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Using Monte Carlo simulations, we determine the phase diagram of a diffusive two-temperature conserved
order parameter XY model. When the two temperatures are equal the system becomes the equilibrium XY
model with the continuous Kosterlitz-Thouless �KT� vortex-antivortex unbinding phase transition. When the
two temperatures are unequal the system is driven by an energy flow from the higher temperature heat-bath to
the lower temperature one and reaches a far-from-equilibrium steady state. We show that the nonequilibrium
phase diagram contains three phases: A homogenous disordered phase and two phases with long range, spin
texture order. Two critical lines, representing continuous phase transitions from a homogenous disordered
phase to two phases of long range order, meet at the equilibrium KT point. The shape of the nonequilibrium
critical lines as they approach the KT point is described by a crossover exponent �=2.52�0.05. Finally, we
suggest that the transition between the two phases with long-range order is first-order, making the KT-point
where all three phases meet a bicritical point.
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Much of the research in the statistical physics of nonequi-
librium systems has been directed toward understanding how
universal equilibrium critical phenomena are affected by dy-
namical nonequilibrium perturbations. Field-theoretical stud-
ies have indicated that the effects of nonequilibrium dynam-
ics are drastic in systems where detailed balance violation is
coupled with conserved anisotropic dynamics �1�. In these
systems, effective long range interactions can be induced by
the local dynamics producing a critical behavior that is re-
markably different from the one of the corresponding unper-
turbed, equilibrium, systems �2–18�.

In this paper, we present the phase diagram for a two-
dimensional two-temperature diffusive conserved order pa-
rameter XY model. The system evolves through Kawasaki
spin-exchange dynamics �19�. Thus, the dynamics is purely
relaxational with no reversible mode couplings, and corre-
sponds to Model B of Ref. �20�. Long range order can exist
in nonequilibrium steady states of this system due to the
effective long range interactions generated by the anisotropic
diffusive dynamics that occurs in that regime. The ordered
phase is characterized by the appearance of standing spin
waves, or spin textures, oriented along the direction of lower
temperature. The system exhibits a nonequilibrium disorder-
long-range order transition that is in the same universality
class as an equilibrium model with dipole interactions
�11,14�. Note that our model reduces to the equilibrium XY
model in the limit where both temperatures are equal. Also,
the Mermin-Wagner theorem states that there is no sponta-
neous symmetry breaking in equilibrium systems with con-
tinuous symmetry of the order parameter and dimension
d=2 �21�. Thus, no long-range ordered phase is observed in
the two-dimensional equilibrium XY model. However, the
equilibrium system still undergoes a transition from quasi-
long-range order to disorder characterized by the emergence

and unbinding of vortices and antivortices, which is the
Kosterlitz-Thouless �KT� transition �22�. Hereafter, we refer
to the quasi-long-range order phase as the KT phase. Since
both a KT transition and a disorder-long-range order phase
transition occur in the two-dimensional two-temperature XY
model, we expect to find a KT-dipole crossover in the phase
diagram for this system.

Using results from Monte Carlo simulations, we show
that two critical lines representing nonequilibrium disorder-
long-range order transition temperatures meet at the equilib-
rium KT transition temperature. These lines are described by
an exponent which we predict to be the universal exponent
for KT-dipole crossover. Finally, we argue that, at tempera-
tures below the critical KT temperature, any infinitesimal
nonequilibrium perturbation to the system, will produce
long-range ordered phases. Thus, the nonequilibrium behav-
ior is very different than that in equilibrium where long-
range order is forbidden due to the Mermin-Wagner theorem
�11�.

Our model consists of a set of two-dimensional spins ar-
ranged on a square lattice of rectangular dimensions Lx and
Ly. Each spin s�i is a unit vector. The directions of the spins
are evenly distributed from 0 to 2� over the lattice, so that
their vector sum is null. The total energy of the system is
given by the Hamiltonian

H = − �
�ij�

s�i · s� j ,

where �ij� indicates sum over the nearest neighbor spins on
the lattice. The system evolves through Kawasaki exchanges
with Metropolis rates �19,23�. The exchanges along the x and
y axes satisfy detailed balance with temperatures 1 /�x and
1 /�y, respectively. When �x��y, an energy current flows
from the hotter heat bath to the cooler one and detailed bal-
ance is no longer satisfied globally. When this is the case,
phase transitions occur in nonequilibrium steady states and
are characterized by the appearance of a long-wavelength
spin texture in the direction with the larger value of �. In our
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nonequilbrium simulations, we generally study the case
�y ��x, so that the spin texture appears in the x direction. To
give a quantitative measure of this ordering, we define the
order parameter � as the ensemble averaged arithmetic av-
erage of the components of the long-wavelength limit of the
structure factor:

� =
1

2
�C1	2�

Lx
,0
 + C2	2�

Lx
,0
� ,

where Cn�kx ,ky� is the normalized Fourier transform of the
nth component of the spin vectors of our system.

The spatial anisotropy of the system requires an analysis
using anisotropic finite size scaling �24�. Hence, one must
compare systems with sizes that scale in a way that keeps the
expression Lx

1+� /Ly constant, where � is the anisotropy ex-
ponent. The value �=1 has been estimated using renormal-
ization group techniques to first order in a dimensional epsi-
lon expansion �26�. Therefore, we performed simulations on
systems of sizes 12	9, 16	16, 24	36, and 32	64. Note
that there may be higher-order corrections to the value of �
that, with this choice of system sizes, would introduce some
systematic errors in the data analysis.

We measured � after each Monte Carlo sweep �MCS�
during the simulations. After estimating the relaxation time,
we determined the ensemble averages ��� and ��2� over
uncorrelated configurations in the steady state. We ran
4	106, 5	106, 8	107 and 10	108 MCS for the system
sizes 12	9, 16	16, 24	36, and 32	64, respectively. In-
tegrated autocorrelation times ranged from roughly 200 MCS
for the smallest system to roughly 1200 MCS for the largest
system.

Our simulations reveal that long-range ordered states oc-
cur when �y is sufficiently small and �x is sufficiently large
or viceversa, by symmetry. Note that the �x−�y phase dia-
gram for this system is symmetric about the diagonal since
interchanging these temperatures is equivalent to simply re-
naming the axes of the lattice. Thus, we study the ordering
process only in the �y ��x region.

Figure 1 shows the value of � as a function of �x with
�y =0 for different system sizes. The data clearly show or-
dering occurring at �x�0.7. Graphs showing similar critical
behavior were produced for each simulated value of �y. We
achieved more precise estimates of the disorder-order transi-
tion temperatures by measuring the crossing point of Bind-
er’s cumulant gL3−2���2� / ���2� �25�. As expected for a
continuous phase transition, the values of gL for different
system sizes cross at the critical point �xc

, as shown in Fig. 2.
This allowed us to measure the critical �x for �y values of
−0.9, −0.75, −0.6, −0.3, 0, 0.3, 0.6, 0.75, 0.9, and 1.

The locations of the transition points can be parametrized
in terms of the quantities 
= �2�KT−�xc

−�yc
� /�2 and

�= ��xc
−�yc

� /�2. The result of such parametrization is
shown in a log-log plot in Fig. 3. The possibility of fitting the
data to a straight line implies they obey the power law
��
�. The slope of this line allows us to estimate the cross-
over exponent as �=2.52�0.05.

Figure 4 shows the phase diagram for the model. The
insets in the figure show the alignment of the spin textures

associated with ordered states. The two critical lines repre-
senting the nonequilibrium disorder-long range order transi-
tions meet at a temperature 1 /�c�0.89. This is the same as
the KT critical temperature �27�, leading us to conclude that
the ordered regions of the diagram meet at a line correspond-
ing to the low-temperature equilibrium KT phase.

Monte Carlo simulations were also used to investigate the
low-temperature behavior of our system near equilibrium.
We measured the time evolution of the difference �� be-
tween the order parameters for the x and y directions. This
was done while varying �x and �y so that, as time �MCS�
progressed, we moved perpendicularly across the equilib-
rium line from one long-range ordered region to the other.
Hysteresis was clearly observed for square systems smaller
than 32	32, indicating that the equilibrium line may also be
a line of first-order transitions from order in one direction to
order in the other.

However, for larger system sizes, a different, glassy-type
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FIG. 1. �Color online� Order parameter � vs. �x at �y =0 for
different system sizes. The black circles and solid line correspond to
a system size of 12	9; the red squares and dashed line correspond
to a system size of 16	16; the green diamonds and dotted line
correspond to a system size of 24	36; the blue triangles and
dashed-dotted line correspond to a system size of 32	64. The plot
clearly shows a transition from disorder to order at a �x of approxi-
mately 0.7. The error bars are smaller than the symbol size.
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FIG. 2. �Color online� Binder’s cumulant gL vs �x at �y =0 for
different system sizes. The black circles and solid line correspond to
a system size of 12	9; the red squares and dashed line correspond
to a system size of 16	16; the green diamonds and dotted line
correspond to a system size of 24	36; the blue triangles and
dashed-dotted line correspond to a system size of 32	64. The plots
intersect asympotically at �x�0.68. The error bars are smaller than
the symbol size.
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of behavior was observed. The quantity �� did not switch
from a large positive �negative� value to a large negative
�positive� value, as in a hysteresis loop, but stayed at a value
of approximately 0 after crossing the equilibrium line. The
actual system configurations where ���0 were investi-
gated, and we observed columns of ordered vectors, pointing
in roughly the same direction, between columns of disor-
dered vectors.

We note that a similar “striped” configuration was ob-
served after deep quenches from the high temperature disor-
dered phase to a low-temperature ordered phase. In the
steady state simulations described above, we avoided these
striped configurations in favor of long wavelength spin tex-
tures by starting the simulations in the steady state configu-
ration of a temperature very close to the one currently being
simulated; this process was continued for monotonically de-

creasing temperatures from the disordered phase to the or-
dered phase. Thus, quenching of the system to a striped con-
figuration was avoided.

We believe the striped configuration to be a metastable
state that can be found in finite-sized systems with aniso-
tropic nonequilibrium dynamics, e.g., a driven Ising model
�28�. We caution however that in the case of a driven diffu-
sive Ising model, such striped configurations are stable in the
thermodynamic limit L→� �29,30�. In particular, if L� is the
dimension of the drive and L� the other dimension, “wide”
systems �L�L�� and square systems support stable striped
configurations, while “narrow” systems �L� �L�� support
stable long-range ordered configurations �a single stripe in
the case of the Ising model�. In light of these results for the
driven Ising model, we note that it is possible that the striped
configurations in our model may represent true stable states,
particularly for the large square systems used in the simula-
tions exploring the low-temperature region.

In any case, these striped configurations do not indicate an
extended KT phase in the low-temperature region since the
KT phase, characterized by the appearance of vortices, is
entirely different from the long-range ordered phase or the
striped phase. Thus, the phase diagram is drawn to indicate
that infinitesimal nonequilibrium perturbations to the dynam-
ics of the system cause completely different system behavior
at temperatures below the KT transition temperature.

This is consistent with what can be inferred from the fol-
lowing argument. Consider the Langevin equation for model
B with a two-component order parameter �� ,

�t�� = ��2��− �2 + ���� +
1

6
g�� �2� + �� ,

where �� is the order parameter field, g and � are generic
constants, �� is a Gaussian noise term and �

T−Tc

Tc
is the re-

duced temperature. To account for the system having two
different temperatures, the operators, the parameters and the
noise term are split into x and y components,

�t�� = ���x
2��− �x

2 + �x��� +
1

6
gx�� �2�

+ �y
2��− �y

2 + �y��� +
1

6
gy�� �2�� + �xx̂ + �yŷ + 2�x

2�y
2�� ,

where x̂ and ŷ are the unit vectors in the x and y directions,
respectively. To describe the system below criticality close to
the equilibrium line, both �s should be negative �1�. This
means that the system is unstable with respect to perturba-
tions in both directions. The case �x=�y corresponds to the
equilibrium model, in which the instability has the same im-
portance in both directions. However, any nonequilibrium
perturbation will cause the instability to become stronger in
one of the two directions, thus generating effective long
range correlations in the direction corresponding to the lower
�. The possibility of an extended KT phase is ruled out by
the established result that, for large enough systems, the con-
tribution to the correlation between far away spins due to
vortices is vanishingly small �31�. This means that any long
range interaction, however small, is enough to make vortices
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FIG. 3. �Color online� Power-law fit of the dependence of � on

 for the measured critical points. The points lying on a straight line
on a double logarithmic plot imply ��
�. The slope of the line
corresponds to the universal crossover exponent �. We measure
�=2.52�0.05. The inset shows the geometric representation of the

−� coordinates.
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FIG. 4. �Color online� Phase diagram for the two-dimensional
two-temperature XY model. The red points are actual measurements
of the nonequilibrium transition temperatures between disorder and
long-range order phases. The two solid black critical lines are
drawn with a crossover exponent �=2.52 to fit the points. The blue
dashed line corresponds to the equilibrium KT phase. The blue
square corresponds to the KT transition temperature. The insets
show schematic drawings of spin textures in the ordered state. The
error bars are smaller than the symbol size.
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unimportant in the description of the system. Consequently,
the equilibrium KT phase is destroyed by any nonequilib-
rium perturbations.

In conclusion, we determined the phase diagram for a
two-dimensional two-temperature conserved order parameter
XY model. The system, whose evolution happens through
Kawasaki spin exchanges, has lines of continuous phase
transition between ordered states, characterized by the ap-
pearance of spin textures in the direction of the lower tem-
perature, and a disordered state. These lines meet at the equi-
librium KT point, corresponding to a KT transition in the
equilibrium model. We measured the crossover universal

critical exponent � for this transition, finding the value
�=2.52�0.05. For temperatures lower than the KT point,
the equilibrium line on the phase diagram is a line of first-
order transition between the ordered states, with the direction
of the spin textures changing. We provided an argument vali-
dating our finding and excluding the possibility of an ex-
tended KT phase below criticality.
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