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A liquid in Cassie-Baxter state above a structured superhydrophobic surface is ideally suited for surface
driven transport due to its large free surface fraction in close contact to a solid. We investigate thermal
Marangoni flow over a superhydrophobic array of fins oriented parallel or perpendicular to an applied tem-
perature gradient. In the Stokes limit we derive an analytical expression for the bulk flow velocity above the
surface and compare it with numerical solutions of the Navier-Stokes equation. Even for moderate temperature
gradients comparatively large flow velocities are induced, suggesting to utilize this principle for microfluidic
pumping.
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I. INTRODUCTION

Microtextured surfaces have mainly received attention
due to their wetting properties �1�. A liquid drop placed on a
suitably structured hydrophobic surface will only be in con-
tact with the material on protruding tips, while gas is trapped
in the valleys in between. In this so called Cassie-Baxter
state nearly perfect hydrophobicity can be obtained. Re-
cently, such surfaces have gained interest with respect to
their ability for drag reduction �2,3� and surface induced
transport �4,5�, in particular electroosmotic and diffusioos-
motic flow.

In this Brief Report, we analyze temperature induced Ma-
rangoni convection as a driving force for fluid transport
along microtextured surfaces. In particular, we focus on
finned surfaces as sketched in Fig. 1, with a temperature
gradient along or perpendicular to the fins, and the liquid
being in the Cassie-Baxter state. We use an integral relation
for the Stokes equation to derive an analytical formula for
the macroscopic flow velocity observed at some distance
above the surface. Both situations are further investigated by
numerical solutions of the Navier-Stokes equation and com-
pared to the analytical formula. Our analysis focuses on sub-
strates of high thermal conductivity, such as silicon.

Fluid actuation and transport are core functionalities in
many microfluidic systems. The most prominent examples
for the corresponding driving mechanisms are pressure-
driven and electroosmotic flow. Our analysis shows that
moderate temperature gradients of the order of 10 K/cm can
lead to fluid velocities of several mm/s for water based sys-
tems on superhydrophobic surfaces. Thermocapillary con-
vection may thus add to the portfolio of actuation principles
in microfluidic settings and may even enable larger flow ve-
locities than typically achieved with electroosmosis.

II. MARANGONI FLOWS

The stress on a liquid-gas interface due to a gradient in
surface tension is �6�

ni�ijtj = − ti�i� , �1�

where ni and ti are components of the interface normal and
tangential vectors in i direction, and we use the convention to

sum over repeated indices. �ij are the components of the
stress tensor and � is the surface tension. For an incompress-
ible Newtonian fluid characterized by the viscosity � the
total stress tensor is

�ij = ���iuj + � jui� − p�ij , �2�

consisting of a viscous part proportional to the shear rate
tensor and a part originating from the pressure field p. The
equation of motion for the fluid is the stationary Navier-
Stokes equation

� j��ujui� = � j� ji, �iui = 0, �3�

where the fluid is assumed to be incompressible. The left
hand side of the momentum equation becomes negligible at
small velocities �Reynolds numbers�, and we will call this
limit the Stokes limit, with the corresponding equation of
motion being the Stokes equation. On the fin surface we
assume a no-slip boundary condition, while Eq. �1� consti-
tutes the corresponding boundary condition on the liquid-gas
interface.

The temperature in the fluid is governed by the stationary
limit of the energy equation

�cpui�iT = k�T , �4�

where �, cp, and k denote the density, specific heat capacity
and thermal conductivity of the liquid, respectively. In order
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FIG. 1. �Color online� Sketch of the geometry. The z axis is
always chosen along the main temperature gradient, the y axis al-
ways normal to the structured surface. In this example we assume a
temperature gradient along the fins �longitudinal�.
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to tackle the problem analytically, we assume the density,
viscosity, heat capacity, and thermal conductivity to be inde-
pendent of temperature while linearizing the temperature de-
pendence of the surface tension �7�. As long as the tempera-
ture differences do not become too large this is a suitable
approximation. Moreover, we will restrict our analysis to a
flat liquid-gas interface.

Equating the viscous part of the stress tensor, ��U /L,
with the Marangoni stresses, � ��

�T �zT, yields a dimensionless
number, �= �U/L

��
�T

�zT
, which for a given geometry characterizes

the flow problem together with the Reynolds number, Re
=�UL /�, and Prandtl number, Pr=cp� /k. Below, we will
demonstrate that � is closely related to the macroscopic slip
length in a simple shear flow over textured geometries.

III. LONGITUDINAL FINS

Consider a geometry where the temperature gradient in
the bulk of the substrate has the value ��zT� and is parallel to
the fins, which defines the z direction �Fig. 1�. The geometry
is implied to be of infinite extent in the plane of the substrate
and at a height H above the substrate a symmetry plane is
assumed. In that case there is translational symmetry in z
direction and hence the z component of the temperature gra-
dient will have the same value everywhere in the geometry.
Moreover, the velocity and pressure in the fluid will not de-
pend on this coordinate. This simplifies the energy equation
�Eq. �4�� to a two-dimensional �2D� equation

�cp�u���T + uz��zT�� = k��T , �5�

where we have used the shorthand notation u���=ux�x
+uy�y and ��=�x

2+�y
2. The stationary Navier-Stokes equa-

tions partially decouple into a 2D perpendicular equation for
u�= �ux ,uy� and a convection diffusion equation for the lon-
gitudinal velocity uz,

��u����u� = ���u� − ��p , ��u����uz = ���uz,

�xux + �yuy = 0. �6�

In the Stokes limit the left hand sides can be set equal to zero
and the equation for uz decouples from the perpendicular
parts.

As noted above, the z component of the temperature gra-
dient along the fins is constant everywhere due to the trans-
lational symmetry and this leads to a main flow along the fins
toward the colder regions. Additionally, temperature varia-
tions perpendicular to the main flow occur, the temperature
being lower close to a fin than in the middle between two
fins. Due to the symmetry of the problem, these perpendicu-
lar temperature gradients will only lead to perpendicular vor-
tices and not produce any net flow.

IV. LORENTZ RECIPROCAL THEOREM

This integral relation for the Stokes equation �8� has al-
ready proven useful in the case of electro-osmotic flow �9�. It
is obtained by assuming two solutions for the Stokes Eq. �3�,
one characterized by “unhatted” fields �u , p� and the other

denoted by the respective “hatted” values �û , p̂� correspond-
ing to some reference flow field, possibly subject to different
boundary conditions. Multiplying Eq. �3� in the Stokes limit
by û, integrating over a control volume 	, integrating by
parts and subtracting the corresponding equation where hat-
ted and unhatted fields are interchanged, leaves only the
boundary integrals

��
�	

dAi�ûj�iuj − uj�iûj� = �
�	

dAi�ûip − uip̂� , �7�

where the continuity equation was used to simplify the pres-
sure term.

Let us now take as the reference flow a Couette flow over
the fin geometry, fulfilling the no-slip boundary condition at
the solid-liquid and a zero shear stress boundary condition at
the liquid-gas parts of the interface. Far away from the sub-
strate a constant shear rate 
̂ is assumed. This flow has been
studied by Philip �10�, who gives an analytical formula for
the flow field and the corresponding macroscopic slip veloc-
ity, expressing that far away from the substrate it appears as
if the liquid glides over the microstructured surface. How-
ever, we shall not need the details of this flow field but only

the “global” parameter, the slip length �̂l over the surface. In
particular, the flow field far away from the surface has the
form

û � 
̂�y + �̂l�ez. �8�

As our control volume 	 we take a rectangular box span-
ning the distance from the center of some fin to the center of
its neighbor, stretching an arbitrary distance along the fins
and being of sufficient height, H, such that the flow field on
the top surface is unaffected by the details induced by the
bottom surface, the plane containing the solid-liquid and
liquid-gas interfaces. Our numerical calculations confirm that
this assumption is fulfilled reasonably well already at a dis-
tance of H�2L. We then find that at the top surface the
Couette flow is approximately given by Eq. �8�, while for the
�unhatted� thermocapillary flow a vanishing shear stress can
be assumed since the driving force is surface tension. This
leads to a constant flow velocity at the top surface, i.e.,

u � uth,lez. �9�

In the surface integrals of Eq. �7� we start by considering
the “front and back” surfaces perpendicular to the fins. Due
to the translational symmetry along the fins and the vanish-
ing of all gradients in this direction the integrals originating
from the shear-stress contribution vanish and those originat-
ing from the pressure contribution cancel when summing
over the front and back surfaces. The same applies to the
surfaces parallel to the fins since these faces constitute sym-
metry planes. Furthermore, since the flow is parallel to the
top and bottom faces the integrals containing the pressure
vanish, and we are left with the shear-integrals over these
surfaces. From Eqs. �8� and �9� we find for the top surface
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��
top

dAi�ûj�iuj − uj�iûj� = − �uth,l
̂A , �10�

where A is the area of the surface. The integral over the
bottom surface only has contributions from the liquid-gas
interface since the velocity vanishes on the fins

��
bottom

dAi�ûj�iuj − uj�iûj� = �z��
liquid−gas

dAyûz, �11�

where we have used the fact that the reference flow only has
components in z direction and a vanishing shear rate at the
liquid-gas interface. We thus arrive at

uth,l =
�z�

�
̂

1

A
�

liquid−gas

dAyûz =
�z�

�
�̂l, �12�

where the last equality comes from another application of the
Lorentz reciprocal theorem taking a Couette flow with no-
slip boundary condition everywhere on the bottom surface
and shear rate 
̂ as unhatted flow, i.e., u= 
̂yez, while retain-
ing the Couette flow over longitudinal fins as reference flow.
Also here only the integrals on the top and bottom surface

containing the shear rate contribute, giving �
̂2�̂lA on the
top surface and �
̂	liquid−gasdAyûz at the bottom.

Equation �12� is our result for the longitudinal thermocap-
illary velocity in the Stokes limit. The corresponding longi-
tudinal slip length is �10�

�l = − �2/��ln cos��a/2� , �13�

where a=B /L is the liquid-gas fraction of the surface and

�l= �̂l /L the dimensionless slip length in terms of half the fin
spacing �c.f. Fig. 1�. For later comparison, we invert relation
�12� and define the dimensionless “longitudinal thermocapil-
lary slip coefficient” as

�th,l = uth,l
�/L

���/�T���zT�
. �14�

For realistic values of 10 m wide fins with 40 m
spacing in between and an applied temperature gradient of
��zT�=−10 K /cm we obtain from Eqs. �13� and �12�, using
the values of Table I �mimicking water�

�l = 0.7476, �̂l = 18.7 m, uth,l = 2.9 mm/s. �15�

Note that this corresponds to a Reynolds number of approxi-
mately Re=�uL /��0.07, so the Stokes equation is still ex-
pected to be a good approximation.

V. TRANSVERSE FINS

In the case of thermocapillary convection perpendicular to
the fins, the temperature gradient on the liquid-gas interface
is not constant in the main flow direction and it is not pos-
sible to pull �z� out of the integral, as done in Eq. �11�. In
fact, only in the case where the Marangoni stresses on the
liquid-gas interface can be decomposed into a constant �lead-
ing to a main flow� and a part antisymmetric with respect to
reflection at a fin center �contributing only to convective rolls

but no main flow� can the Lorentz reciprocal theorem be
applied as before. Nevertheless, we expect the transverse slip
coefficient �t=�l /2 obtained for Couette flow over a finned
geometry �10� to define an upper bound for the thermocap-
illary slip velocity that can be obtained. In analogy to Eq.
�14�, we therefore define the “transverse thermocapillary slip
coefficient”

�th,t = uth,t
�a/L

���/�T���zT�
. �16�

In this definition we have incorporated the fact that the gra-
dient driving the thermocapillary convection is
��zT�liquid−gas=a−1��zT� since the temperature on the solid-
liquid interfaces is approximately constant, owing to the as-
sumed high thermal conductivity of the substrate. This seems
to contradict the constant temperature gradient assumed in
the bulk of the substrate. However, for fins much taller than
wide, as usually applied for superhydrophobic surfaces, the
diffusional character of the heat conduction equation assures
that only the average temperature from the bottom prevails at
the top of the fin.

At this point a remark on the constant-temperature bound-
ary condition on the solid-liquid interfaces is in order. This
approximation will only be valid if the heat flux from the
liquid is small enough. From dimensional considerations the
wall heat flux in a fin scales as Jfin��cputh,l��zT�H / �1−a�.
For an estimate we insert the values used to arrive at Eq. �15�
together with a geometry height H=200 m and obtain as a
measure for the temperature gradient in the fin Jfin /kSi
�0.8 K /cm� ��zT�, where the thermal conductivity of sili-
con kSi=148 W / �m K� was used. Thus the temperature gra-
dient in the fin is expected to be much smaller than the
applied temperature gradient. The largest temperature gradi-
ent we will consider is ��zT�=−60 K /cm, which from the
above estimate is seen to push our model to its limits. Nev-
ertheless, this only gives a typical size of the temperature
gradient in the fin, which will be mostly directed along its
height and not along the solid-liquid interface.

TABLE I. Boundary conditions and model parameters. The cor-
responding geometry is displayed in Fig. 2.

Boundary Longitudinal Transverse

1, 1a, 1b
ux=uy =uz=0,

T=T0

uy =uz=0, T 
1A=T0,
T 
1B=T0+2L��zT�

2
�xy =− ��

�T�xT , �yz=− ��
�T ��zT�,

uy =0, �yT=0
�yz=− ��

�T ��zT�,
uy =0, �yT=0

3, 3a, 3b
ux=0, �xy =0,

�xuz=0, �xT=0
ui 
3A=ui 
3B , p 
3A= p 
3B,

�yz=0,

T 
3B=T 
3A+2L��zT�,
�zT 
3B=�zT 
3A

4
uy =0, �xy =0,

�yuz=0, �yT=0 uy =0, �yz=0, �yT=0

�=1 mPa s, �=1000 kg /m3, k=0.6 W / �m K�,
cp=4200 J / �kg K�, ��

�T =−0.155 mN / �m K�, T0=300 K
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VI. NUMERICAL RESULTS

To test the analytical result �12� and to investigate the
influence of inertia and nonuniform temperature gradients at
the liquid-gas interface, we have solved Eqs. �5� and �6� in
the longitudinal case and Eqs. �3� and �4� in the transverse
case using a finite element discretization �Comsol mutiphys-
ics�. Due to symmetry a 2D calculation suffices in both cases
and we restrict our attention to the liquid while assuming the
temperature of the substrate as given. The corresponding ge-
ometries are shown in Fig. 2. For definiteness we consider a
fin spacing of 2L=50 m and a geometry height of H
=200 m while varying the liquid-gas interface area frac-
tion a=B /L. The boundary conditions as well as model pa-
rameters are given in Table I. In particular, the wall tempera-

ture is prescribed, while the liquid-gas interfaces are
assumed to be adiabatic.

Figure 2 shows longitudinal and transverse thermocapil-
lary slip coefficients for different free surface fractions and
temperature gradients. The solid and broken lines show the
respective slip coefficients as calculated by Philip �10�. In
the longitudinal case slight deviations from the value ob-
tained in the Stokes limit are observed at temperature gradi-
ents above ��zT�=−6 K /cm. This is expected, since for the
largest temperature gradient of −60 K /cm the velocities are
�25 mm /s for a=0.9, corresponding to Re�1. In the trans-
verse case, some larger deviations appear. However, the data
points stay below the limiting value obtained from the results
of Philip even at low Re. Owing to nonconstant temperature
gradients along the liquid-gas interfaces, the flow velocity is
reduced compared to the limiting value, an effect that shows
up especially at larger Reynolds numbers. Apparently, with
the longitudinal arrangement significantly larger flow veloci-
ties can be reached than with the transverse one.

We remark at this point that a grid independence study
shows classical “Richardson convergence” of the results for
the thermocapillary slip length toward the theoretical value
�Eq. �13�� in the Stokes limit, with the difference 
�th,l−�l

decreasing almost inversely proportional to the grid spacing.
From this we estimate the accuracy of the calculated values
for �th to be of the order of 3�10−3, i.e., far below the
marker size in Fig. 2.

VII. CONCLUSION

We have analytically derived a relation for the thermocap-
illary flow velocity along a finned superhydrophobic surface.
Even at moderate temperature gradients the resulting veloc-
ity values are large enough to suggest using this principle for
microfluidic pumping. The presented relationships between
the slip length and the thermocapillary flow velocity give a
very good approximation for the bulk fluid transport in the
case of longitudinal fins and represent an upper limit to the
flow velocity achievable with transverse fins. We expect that
in the same spirit simple relationships for the thermocapil-
lary flow velocity along alternative superhydrophobic sur-
face structures can be found.
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(b)

FIG. 2. �Color online� �a� Simulation domains for calculating
longitudinal �left� and transverse flow �right�. The z axis is always
chosen along the main temperature gradient, the y axis always nor-
mal to the structured surface. Boundary conditions and model pa-
rameters are specified in Table I. �b� Longitudinal �filled symbols�
and transverse �open symbols� thermocapillary slip coefficients as
defined in Eqs. �14� and �16� for different free surface fractions a
=B /L and temperature gradients parametrized by ��zT�=
−10−f60 K /cm. The lines show the respective slip coefficients as
calculated by Philip �10�, i.e., Eq. �13� for the longitudinal case
�solid line� and half of this value for the transverse case �broken
line�.
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