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Dynamics of noncontact rack-and-pinion device: Periodic back-and-forth motion of the rack
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We study a nanoscale system composed of one corrugated cylinder (pinion) and one corrugated plate (rack).
The pinion and rack have no mechanical contact, but are coupled via the lateral Casimir force. We consider the
case where the rack position versus time is a periodic triangular signal. We find that the device can rectify the
periodic but nonsinusoidal motion of the rack. Using the typical values of parameters, we find that the pinion
rotates with an average angular velocity {0=1~100 Hz. Experimental observation of the pinion rotation will
show that the quantum vacuum can intermesh the noncontact parts of nanomachines.
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I. INTRODUCTION

As a key interaction at nanoscale, the Casimir force [1,2]
influences the dynamics of small devices. Chan and collabo-
rators have experimentally demonstrated frequency shifts,
hysteretic behavior, and bistability caused by the Casimir
force in the frequency response of a periodically driven mi-
cromachined torsional oscillator [3].

Two sinusoidally corrugated surfaces experience the laz-
eral Casimir force, as has been predicted [4,5] and verified
experimentally [6]. Recently it has been suggested that the
lateral Casimir force may intermesh the noncontact parts of
nanomechanical devices [7-11]. This gives a partial solution
to the wear problem in nanoscale mechanical systems [12].

Ashourvan, Miri, and Golestanian studied a rack and pin-
ion with no contact but coupled via the quantum vacuum.
The pinion is subject to an external load and experiences
friction when rotates around its axis. It is shown that both
uniform [8] and sinusoidal [9] motion of the rack can be
converted into uniform motion of the load. In this Brief Re-
port, we consider the case where the rack position versus
time is a periodic triangular signal. There are three reasons
for our study. First, from an experimental point of view, it
seems easier to enforce a rack to undergo a bidirectional
rather than a unidirectional motion. Realization of a high
velocity unidirectional motion requires a rack of great length.
Second, it is an immediate question whether the device can
rectify periodic but nonsinusoidal motion of the rack. Third,
we focus on a heavily damped system, so that inertia can be
neglected. We show explicitly that the rectified motion of the
pinion is a consequence of the inherent nonlinearity of the
system.

Here, we consider the noncontact rack and pinion device
shown schematically in Fig. 1(a). Two harmonically corru-
gated plates with identical wavelength \ and lateral displace-
ment x—y experience a lateral Casimir force Fjyem=
-F sin[zT’T(x— v)]. The amplitude of the lateral Casimir force
depends on the distance H between the pinion and rack, cor-
rugation wavelength A, corrugation amplitudes a, and a,,
and radius R [4,5,8]. Recently, the (lateral) Casimir force in a
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variety of complex geometries have gained much attention,
see e.g., [13-18]. The Casimir torque plays the key role in
the equation of motion

2 cav_
—RFsm{ N (x—y)} “Rdn rW=0 (1)

for the coordinate x=R 6, where 6 is the angle of rotation and
{ is the rotational friction coefficient. In the overdamped mo-
tion of the pinion, X and {\/(FR?) are the natural units of
length and time, respectively. We define the scaled variables
X=x/\, Y=y/\, and T=FR?t/({\). We assume that the rack
position y versus time ¢ is a periodic triangular signal as
shown in Fig. 1(b). The periodic signal can be characterized
with the parameters y,, T, T}, and S;. In its first period
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FIG. 1. (Color online) (a) The schematics of the rack and pinion
device. The pinion and rack have sinusoidal corrugations of wave-
length N and amplitudes a, and a,, respectively. The rectified mo-
tion of the pinion manifests in a positive average velocity V,,, while
working against an external load W. (b) The rack position versus
time is a periodic triangular signal, characterized by yq, T+, Ty, and
Sl.
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+S,FR*t/ 0< <T,,
Yo+ g 2

y= FRZZ (2)
Vo= NS Ty + S,FR* 1 T, < e <T,.

Here S,=S8,T./(T.—T,;). Note that the average velocity
(dyldt) is zero.

II. PERIODIC SOLUTIONS

Introducing Z=Y—-X=(y—x)/\, the equation of motion
can be rewritten as [19]

Wr

—+8, 0<mod(T,T)) <T.,,
dz . FR
— +sin(27wZ) =
daT Wr
—+8, T.<mod(T,T)) <T,.
FR

3)

This maps the pinion dynamics to the dynamics of over-
damped Josephson junction driven by a square wave pulse
[20]. The analytical solutions of dZ/dT+sin(2wZ)=I for I
>1 and I<1 are

1 I tan(7Z) — 1
T-T ——arctan = ,
VI~ -1 V- =1
1 Itan(7Z) -1 -1 -1
7T —_— —\J a—
T-Ty= ’ 5In ’ AR (4)
2m\1 =T Itan(wZ) =1+ 1 =T

respectively. Here 7}, is an integration constant. Note that in
case of I<1, Z= ﬁarcsin I is a stable fixed point, while Z

=+21_-Larcsin/ is an unstable fixed point. If the initial

27
value Z(0) falls into [%Tarcsin 1, %—ﬁarcsin 1], then Z(z) de-
creases in time approaching the stable fixed point. If the
initial value Z(0) falls into [—%—ﬁarcsin I, %Tarcsin 1], then
Z(t) increases in time approaching the stable fixed point. It
follows that there are upper and lower bounds on the change

of Z.

1 1
max{Z(x) — Z(0)} = —arcsin I + —,
T 2

min{Z(e) - Z(0)} = }Tarcsin I- % (5)

In order to solve nonlinear Eq. (3), one must consider differ-
ent cases according to the values of |Wr/FR+S,| and
|Wr/FR+S,).

For |Wr/FR+S,|<1 and |Wr/FR+S,|<1, Z
=$arcsin(Wr/FR+Sl) and Z=%Tarcsin(Wr/FR+S2) are
stable fixed points for 0<mod(7T,T,)<T, and T,
<mod(T,T,)<T,, respectively. The average velocity

(dZ/dT) is zero. In other words

This case is not interesting from an experimental point of
view, since the load W has no net motion.
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Now we consider the case where |Wr/FR+S,|>1 and
|Wr/FR+S,|<1 [21]. We search for periodic solutions such
that Z(T,)=Z(0)+n, where n is an integer. Then (dZ/dT)

=n/T; or
V = @ — ii (7)
Po\dr/ T T
FR

The load W has a net upward motion when n<0.

To find n, we use Eq. (4) to write tan(w;7T—w,;Ty;)
= wll[(% +S)tan(7Z)—1] for 0 <mod(T,T;) <T., where T,
is an integration constant and w,=m\(Wr/FR+5,)>=1. Ty,
can be easily written in terms of Z(0).

- tan(a)le) = wl{(% + Sl)tan('ﬂ'Z(O)) - 1:| . (8)

1

We also get the following equation for Z(T.).

tan(w, T, — w,Ty;) = wi{ (% + Sl>tan[7TZ(T*)] - 1}.

1

)

We find  expQo,T-20,T0)=| 7 | for T,
<mod(T,T,)<T,. Here 2uZ,=arcsin(Wr/FR+S,), w,
=m1-(Wr/FR+S,)?, and integration constant Ty, can be
written in terms of Z(7;). Now using the periodicity condi-
tion Z(T,)=Z(0)+n, we find

tan mZ—cot 7Z,
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FIG. 2. (Color online) (a) Admissible values of y,—x, in unit of
\ as a function of Wr/(FR). Here T.=0.1, T;=2, and S;=-15. It
follows that n=-1 and V1,=FR2/(2§’). (b) y—x in unit of \ vs time
in units of {N/(FR?), for yg—xq=0.2169\ and Wr=0.2FR. (c) The
velocity dy/dt—dx/dt in units of FR?/{ as a function of time, for
the same parameters.

037101-2



BRIEF REPORTS

(yo—20) n= n = L
X 04 /
0.2 -
a
) 02 04 06 108 |,
-02 FR
-04 \
A
1 3 S PRy
A
-1 C
b)
-2
-3
= |
rre 1 3 S ey
ey
-5 (
)
-10
-15

FIG. 3. (Color online) (a) Admissible values of y,—x in unit of
\ as a function of Wr/(FR). Here T.=0.1, T)=2, and S;=-15.
Three branches corresponding to n=-1, n=0, and n=1 are shown.
In case of n=-1, the load W acquires the upward velocity V),
=FR?/(2{). (b) y—x in unit of \ vs time in units of {\/(FR?), for
Yo—xo=0.2603\ and Wr=0.2537FR. (c) The velocity dy/dt
—dx/dt in units of FR2/{ as a function of time, for the same
parameters.

[tan 7Z(0) — cot wZ |[tan wZ(T,) — tan ©Z,]
[tan 7Z(0) — tan wZ_ ][tan 7Z(T,) — cot wZ,]
(10)

62w2(T]—T*) —

For a given set of parameters Wr/(FR), T, T, and S; we
solve Egs. (8)—(10) to find the admissible values of initial
condition Z(0). We obtain n from the periodicity condition
Z(T,)-Z(0)=n. Note that for 0<T<T,, (dZ/dT)
=sgn(Wr/FR+S,)w,/m, where sgn(x)=x/|x|. Thus Z(T,)
—Z7(0) =sgn(Wr/FR+S,)w,; T,/ 7. Equation (5) shows that
27.-1/12<Z(T))~-Z(T,)<2Z,+1/2. The identity Z(T,)
—Z(0)=[Z(T,)-Z(0)]+[Z(T,) - Z(T,)] then allows us to find
the integer n.

Following the procedure outlined above, we get the fol-
lowing set of equations when both |Wr/FR+S;|>1 and
|Wr/FR+S,|> 1:

T %%
_ tan(w, Ty) = ;{(F—I: + Sl>tan(7TZ(0)) - 1} ,

tan(w, T, — 0, Ty)) = 1{ (E’—IZ + S,)tan[wZ(T*)] - 1},

1

, , o | Wr
tan(w, T — w3 Tp) = — ) | = + S, Jtan[ wZ(T)] -1 (,
o, | \FR
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FIG. 4. (Color online) y—x in unit of N\ vs time in units of
IN/(FR?). (a) For the parameters T,=0.5, T,=8, S;=-5, yo—x,
=0.242\, and Wr=0.666FR, the signal shows that n=-2. (b) For
the parameters 7.=0.5, T1=8, S;=-7, yy—x¢p=0.475\, and Wr
=0.553FR, the signal shows that n=-3.

tan(w;T) — w3 Ty) = 5{ (I‘f_]: + Sz)tan[ﬂ'Z(O)] - 1},
>
(11)

where w=m\(Wr/FR+S,)*~1. For a given set of param-
eters, we solve the above set of equations to find the admis-
sible values of Z(0) and then obtain n from the periodicity
condition Z(T)-Z(0)=n.

III. RESULTS

As an example, we consider the case of 7,=0.1, T =2,
S,=-15, and S,=15/19. Figure 2(a) depicts the admissible
values of (yo—xg)/\ as a function of Wr/(FR). Note that we
have studied the region Wr/(FR)<0.2, thus |Wr/FR+S,]
>1 and |Wr/FR+S,|<1. We find n=-1, in other words the
load W has a net upward velocity Vp=FR2/(2§). For the
parameters yo—x,=0.2169\ and Wr=0.2FR, Figs. 2(b) and
2(c) show y—x and dy/dt—dx/dt as a function of time, re-
spectively. This specific example shows clearly that [y(T
+T)=x(T+T))]/N=[y(T)-x(T)]/\—1, hence n=-1.

Figure 3(a) depicts the admissible values of (yy—xp)/\ as
a function of Wr/(FR) for T,=0.1, T,=2, §;=-15, and S,
=15/19. Note that here we have studied the region
Wr/(FR)>0.2, thus |Wr/FR+S,|>1 and |Wr/FR+S,|>1.
Three branches corresponding to n=—-1, n=0, and n=1 are
shown. In case of n=-1, the load W acquires the upward
velocity V,=FR?/(2{). For the parameters y,—xo=0.2603\
and Wr=0.2537FR, Figs. 3(b) and 3(c) show y-x and
dy/dt—dx/dt as a function of time, respectively.

In our numerical investigations, we observed the solution
n=-1 frequently. Quite remarkably, we observed n=-2 and
n=-3 for specific values of parameters. We find n=-2 for
1.=0.5, T)=8, §1=-5, yg—x¢p=0.242\, and Wr=0.666FR.
We also find n=-3 for T7,=0.5, T,=8, S;=-7, yy—xo
=0.475\ and Wr=0.553FR, see Fig. 4.
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IV. DISCUSSION

The pinion is mounted on an axle. We assume that the
friction in the system comes from the lubrication at the
axle. For an axle lubricated with a fluid layer of thickness
h and viscosity 7, we find {=2myLr*/h, where L is the
height of the pinion and r is the radius of the axle [10].
Using 7= 1073 Pas for a lubricant as thick as water,
L=10 pum, r=500 nm, and h=100 nm, we find
£=7.85X 1072 kg m?/s.

For typical and experimentally realizable values of a,
=a,=50 nm, R=1 pum, and A=500 nm, we find F
=0.3 pN for H=200 nm [8]. The pinion rotates with an an-
gular velocity Q=Vp/R=-nFR/(T,{). For the first example
presented before, n=—1, T;=2 and hence 1=1.91 Hz. How-
ever, reducing the gap size by only a factor of two to H
=100 nm yields F=12 pN and consequently 1=76.43 Hz.
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Inspired by the recent measurements of the lateral Casimir
force [6], we believe that the rack and pinion device is real-
izable with the currently available technologies. Using the
typical values of geometric parameters, and assuming that
the rack position versus time is a periodic triangular signal,
we find that the pinion rotates with an average angular ve-
locity =1~100 Hz. Experimental observation of the pin-
ion rotation will show that the quantum vacuum can inter-
mesh the noncontact parts of nanomachines.

Our work can be extended in many directions. Here we
have assumed that the temperature of the system is zero and
the external noises are absent. One can use the Langevin
equation to describe the pinion motion under the influence of
thermal noises [7]. The impact of external mechanical noises
and random vibrations on the system deserves a detailed
study. A question of interest is whether the device can rectify
random motions of the rack.
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