 2/3, ��t� � �in. �1�

In Eq. �1�, the inertial length �in ���2 / ����, �, �, and �
being the shear viscosity, density and interfacial tension�
marks the crossover from a low-Reynolds-number viscous
hydrodynamic regime to an inertial regime. There has been
experimental evidence �6� for a crossover from diffusive to
viscous growth. However, no experimental observation of an
inertial regime has been reported.

While recent focus has turned to systems with realistic
interactions and boundary conditions �2,3�, our understand-
ing of segregation kinetics in bulk fluids remains far from
complete. The viscous regime has been observed in numeri-
cal studies using the phenomenological Model H �7,8�. Fur-
ther, both viscous and inertial regimes have been observed in
lattice Boltzmann simulations �9,10�. However, molecular
dynamics �MD� methods, where hydrodynamics is automati-
cally inbuilt, have rarely been used to study domain growth,
primarily due to heavy computational requirements. To the
best of our knowledge, the first MD study was by Ma et al.

�11�, who did not find a signature of viscous growth. In a
later MD simulation, Laradji et al. �12� observed linear do-
main growth over a small interval in a binary Lennard-Jones
�LJ� fluid. These first MD results have been obtained for
low-density fluids over very limited time windows. More
recently, Thakre et al. �13� used a similar model to study the
crossover from diffusive to viscous dynamics. However, they
do not observe linear growth in the postcrossover regime. In
related work, Kabrede and Hentschke �14� found ��0.5 in
MD simulations of gas-liquid phase separation. In this com-
munication, we present results from large-scale MD simula-
tions in conjunction with a numerical renormalization proce-
dure �15�. These state-of-the-art MD results provide the first
unambiguous confirmation of viscous domain growth in flu-
ids, and also explore the ordering dynamics of the velocity
field. Our MD results strongly support the universal nature of
domain growth morphologies in solid and fluid mixtures.
This has important theoretical implications as obtaining the
scaling form of the correlation function for phase-separating
systems remains an outstanding problem in this area. These
results will serve as a valuable reference for experimentalists
and theorists.

Following Das et al. �16�, we have employed a symmetric
model where particles of diameter 	 interact via the potential
V�rij�=U�rij�−U�rc�− �rij −rc�dU�rij� /drij �rij=rc

. Here U�rij�
=4
����	 /rij�12− �	 /rij�6� is the LJ potential; and rij = �r�i
−r� j�, rc=2.5	, and �, �=A,B. We chose 
AA=
BB=2
AB
=
, so that phase separation is favored energetically. All par-
ticles were assigned equal mass m. We set m, 	, 
, and kB to
unity. An incompressible fluid ��=1� is studied for which
phase separation sets in at a critical temperature Tc�1.423
�16�, well separated from the gas-liquid and liquid-solid tran-
sitions. In the case of compressible fluids, possible coupling
between liquid-liquid and gas-liquid transitions can be prob-
lematic in the appropriate identification of domains and thus
the understanding of the growth process. A total number of
262 144 particles were confined in a cubic box of size 643

with periodic boundary conditions in all directions. The MD
runs were performed using the standard Verlet velocity algo-
rithm �17� with a time step �t=0.01
 �the LJ time unit, 

= �m	2 /
�1/2=1�, which provides integration error within ac-
ceptable limits. The temperature T was controlled by a Nosé-
Hoover thermostat �NHT� �17�, which is known to preserve
hydrodynamics. Homogeneous initial configurations were*das@jncasr.ac.in
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prepared by equilibrating the system at T=10. At t=0, the
system is quenched to T�Tc. All the results presented here
were obtained by averaging over five independent runs at a
quench temperature T=0.77Tc.

In Fig. 1, we present evolution pictures at different times.
As expected for a symmetric �critical� composition, a bicon-
tinuous domain structure is seen. The snapshot at t=0 corre-
sponds to the homogeneous state immediately after the
quench. The snapshot at t=7000 corresponds to the situation
where the system has almost completely phase separated.
Note that this time interval is more than an order of magni-
tude larger than earlier MD studies. While domains grow
without encountering any perceptible size effects within this
time window, finite-size effects are seen beyond it �18�.

To characterize the domain morphology, we calculate the
correlation function as

C���r,t� = ���0,t���r�,t�	/���r�,t�2	 , �2�

where the order parameter ��r� , t��=xA�r� , t�−xB�r� , t�� is the
local concentration difference between A and B species. The
angular brackets in Eq. �2� denote statistical averaging. We
use a coarse-graining procedure �15� to obtain the pure do-
main structure by eliminating thermal fluctuations in the
snapshots of Fig. 1. Figure 2 shows the scaling plot of
C���r , t� vs r /�. The average domain size � is defined as the
first zero crossing of C���r , t�, which is computed from the
coarse-grained order parameter. Our correlation function data
are comparable in quality to that obtained from a Langevin
simulation �8�. The neat data collapse over an extended in-
terval shows that a scaling regime is reached.

We would like to make a quantitative comparison of our
MD results for C���r , t� with those for segregation in the
Kawasaki-Ising model �KIM�, where the structure and dy-
namics are much better understood. The lines in Fig. 2 de-
note C���r , t� vs r /�, obtained from a Monte Carlo �MC�
simulation of the KIM �19� with critical �50:50� composition.
The MC scaling function is in excellent agreement with our
MD data. In the inset of Fig. 2, we show the corresponding

results for the scaled structure factor, S���k , t��−3 vs k�,
where S���k , t� is the Fourier transform of C���r , t�. Again, a
good data collapse is obtained confirming the scaling form,
S���k , t�=�df�k�� �1�. The agreement with the corresponding
KIM result is demonstrated again in the inset. Here, the de-
cay of the tail with a power law, S���k−4, is consistent with
the expected Porod’s law �20,21�, S�k , t��k−�d+n�, for order-
ing dynamics in d=3 with a scalar order parameter �n=1�.
�In an extended publication, we will present results for mor-
phological characteristics such as the Tomita sum rule,
Yeung-Furukawa law for k→0, etc.� The excellent agree-
ment of the scaling functions confirms a close similarity of
structures formed during phase separation in fluids with
those for solid mixtures. In a related context, Puri et al. �22�
have emphasized that domain growth morphologies are ap-
proximately independent of the kinetic mechanism of coars-
ening. These authors compared morphologies arising from
bulk diffusion with those from surface �or interface� diffu-
sion, and found that they were characterized by a universal
correlation function. Our results in this paper show that this
universality is of greater generality. This should be con-
trasted with a Cell Dynamical Systems study by Shinozaki
and Oono �8�, who argued that there were different scaling
functions for phase separation in alloys and fluids.

Next, we focus on the time dependence of the domain
size. In Fig. 3, we plot � vs t. The growth at later times �t
�2000� is clearly linear, but the earlier-time data deviates
somewhat. In fact, a least-squares fit to the form ��t�=B
+At� in the range t� �0,2000� gives an exponent ��0.75.
Essentially, the diffusive regime �with �� t1/3� is very short
lived at this temperature. A gradual crossover to the viscous
regime �with �� t� starts very early, extending over a large
fraction of the time window, where the effective exponent is
rather high.

The top curve in the upper inset of Fig. 3 shows the in-
stantaneous exponent �i�=d�ln �� /d�ln t�� vs 1 /�. Because
of the significantly large off-set value in � as t→0, �i tends
to its asymptotic value in a linear fashion only in the limit
�→� �18�. Without a knowledge of the functional form of �i

FIG. 1. Evolution snapshots for a 50:50 binary Lennard-Jones
fluid after quenching from the high-temperature homogeneous
phase to T=0.77Tc. The A and B particles are marked in black and
gray, respectively.

FIG. 2. Scaling plot of the correlation function, C���r , t� vs r /�,
for three different times. The inset shows the scaling plot of the
structure factor S���k , t� for the same times. The solid and dashed
lines, which almost coincide and are hard to distinguish, denote
analogous data from the Kawasaki-Ising model.
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for the whole range of 1 /�, the dashed straight line serves as
a guide to the eyes and suggests �i→1, justification of which
will be clear from further analysis. The lower curve in this
inset is obtained from the coarsening dynamics when an
Andersen thermostat �AT� is used instead of an NHT. The
AT, where T is controlled by letting the particles collide ran-
domly with a heat bath, is stochastic in nature and does not
model hydrodynamics. Thus, it is expected to provide a dif-
fusive growth of domains with �=1 /3. Indeed our result is
consistent with that expectation, as shown by the dashed
straight line which extrapolates to �=1 /3 in the upper inset.
This confirms the utility of the NHT in studying hydrody-
namic phenomena in domain growth. We also emphasize that
MD with an AT offers a more realistic way of modeling
diffusive phase separation than the commonly used but un-
physical KIM. Of course, one can preserve hydrodynamics
better by using more advanced thermostats �23�, like dissi-
pative particle dynamics. However, for the system size used,
NHT has been found to preserve hydrodynamics well. This
was confirmed by comparing our results with those from
other system sizes over smaller run lengths.

There is another instructive way of investigating �i. In
hindsight, we introduce a time t0 �12,18� and assume that
segregation kinetics follows a power-law behavior with time
t�= t− t0,

���t�� = ��t� − ��t0� = At��. �3�

Then, we calculate the exponent �i=d�ln ��� /d�ln t��. For
linear growth, Eq. �3� is invariant under an arbitrary choice
of t0. Thus, if t0 is chosen appropriately, �i�1 for all values
of t�. However, as noted by other authors �8,18�, in computer
simulations of finite systems one finds an oscillation of �i as
�→�, with growing amplitude around the expected value.
This is due to increasing separation between the domains of
like particles, thus delaying collisions between domains of
large size. The lower inset of Fig. 3 plots �i vs 1 /�� for t0
=2500, which lies in the linear region. Indeed, this plot is

consistent with the above expectation, and �i oscillates
around the mean value �=1.

Finally, we turn our attention to the pattern dynamics of
the velocity field. Figure 4�a� shows a two-dimensional �2D�
cross section of the system at t=7000, with particle veloci-
ties being projected onto this plane. While the orientations of
velocity vectors look fairly random at the microscopic scale,
structure starts emerging upon coarse-graining over larger
length scales, as seen in Fig. 4�b�. In Figs. 4�c� and 4�d�, we
present plots of the velocity correlation function Cvv�r , t� and
structure factor Svv�k , t� analogous to the density field. The
decay of the structure factor tail as Svv�k−6 is consistent
with the generalized Porod’s law �21� for ordering of a three-
component �n=3� vector field in d=3. This is indicative of
presence of monopole-like defects, which can be seen in the
coarse-grained snapshots of the velocity field. To study
growth in this ordering, if any, as seen in the lattice Boltz-
mann simulations �9,10�, we need coarse graining over a
larger length scale which is not accessible with the present
system size. It would be more interesting, though challeng-
ing, to study the dynamics of velocity field in the vicinity of
the domain boundaries.

In summary, our results from extensive MD simulations
of a binary LJ fluid unambiguously confirm the linear growth
law in the viscous hydrodynamic regime. We use a numerical
renormalization technique to obtain noise-free data from our
MD studies. Even though the growth mechanisms in fluids
are different from solids, the domain morphologies are com-
parable in the two cases. Similar studies at higher quench
temperatures will be useful to identify diffusion-driven
growth and crossovers. Note that while our choice of system
size was appropriate for understanding viscous growth, this
size is not large enough to study dynamics in the inertial
regime. To achieve the latter goal, sophisticated modeling at
the multiscale level is required, in addition to usage of par-
allel programming and a graphics card.
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FIG. 3. Plot of average domain size, ��t�, as a function of time
t. The insets show the instantaneous exponent �i vs 1 /� �upper� and
�i vs 1 /�� �lower�. A detailed explanation of the insets is provided
in the text.

FIG. 4. Pattern formation in the velocity field at t=7000. �a�
Projection of velocity field onto a 2D cross section. �b� Same as �a�
but for the coarse-grained velocity field. �c� Plot of correlation func-
tion, Cvv�r , t� vs r, for the velocity field. �d� Plot of corresponding
structure factor, Svv�k , t� vs k, on a log-log scale.
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