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We show that in a microfluidic network with low Reynolds numbers, a system can be irreversible due to
hysteresis effects. We simulated a network of pipes that was used in a recent experiment. The network consists
of one loop connected to input and output pipes. A train of droplets enters the system at a uniform rate, but the
droplets may leave the system in a periodic or even a chaotic pattern. The output pattern depends on the time
interval between incoming droplets as well as the network geometry. For some parameters, the system is not
reversible.
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Fluids behave differently at the micro scale, where factors
such as surface tension, energy dissipation, and viscosity
dominate. The Reynolds number �RN� is low and the flow
stays laminar. This leads to nonintuitive behavior in a micro-
fluidic Network �MN�. MNs are networks of channels and
pipes of 1 to 1000 �m �1,2�. They are applied in inkjet
printers, lab-on-a-chip devices, fuel cells �3�, and biochips
�4,5�. Moreover, it is possible to make logical gates, signal
encoders, and decoders �6,7�.

Fuerstman et al. investigated coding and decoding signals
using a simple network of microtubes. Their network is made
of a single loop, with one input and one output �7� �Fig. 1�. A
constant flow of fluid enters the system from the input pipe
and leaves from the output pipe. The fluid carries droplets of
an immiscible liquid. The droplets are large enough to block
the pipes but small enough to be stable along the path. At a
T-junction, the droplets cannot split. Which path they take
depends upon the fluxes in the pipes. The fluxes are deter-
mined by the droplets in the pipes so the process is history
dependent. Droplets and carrier flow make a binary signal
that carries information. This suggests that MNs can be rep-
resented by equivalent electrical circuits �8,9�.

The flow rate in any branch is determined by the loop
geometry and the presence of droplets in the branches. While
the capillary force of a droplet slows down the current in one
branch, the other branch become more favorable for the next
incoming droplet. Considering droplets as 1 and no droplets
as 0, we can define a binary signal. Such a signal can be
encoded to a different signal by a MN as simple as a loop.
The output pattern depends on the time intervals between
input droplets and the geometry of the loop. This can be seen
as a way to code a signal. It is possible to restore the original
signal by a decoder. The reversible dynamics of fluids with

low RNs suggest that the signal could be decoded if the
output signal were fed to a system of pipes with the same
geometry �7�. The possibility of making logical microfluidic
devices has been examined by Prakash and Gershenfeldof
based on the same concept �6� which has raised the interest
of computer scientists �10�.

To study a single loop encoder, we feed it with a uniform
chain of droplets and see how the loop alters the intervals
between droplets. In addition, we can track the droplets in-
side the system, providing information about the branch that
a droplet selects. This information gives us another informa-
tive binary signal, which has been studied by Jousse et al.
�11�. We ran a simulation based on the experiment by Fuer-
stman et al. �7�. Our approach is similar to the approach of
Schindler and Ajdari �9�. The main difference is that we have
taken in to account the velocity dependence effect of drop-
lets. Our results show that the system can be chaotic, even
though the RN is small. This is because of the nonlinear,
history-dependent dynamics of the system. In addition, re-
versibility is not a general property of the system and it may
break down even in the nonchaotic regime. We also investi-
gated the relationship between patterns of output time inter-
vals and the path selection of droplets.

In a pipe of length L, diameter D and at low RNs, the flux
Q is related to the pressure difference of pipe ends, �P, via
�P
Q � �L

D4 , where � is the viscosity. A droplet affects the flux
by introducing a capillary pressure drop,
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FIG. 1. ABC and ADC are identical except in their lengths, that
is one of variable parameters. We call the system symmetric if the
branches are equal and asymmetric otherwise.
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�PCa �
�
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Ca2/3, �1�

where � is the surface tension between the gas and the liquid
and Ca= �v

� , where Ca is the capillary number �12–14�. Here,
v indicates the droplet velocity, which is v= Q

�R2 ; therefore,
Eq. �1� is true for gas bubbles in a liquid. Nevertheless, it can
be used for small droplets when capillary forces dominate
viscosity �11�.

Flux conservation on the network nodes results in a sys-
tem of cubic equations, which is solved numerically. The
flux rates of the pipes are preserved as long as the number of
droplets in all of the pipes is unchanged. Therefore, we cal-
culate the position of the droplets over time until a new
droplet enters a pipe or a moving droplet meets the end of a
pipe. We call these new events. When a droplet reaches the
bifurcation, it selects the branch that has a stronger flow. For
the case of equal flux, we suppose that one of the branches is
always more favorable. Then we recalculate the �Ps and the
Qs after any new event and continue in this way.

We studied the effect of the length difference ��L� be-
tween the branches on the output signal. We also investigated
the impact of the time interval of input droplets ��T� on the
output signal while all other parameters were fixed. We per-
formed the simulation for two different settings. In one set-
ting, ��L=0� with a ratio L

D =40 �symmetric�. In the other,
there is a 10% difference in the length of the branches, but
the diameters are the same �asymmetric�. For both configu-
rations, we studied the time coding of the output signal as a
function of the time intervals between entering droplets.

To study the reversibility, we consider two different ways
of signal decoding. In both methods, the sequence of the
time intervals between the output droplets is saved and used
as an input signal in the reversed process. In the first method,
which we call in-place decoding, we stopped the coding pro-
cess and reversed the direction of flow. In the second
method, we supposed that we had only the coded signal and
a decoding device, identical to the coding device. From the
application viewpoint, this method may be more interesting.
In contrast with the first method, we call it out-of-place de-
coding.

In the simulation, droplets entered at a uniform flat rate.
Therefore, an input signal is specified by a single parameter,
�Ti, the time interval between entering droplets. However, in
the output, the time interval between the droplets might be
different, so the output signal is specified by the sequence,
�Tn=Tn−Tn−1, where n is the number of droplets that have
exited.

For large enough �Tis, the output pattern is identical to
the input pattern. However, by decreasing �Ti, we start to get
different patterns at the output. This happens if a droplet
reaches the entering T-junction while the former droplet has
not yet left the loop. Therefore, the droplet at the junction
will select the branch that is empty and has a higher flow
rate. At this point, we start to get a periodic output pattern
�periodic sequence of �Tns� that is different from the uni-
form input signal. The period length increases as we decrease
�Ti.

By decreasing �Ti even more, we get disordered patterns
with no visible order or periodicity �Fig. 2�. In this case, the
period length equals the number of droplets involved in the
system, which means the system either is aperiodic �chaotic�
or has a period that is longer than the simulation time. The
same behavior is demonstrated in the work of Fuerstman et
al. by Poincare maps �7�.

Like many other chaotic systems, we observe that the
system re-emerges into the chaotic regime at different points
for the symmetric and the asymmetric models. There are
some intermediate intervals where the coder loop is invisible
and the output and input are identical. As shown in Fig. 2,
similar behavior has been observed in both symmetric and
asymmetric networks, though the figures are different. This
indicates that even at low RNs, the system shows chaotic
behavior as a result of the history-dependent dynamics of the
model. The same has been observed in ecological models
�15�.

We studied the reversibility �decoding� of the process in
both the in-place and the out-of-place methods. In the cha-
otic regimes, the process is not decodable with either
method, the input signal information is lost and it cannot be
retrieved. It is possible, however, to restore the original sig-
nal when we have periodic outputs. However, it is not always
true that all of the processes are reversible when they are not
chaotic. This is more surprising for the case of in-place de-
coding.

The behavior of the system for different input time inter-
vals are in Fig. 3 for the asymmetric setup. In the figure, the
patterns of time intervals are shown for before and after the
reversion of the flow. First, the flow goes through the net-
work and the output is shown for some droplets �the left part
of each graph�, then we look at the time interval between
these droplets when the flow is reversed �the right side of
each graph�. The graphs differ only in the time intervals of
the input signals. Therefore, as shown in the figure, even for
periodic output signals, the initial signal is sometimes recon-

1/∆Ti

N
u

m
b

er
o

fb
u

b
b

le
s

0 20 40 60

10
0

10
1

10
2

10
3

10
4

in
a

p
er

io
d

1/∆Ti

N
u

m
b

er
o

fb
u

b
b

le
s

0 20 40 60

10
0

10
1

10
2

10
3

10
4

in
a

p
er

io
d

FIG. 2. Output time intervals versus input time interval �top� for
symmetric setup �left� and asymmetric setup �right�. The period of
the output signal as a function of the input time interval is shown
below each case.
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structable. It is also possible that a periodic encoded signal
shows chaotic behavior when decoded �Fig. 3�c��. Similar
behavior is observed for the symmetric setup. Here, as we
are at low RNs, time reversibility is expected. Again, the
history dependence of the process plays its role. A droplet
chooses a branch that has a faster flow, but when it leaves the
branch, the flows might have been changed. As a result,
when we reverse flow, the droplet that has just left a branch
might go into the other branch.

Looking at Fig. 3, one can ask whether the decoded sig-
nals are a stationary solution. These figures have been se-

lected for demonstration because the solution is converged
upon quickly. Thus, we do in-place decoding for the whole
range of �Ti with appropriate wait time for both the encod-
ing and decoding processes. The map of encoded signals for
both symmetric and asymmetric models has been previously
shown in Fig. 2. The corresponding decoded signals are in
Fig. 4. For both symmetric and asymmetric models, there are
some areas in which the signals are decodeable.

In the out-of-place decoding, the signal can again be de-
coded for some periodic signals. In periodic signals, there is
an additional degree of freedom: the phase, which is depen-
dent upon which droplet should go first when we feed a
periodic signal into an empty device. We observed that, for
the periodic signals, the result is sensitive to this phase. In a
periodic pattern, if we start decoding from different phases,
we might get different signals. The resulting signals are
again periodic and the original signal may be among them
�Fig. 5�. Figure 5�a� shows a periodic signal that is encoded
by an asymmetric setup with a flow of droplets with �Ti

= 1
15. The numbers in the figure indicate the phase. As the

signal has a period of 5, we can feed this sequence into an
empty decoding device starting with any of these droplets.
The figure shows that different patterns are found if we start
the decoding process with droplets numbered 1 and 4, while
the original sequence is constructed if we start from the other
three droplets. Similar features are observed for symmetric
model; however, the results of only the asymmetric model
are presented here.

We can go further by looking at the intermediate pathway
and studying the patterns of pipe sections. We can follow the
train of the droplets and see which branch they are taking.
We call this up �↑ � or down �↓ �. This gives us another way
of decoding a signal. This was introduced by Jousse et al.
�11�. We look at the signal in our asymmetric model. We
suppose that the shorter branch is labeled ↑. If we count the
number of droplets passing through “up” and “down”
branches call them by n↑ and n↓, respectively, then p=

n↑
n↑+n↓

and q=
n↓

n↑+n↓
are the probabilities of a bubble passing through

“up” or “down” branches, respectively. We expect, in the
long run, that more droplets pass through the shorter branch
�↑ � than the longer one �↓ �. So, 1�r= p−q�0. Here r not
only is related to the pipe lengths, but also varies with �Ti.
For a large enough �Ti, when any droplet reaches an empty
loop, all droplets pass through the shorter branch and r=1.
After decreasing �Ti the droplets alternate between the “up”
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FIG. 4. Time intervals between the droplets of in-placed de-
coded signals as a function of uniform time intervals between the
droplets in the original signal �top� and the period of the output
signal as a function of the input �T �bottom�. For both symmetric
�left� and asymmetric �right� setups, there are some regions where
the signal is decoded successfully. The corresponding encoded sig-
nals are in Fig. 2.
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FIG. 5. Out-of-place decoding: a periodic output signal �left�
from the asymmetric setup for �Ti=

1
15 has a period of 5. The output

depends on the phase of the signal in the decoding process if we
start from droplets 1 �middle� or 4 �bottom�. If we start with the
others �the numbers 2, 3, or 5�, the original uniform signal is
reconstructed.
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FIG. 3. In-place decoding for the asymmetric model. The �Ts
are shown for before and after the reversion of flow for 300 �a and
b�, 20 000 �c� and 3000 �d� droplets, in the left and the right side of
each graph �see text�. For �Ti=0.1 �a�, there is a regular and peri-
odic coded signal which is decoded perfectly. For �Ti=

1
11.45 �b�,

there is a periodic coded output, but the decoded pattern is a differ-
ent periodic signal. For �Ti=

1
42.60 �c�, the coded signal is periodic,

but in reversion, it is chaotic. For �Ti=
1

54.00 �d�, the output pattern
is aperiodic, with the values concentrated on some strips. Reversion
produces a similar pattern with more fluctuations.
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and “down” branches. At this point, r=0. It should be noted
that, the up-down signal is alternating but the output interval
is still uniform and identical to the input signal. Thus, if the
up-down signal is periodic, the sequence of time intervals is
also periodic, but they do not need to have the same period.
As we have considered only a very small difference between
the pipe lengths, for any periodic up-down signal and in any
period, the difference between the numbers of ↑ and ↓ is 0 or
1. This means that for any signal with period P, r is either 0
or 1

P , for even and odd P numbers, respectively �Fig. 6�.
To quantify the chaotic behavior, we calculated the

Lyapunov exponent �. We changed the distance between an
incoming droplet and the next droplet by a factor of 10−3 and
then watched the output �Ts. Now, we can compare the per-
turbed system with the original system and determine �: 	n

=�Tn−�T́n Here �T́n is the original output time interval at

step n and �T́n is the perturbed output time intervals. The
difference 	n at step n depends on time, which is denoted by
n here. As time passes, 	n can diverge or converge, which
will tell whether the system is chaotic or not. The time de-
pendence of 	n should read as 	n=e�tn−t0��	0, where 	0 is the
perturbation. In Fig. 7, one can see that � depends upon the
input time interval, �
0 means that 	n diverges, so the sys-
tem is chaotic. The phase diagram �Fig. 7� shows the input
time interval at which � changes its sign, depending on the
size of the branches.

We used a microfluidic network and a set of deterministic
equations to simulate the passage of droplets in the network.
The fluid had a constant flow, which carried the droplets. The
time interval between successive droplets was constant at the
input. We found that patterns of droplets at the output depend
upon the time interval between the input droplets. We ob-

served that, in general, we have both periodic and chaotic
patterns of output, depending on the rate of entering droplets.
This observation agrees with experiments by Fuerstman et
al. �7�.

We found that, although deterministic, the system is not
always reversible. We reversed the time in simulations and
found that in some situations, the process is irreversible and
droplets choose the other branch when returning. This also
depends upon the input time interval of the droplets. We
observed that there is a relationship between irreversibility
and chaos in our system. In general, when the output signal
is periodic, it may be decoded to the original input signal just
by reversing the flow direction, similar to the experiments of
Fuerstman et al. �7�. When it is chaotic, however, it is not
possible to generate the input signal �decode�. Finally, by
calculating the Lyapunov exponent, we generated the phase
diagram of both periodic and chaotic systems �Fig. 7�. This
phase diagram is useful if we were to design a device that
could encode a signal, like the work of �7�. Given the signal
properties, this diagram helps to set the system dimensions in
a way that guarantees reversibility.
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