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We address the heat flow study starting from microscopic models of matter: we develop an approach and
investigate some anharmonic graded mass crystals, with weak interparticle interactions. We calculate the
thermal conductivity, and show the existence of rectification and negative differential thermal resistance. Our
formalism allows us to understand the mechanism behind the phenomena, and shows that the properties of
graded materials make them genuine thermal diodes.
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Many works are devoted to the problem of understanding
the heat flow starting from microscopic models of matter �1�,
and most of them are carried out by means of computer
simulations, sometimes with inconclusive results. It creates a
demand for analytical studies, but, since Debye, the micro-
scopic models used to describe heat conduction are mainly
given by systems of anharmonic oscillators, which involve
problems without precise solutions. Anyway, interesting
properties have been discovered and their use proposed: e.g.,
the possibility to control the heat flow by using nanodevices
such as thermal diodes, transistors, memories, etc. �2–7�. The
basic structure of these objects, the thermal diode, is a device
in which heat flows preferably in one direction. There are
analytical attempts to explain this phenomenon and/or design
a diode by using simple methods �6,8,9�, but, again, most of
the works are carried out by means of computer simulations
�2–4�. A recurrently used design of diodes is given by the
sequential coupling of chains with different anharmonic po-
tentials �2–4�. Although frequently investigated, it is criti-
cized due to the difficulty to be constructed in practice �3�.
Recently, Chang et al. �7� built a diode in a experimental
work by using a different procedure: graded materials, i.e.,
nanotubes externally and inhomogeneously mass loaded with
heavy molecules. Numerical computations �10� also indicate
rectification in a graded anharmonic system with abnormal
conductivity.

An important effect noticed in these studies is the nega-
tive differential thermal resistance �NDTR� �4,11�, a phe-
nomenon where the heat flux decreases as the applied tem-
perature gradient increases. NDTR is used to design a
thermal diode with a big rectification factor; it is also crucial
for the functioning of some models of thermal transistors and
logic gates �12�. There are attempts to explain the origin of
NDTR �in systems given by the coupling of different lat-
tices�, see, e.g., the “phenomenological approach” in Ref.
�13�, but a general comprehensive understanding of the phe-
nomenon is still lacking.

Hence, considering these central subjects for the heat
mechanism study, we address here the following issues: �i�
the development of new methods of modeling the heat con-
duction problem in anharmonic systems; �ii� the analytical

investigation of the graded mass system as a reliable candi-
date for diode, different from that given by the coupling of
different parts, whose rectification decays with the system
size, and that is difficult to be constructed in practice; �iii�
the understanding of NDTR onset and related properties, in
particular, in a nonlinear system that is not the coupling of
different lattices.

Here, we investigate graded anharmonic crystals with
self-consistent reservoirs, details ahead, and show that
graded materials are perfect candidates for diodes: their rec-
tification does not decay with size �for certain mass distribu-
tion�, they present NDTR, and may be constructed in prac-
tice �7�. We recall that rectification is absent in the classical
harmonic version of this model �14�. Our analytical formal-
ism makes transparent the mechanism behind these phenom-
ena. Rectification occurs because the total heat flow involves
a sum of “local conductivities,” see Eqs. �4� and �5�, each
one depending on the local temperature �for the anharmonic
system, not for the harmonic one� and also on the masses of
neighbor particles. As we invert the system between two
thermal baths, the distributions of masses and temperatures
change in a different way, leading to a different heat flow—
more comments ahead. For the NDTR onset, we have a com-
petition between gradients of temperature and mass, see the
denominator of the heat flow expression �4� and �5�. For
large gradients and anharmonicity, there is a change of the
dominant term as we increase the temperature difference,
and so, NDTR appears.

Let us introduce the model and our approach. We consider
anharmonic crystals with stochastic reservoirs at each site.
For simplicity, we take d=1. We will work with the “self-
consistent condition,” that means absence of heat flow be-
tween each inner reservoir and its site in the steady state, i.e.,
the inner reservoirs are not considered as “real” thermal
baths as those given by the reservoirs at the boundaries: they
describe only some residual mechanism of phonon scattering
not present in the Hamiltonian. The use of these hybrid mod-
els is recurrent �15�. Precisely, we take N oscillators with
Hamiltonian

H�q,p� = �
j=1

N �1

2� pj
2

mj
+ Mjqj

2 + �
l�j

qlJljqj� + �P�qj�	 ,
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where Mj �0, Jjl=Jlj, P is the anharmonic on-site potential:
P�qj�=qj

4 /4; with time evolution

dqj = �pj/mj�dt, dpj = − ��H/�qj�dt − � jpjdt + � j
1/2dBj ,

�1�

where Bj are independent Wiener processes; � j is the cou-
pling between site j and its reservoir; and � j =2� jmjTj, where
Tj is the temperature of the jth bath. Here, we will study only
nearest-neighbor interactions.

The energy current inside the system is given by 
F j→�,
where 
 · � means the expectation with respect to the noise
distribution, and

F j→ = Jj,j+1�qj − qj+1�� pj

2mj
+

pj+1

2mj+1
� , �2�

precisely, F j→ describes the heat flow from jth to �j+1�th
site; details are found in previous works �16�.

For ease of computation, we map our system on another
with mj =1, for all j. That is, we make the change of vari-
ables: Qj =�mjqj, Pj = pj /�mj, and so, J, M and � are re-

placed by J̃jk= �mj�−1/2Jjk�mk�−1/2, �̃ j =� j /mj
2, M̃ j =Mj /mj. We

will drop out the tilde notation in the unit mass system be-
low, but we make the rescale later to come back to the gen-
eral system.

It is also useful to introduce the notation of the phase-
space vector �= �Q , P�, with 2N coordinates. Then, the dy-
namics �Eq. �1�� becomes �̇=−A�−�P����+�	, where A
= �A0+J� and � are 2N
2N matrices

A0 = � 0 − I

M̃ �
�, J = �0 0

J 0
�, � = �0 0

0 �2�T� .

I above is the unit N
N matrix; J is the N
N matrix for the

interparticle interaction Jlj; M̃ ,� ,T are diagonal N
N ma-

trices: M̃ jl=Mj� jl, � jl=� j� jl, T jl=Tj� jl. 	 are independent
white noises; P���� is a 2N
1 matrix with P���� j =0 for
j=1, . . . ,N and P����i=dP��i−N� /d�i−N for i=N+1, . . . ,2N.
In what follows we use the index notation: i for index values
in the set �N+1,N+2, . . . ,2N�, j for values in the set
�1,2 , . . . ,N�, and k for values in �1,2 , . . . ,2N�.

In previous works �16� we establish an integral represen-
tation for the correlation functions, and so, for the heat cur-
rent, of systems with the stochastic dynamics considered
here. It starts with a Gaussian measure, related to the har-
monic part of the interaction. Unfortunately, the analysis of
the resulting formalism is still very intricate, in particular, for
the case of hard anharmonic potentials. That is, it seems very
difficult to reach the anharmonic behavior starting from per-
turbations of the harmonic part of the system. Then, in other
previous work �17�, we start an approximative scheme, that
we conclude here, within this integral formalism in order to
make it treatable.

Let us describe our approach. Now, we first consider the
equations of dynamics without the interparticle interaction J,

but with the anharmonic on-site potential. We do not know a
strong solution for the decoupled anharmonic problem, but
we know the steady distribution: we follow Boltzmann, i.e.,
our system with J=0 involves only noninteracting particles,
each one connected to a thermal bath, and so we have, in the
notation Q , P,

d��Q,P� = exp�− �
j=1

N

Hj
�J=0�/Tj�

j

dQjdPj/norm.,

Hj
�J=0� = �1

2
MjQj

2 + � jP�Qj� +
1

2
Pj

2� .

To turn on J, we use the Girsanov theorem, which relates the
solution of the complete process � �with J, the interparticle
interaction� with the previous one � �with J=0�. Precisely,
it states that, for t1 , . . . , tk� t, 
�r1

�t1�¯�rk
�tk��

=��r1
�t1�¯�rk

�tk�Z�t�d, where 
 · � is the expectation for
the complete process �, d is the distribution associated to
the expectations of � �the decoupled process�, and the “cor-
rective” factor Z�t� is given by, after manipulations involving
Itô calculus �16,17�,

Z�t� = exp�− �i
−1�i�t�Jij� j�t�

+ �i
−1�i�0�Jij� j�0��exp��

0

t

ds�i
−1�i�s�Jij� j+N�s�

− �
0

t

ds� j�s�J ji
† �i

−1Aik
0 �k�s�

− �
0

t

ds� j�s�J ji
† �i

−1�P����i�s�

−
1

2
�

0

t

ds� j�s�J ji
† �i

−1Jij� j�s�� . �3�

We assume the boundary condition ��0�=0, for simplicity.
In the steady state, the heat flow �Eq. �2�� is related to the
expression limt→�
�u�t��v�t�−�u−N�t��v+N�t��, u�N ,v�N,
i.e., ��u�t��v�t�Z�t�d, etc. Writing Z�t�=exp�−�W���s��ds�,
in a perturbative analysis, we stay with terms such as
���u�t��v�t�W���s���dsd. But we do not know the distri-
bution d, that is very hard to calculate: for the nonlinear
process we know only the steady distribution d�. Then, we
introduce an approximative scheme.

First, to relate the fields ��t� and ��s�, we use the Itô
calculus which establishes that, for functions of �:

f���t���=e−tHf���0��, H=− 1

2�i�i
2+ �A0�+�P����� ·�,

where � means the derivation in relation to � �the index i, as
well known, takes values in �N+1, . . . ,2N��. The difference
between the linear and nonlinear dynamics in the generator
of the time evolution H above is in the term multiplying the
gradient operator: precisely, instead of A0� we have �A0

+�P���� /���. Thus, to make easier the calculations, we
replace ��t� by its average value. Moreover, in the exponen-
tial relaxation of �, we still replace P���� /� by its average
value, more details ahead. All together means: ��t�
→e−�t−s�H��s�=e−�t−s�A��s�, where A is given by A0 with M
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replaced by M�M + 
�P���� /��. We still have a problem:
the computation of ���s���s�d is not possible, since we do
not know the distribution d, as said before. Considering
that we have an exponential convergence to the steady state,
and so, the main terms involve s close to t, we propose to
replace d by d�, the well known steady distribution.

To summarize, our main approximations mean the re-
placement of ��t� by 
��t�� and d by d�; after it, the
expression for the heat flow will involve terms such as

� d�� d��e−�A���e−�A��W��� ,

where the time dependence is carried only by exp�−�A�,
where � comes from t−s, and, as t→�, �� �0,��.

In order to test our approximative scheme, we first turn to
the harmonic self-consistent chains, where rigorous results
are known. For a system with particles with the same mass,
and for the case of weak interparticle interactions, up to first
order in J, we have

lim
t→�


�u�t��v�t�� = lim
t→�

� �u�t��v�t�Z�t�d

�� �u�v�− �i
−1�iJij� j�d�

+� �e−�A0
��u�e−�A0

��v 
 ��i
−1�iJij� j+N

− � jJ ji
† �i

−1Aik
0 �k�d�d�,

where �� �0,��. After the � and � integrations, we get
limt→� Juv
�u�t��v�t��= �Juv�2�2�M�−1�Tu−Tv�. That is ex-
actly the same value, considering the lower order in the in-
terparticle interaction, of the rigorous computation �16�. This
expression leads us to the correct thermal conductivity.
Moreover, for the case of a chain with particles with alternate
masses �two different values�, our scheme also works per-
fectly well: it gives, again, the same value of the rigorous
computation.

Let us, now, analyze our anharmonic crystal. Considering
first order in J, with the integration in � carried out after
using a representation for e−�A �16�, we get, for u�N ,v
�N,


�u�v� = − �2�uTu�−1Juv
�u
2�v

2� + �Mv − Mu��Duv�−1��u
−1 + �v

−1�Juv
�u
2�v+N

2 � +
�u + �v

Duv
�Mu�v�v

−1
�u−N
2 �v+N

2 �

− Mv�u�u
−1
�u

2�v
2��Jvu

† +
Mu

Duv
��Mu − Mv� + �v��u + �v����Mu�u

−1 + Mv�v
−1�
�u−N

2 �v
2�Juv

† + ��u−N
�u−NP���u−N��v
2��u

−1

+ �v
�u−N
2 P���v��v

2��v
−1�Jvu

† � , �4�

where Mu�Mu−N, Duv= �Mu−Mv�2+ �Mu�v+Mv�u���u
+�v�. For u�N, 
�u

2�=Tu; but the computation of 
�v
2�, v

�N, is not easy �note that d� is a single variable distribu-
tion, and so, 
�u

k�v
m�= 
�u

k�
�v
m��. Let us assume some regime

before any approximation: we consider a high anharmonic
system, i.e., � large and M small. Thus, we take 
�v

2�
=2c1Tv

1/2 /�v
1/2, 
�v

4�=4c2Tv /�v. If M =0, we would have c1
���3 /4� /��1 /4��1 /3, c2���5 /4� /��1 /4�=1 /4. To deter-
mine the values of c1 and c2, we turn to the expression of the
heat current F j→=Juv�
�u�v�− 
�u−N�v+N�� /2, with u−N
= j, v= j+1, take all sites at the same temperature T and find
the values such that F j→=0. We obtain c2=1 /4 and c1
=1 /2. Then, we perform the further computations. For high
anharmonicity and very small temperatures, for the dominant
term in F j→�F j,j+1, we obtain, after the rescaling back to
the system with general mass values, i.e., � j→� j /mj

2, etc.,

F j,j+1 = J2��mjmj+1Dj,j+1�−1�Tj − Tj+1�

� J2��1/2��mj+1Tj
1/2 + mjTj+1

1/2 ��−1�Tj − Tj+1� , �5�

where we take, after the rescale, uniform potentials and cou-
plings: � j =�, etc. From F j,j+1 above and the self-consistent

condition F=F1,2=F3,4= ¯ =FN−1,N, which establishes that
the heat current comes from the first reservoir, passes
through the chain and goes out by the last reservoir, we de-
termine the temperature profile. We have

F�m2T1
1/2 + m1T2

1/2�/C = T1 − T2 = ¯ ,

F�mNTN−1
1/2 + mN−1TN

1/2�/C = TN−1 − TN,

where C=J2 /�1/2�. We sum all the equations to obtain

F��m2T1
1/2� + �m1 + m3�T2

1/2 + ¯ + �mN−2 + mN�TN−1
1/2

+ mN−1TN
1/2�/C = T1 − TN,

that gives us, from F=K�T1−TN� / �N−1�, an expression for
the thermal conductivity K. The system of equations above
may be rewritten as

T1 − T2

m2T1
1/2 + m1T2

1/2 = ¯ =
TN−1 − TN

mNTN−1
1/2 + mN−1TN

1/2 .

For the case of particles with the same mass, the equations
become T1

1/2−T2
1/2= ¯ =TN−1

1/2 −TN
1/2, that leads to a linear pro-
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file for T1/2, i.e., Tk
1/2=T1

1/2+ ��k−1� / �N−1���TN
1/2−T1

1/2�. For
a general mass distribution, the problem is more compli-
cated: let us examine it in the case of a small temperature
gradient. We write T1=T+a1� and TN=T+aN�; T ,a1 ,aN and
� given �� small�. Then, Tj is a function of �, with values
between T1 and TN: Tj =T+aj�+O��2�. Let us analyze only
the first order in �. From the equations for the self-consistent
condition, we get the solution aj =a1+ �a1−aN�S j /SN, S j
=m1+2m2+ ¯+2mj−1+mj. Hence, turning to the thermal
conductivity formula, after algebraic manipulations, we ob-
tain

1

K
−

1

K�
=

��a1 − aN�
C�N − 1�2T1/2SN

�mN
2 − m1

2� ,

where K� is the conductivity for the system with inverted
boundary baths. And so, there is rectification even for a small
gradient of temperature. And more, if the graded mass grows
with N2, i.e., mj = j2 ·m1, then rectification does not decay
with N. By taking TN�T1 �i.e., aN�a1� and mN�m1, we see
that the thermal conductivity is bigger when heat flows from
the large to the small mass, as experimentally observed in a
graded system �7�.

We stress here that the dependence on temperature for the
local anharmonic conductivity comes from the dynamics:

��t���e�−tA���0�, where A depends on T for the anhar-
monic �not for the harmonic� case. The combination of par-
ticle masses and temperatures, and the difference as we in-
vert the chain, lead to rectification.

Now, we consider the investigation of NDTR. We turn to
Eq. �4�, that is directly related to the heat flow, and is valid
for weak interparticle interaction J in any regime: low and
high anharmonicity, temperature, etc. All the terms include D
in the denominator, except the first one that, however, may
be manipulated and absorbed by the other terms. Hence, F j→
will have Dj,j+1 in the denominator �see, e.g., the first equal-
ity in Eq. �5�, the expression for high anharmonic regime�,

where, we recall, Dj,j+1= �M j −M j+1�2+2�2�M j +M j+1�,
M j =Mj + 
� j� j

2�, expression determined for a system with
unit masses. For high anharmonicity we have 
� j� j

2�
�Tj

1/2 /� j
1/2; and for very low anharmonicity, 
� j� j

2�
�� jTj /Mj. Rescaling to get the expression for a system with
different values for the particle masses, and considering high
anharmonicity, just to fix the expression for the temperature
behavior �but the analysis below, adjusting the power of T,
follows anywhere�, we have, for the first term in Dj,j+1

�M j − M j+1�2 = �cjmj+1 − cj+1mj�2/�mjmj+1�2,

cj = �M +�1/2Tj
1/2�. The second term in D always increases

with T, and is subdominant for � small; note however that it
shall dominate for very small T, as assumed in the second
part of Eq. �5�. Let analyze the first term, considering a
graded mass chain. For mj+1�mj and Tj+1�Tj, i.e., gradient
of mass and temperature at the same direction, if �Tj =Tj+1
−Tj ��mj =mj+1−mj, then cjmj+1�cj+1mj; and if �Tj
��mj, then cjmj+1�cj+1mj. Recall that �Tj increases as we
increase Tj, and, of course, �Tj depends also on T1−TN, the
“total gradient”: �Tj will be very small if �T1−TN� is very
small. Hence, starting from a very low total temperature gra-
dient �T, as we increase �T, then �M j −M j+1�2 first de-
creases, but after same point it becomes an increasing func-
tion. That is, 1 /D first increases and, in sequel, decreases
with �T. As we have F=F j �D−1�Tj, and D changes as
c̃�Tj

1/2, with c̃ depending on � ,�mj, if � and �mj are not
very small, then c̃�Tj

1/2 dominates �Tj �Tj �1�, and the heat
current first increases and then decreases with �T. In other
words, we have NDTR.

To conclude, we stress that diodes of graded materials
sound to be experimentally reliable �7�, and ubiquitous struc-
tures: our results follow for many other anharmonic poten-
tials as indicated by the formalism derivation.
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