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Three-dimensional rogue waves in nonstationary parabolic potentials
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Using symmetry analysis we systematically present a higher-dimensional similarity transformation reducing
the (3+ 1)-dimensional inhomogeneous nonlinear Schrodinger (NLS) equation with variable coefficients and
parabolic potential to the (1+1)-dimensional NLS equation with constant coefficients. This transformation
allows us to relate certain class of localized exact solutions of the (3+ 1)-dimensional case to the variety of
solutions of integrable NLS equation of the (1+1)-dimensional case. As an example, we illustrated our tech-
nique using two lowest-order rational solutions of the NLS equation as seeding functions to obtain rogue
wavelike solutions localized in three dimensions that have complicated evolution in time including interactions
between two time-dependent rogue wave solutions. The obtained three-dimensional rogue wavelike solutions
may raise the possibility of relative experiments and potential applications in nonlinear optics and Bose-

Einstein condensates.
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I. INTRODUCTION

Similarity analysis is one of the modern powerful tech-
niques which allows us to find self-similar solutions of equa-
tions that previously were known to be nonintegrable (see,
e.g., [1] and references therein). They do not provide the
complete integrability. However, they help to produce se-
lected solutions in analytical form, which may be important
for a variety of applications. One of the representative ex-
amples is the nonlinear Schrodinger (NLS) equation. It is
well known that in (1+1)-dimensions [(1+1)-D] this equa-
tion is completely integrable by inverse scattering technique
[2]. In (2+41)-D the equation is not integrable. However, so-
lutions localized in two transverse directions do exist [3], but
may be unstable and subjected to collapse [4,5]. They are
mostly known from numerical simulations [6]. Remarkably,
some of the localized solutions can be found using similarity
reductions [7]. Despite being unphysical, exact solutions pro-
vide some insight on the properties of the equation that is
important for many applications. Clearly, adding a dimension
changes drastically integrability properties of the equation.
Thus, the (3+ 1)-dimensional NLS equation is not an excep-
tion, and we are faced with the problem of finding its solu-
tions knowing that they are not directly related to the solu-
tions of the same equation in lower dimensionality.

The NLS equation in (3+1)-D is an important model for a
variety of physical problems [8,9]. It is used in nonlinear
optics [8], condensed-matter physics, and in particular in
modeling Bose-Einstein condensate (BEC) [9]. Numerical
solutions can be found with various techniques, but the value
of an analytical approach is significant by itself. In this work,
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extending the ideas of [10,11] we use the similarity transfor-
mations to reduce the dimensionality of the equation from
(3+1)-D to (1+1)-D. In the former case, the coefficients in
the equation are variable, while in the latter they can be
chosen to be constants. This allows us to use the complete
integrability of the (1+ 1)-dimensional equation.

More specifically, we will focus on the possibility of con-
structing truly three-dimensional (3D) rogue waves, i.e.,
waves whose dynamics essentially depends on all spatial co-
ordinates, although it is possible to identify the coordinate in
which the motion is effectively one dimensional. This ex-
ample is directly related to the description of matter wave
dynamics in the mean-field approximation (where the NLS
equation is also known as the Gross-Pitaevskii equation),
thus representing a unique possibility of creating and observ-
ing three-dimensional rogue matter waves. We note that the
conventional rogue waves are either two dimensional, as it
happens, e.g., in the ocean [12], in wide aperture optical
cavities [13], and in capillary wave experiments [14], or one
dimensional and they appear in many fields including non-
linear optics [15-18], cigar-shaped BECs [19], atmosphere
[20], and finances [21].

The rest of this paper is organized as follows. In Sec. II,
we describe the (1+ 1)-dimensional similarity transformation
reducing the (3+ 1)-dimensional inhomogeneous NLS equa-
tion with variable coefficients and parabolic potential to the
(1+1)-dimensional NLS equation with constant coefficients.
In Sec. III, we determine the self-similar variables and con-
straints satisfied by the coefficients in the (3 + 1)-dimensional
inhomogeneous NLS equation. Moreover, we give some
comments about these coefficients. Section IV mainly dis-
cusses two types of localized 3D rogue wavelike solutions,
which profiles are exhibited. Finally, we give some conclu-
sions in Sec. V.
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I1. 3D MODEL AND SIMILARITY REDUCTIONS

The original three-dimensional inhomogeneous NLS
equation with variable coefficients can be written in a dimen-
sionless form,

i% =- %Vz‘lf +o(r,)V + g WPV +iy(n¥, (1)
where the physical field ¥ =V (r,?), r e R3, V=(4,,4,,d.)
with d,= 3/ ox, the external potential v(r,7) is a real-valued
function of time and spatial coordinates, and the nonlinear
coefficient g(¢) and gain or loss coefficient y(r) are real-
valued functions of time. This equation arises in many fields
such as nonlinear optics (see, e.g., [8]) and BECs (also
known as the three-dimensional Gross-Pitaevskii equation
with variable coefficients; see, e.g., [9-11]).

We search for a similar transformation connecting solu-
tions of Eq. (1) with those of the (1+1)-dimensional stan-
dard NLS equation with constant coefficients, i.e.,

i&@(?], 7) _ PD(n,7)

aT an

+GlO(pDPP(n,7).  (2)

Here, the physical field ®(#, 7) is a function of two variables
n= n(r,t) and 7= 7(r), which are to be determined, and G is
a constant. Since our main goal is to study three-dimensional
rogue waves, we choose G=-1 which corresponds to the
attractive case (or focusing nonlinearity in optics and nega-
tive scattering lengths in the BEC theory). In order to control
boundary conditions at infinity we impose the natural con-
straints [10]

n—0 atr—0, 77— atr-— oo, (3)

We are looking for the physical field W(r,) in the form of
the ansatz [11]

W(r, 1) = p(t)e "D p(r,1), 7(1)], (4)

with p(7) and ¢(r,?) [like 7(¢) and 7(r,?), introduced above]
being the real-valued functions of the indicated variables.
Ansatz (4) allows us to reduce the problem to the
(1+1)-dimensional one (we notice that it differs from the
one-dimensional stationary reductions [10,22]). Variables in
this reduction are to be determined from the requirement for
the new function ®(7(r,1), 7(r)) to satisfy Eq. (2) [we notice
that there also exist other similar reductions for Eq. (1)
which require that ®(7, 7) may satisfy other nonlinear equa-
tions]. Thus, we substitute transformation (4) into Eq. (1) and
after relatively simple algebra obtain the system of partial
differential equations

Vip=0, 7+Ve-Vyp=0, 27,-|Vy*=0, (5a)
2p,+pVie—2¢1)p=0, (5b)

28(1)p* - G|Vl =0, (5¢)

20(r,1) +|Vol> + 2¢,=0. (5d)

Generally speaking, equations in system (5) are not com-
patible with each other when linear and nonlinear potentials
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are arbitrary. One, however, can pose the problem to find the
functions v(r,), g(¢), and y(¢) such that system (5) becomes
solvable. This requirement leads us to the procedure which
can be outlined as follows:

(i) First, we solve Eq. (5a) subject to the boundary condi-
tions (3), thus obtaining the similarity variables 7(r,?), (),
and the phase ¢(r,7).

(ii) Second, we consider Egs. (5b)—(5d) as definitions for
the functions p(7), v(r,z), and g(¢) in terms of already known
functions #7(r,z), 7(z), and ¢(r,1).

Note that the first step determines transformation of vari-
ables which does not involve explicitly any specific time-
dependent coefficients. However, these coefficients may ap-
pear after integration of these equations. The second step
determines the coefficients which are compatible with the
above change of variables. Thus, it leads to model (2). In this
approach, the function 7(r,7) defines the surface where the
wave has a constant amplitude. The function ¢(r,7) deter-
mines the wave-front solution (the manifold of the constant
phase).

Thus, we can establish a correspondence between selected
solutions of the (3+1)-dimensional inhomogeneous NLS
equation with variable coefficients (1) and known solutions
of completely integrable NLS equation (2). The latter has an
infinite number of solutions, thereby giving us a chance to
look for physically relevant solutions of the
(3+1)-dimensional case. In particular, we can relate them to
the recently studied rogue wave solutions of the NLS equa-
tion [23-26]. As a consequence, we obtain three-dimensional
time-dependant rogue wave solutions of Eq. (1).

II1. VARIABLES AND COEFFICIENTS
OF THE TRANSFORMATION

Solving Eq. (5a) we can write the similarity variables
7(r,1), 7(t), and the phase ¢(r,7) in the form

7(r,1)=c(t) - r- f c(s) - a(s)ds, (6a)
0
=1 [ lecopas (6b)
2 0
o(r,)) =rQ@)r+a) r+ o), (6¢)

where we have introduced the diagonal time-dependent
3x3 matrix Q(r)=diag[Q,(1),Q,(1),Q.(N] with Q)=
—¢,(1)/[2¢,(t)] (hereafter, o=x,y,z and an overdot stands
for the derivative with respect to time). The coefficients
c(t)=[c (1), c,(1),c. (0], a()=[a (1) ,a,(?),a,(1)], and w(r) are
time-dependent functions. Now, from Egs. (5b)—(5d) we ob-
tain the functions p(z), v(r,?), and g(r) in the form
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p(?) =po\'|Cx(t)cy(t)cz(t)IeXp{ J 7(S)ds}, (7a)
0
2
<) = GeOf )
2p%|cx(t)cy(t)cz(t)|exp{ZJ y(s)dsJ
0

o(r,) =rA@r+b(t) -r - o(f) - %|a(t) 2 (7¢)

where pg is an integration constant.

A few comments would be useful here. First, the gain or
loss term (f) is determined in the initial statement of the
problem and can serve as an additional control function or a
parameter if it is a constant. Then changing the time-
dependent dissipation, we can excite different dynamical re-
gimes. Second, the change of the all parameters is interre-
lated. In practical terms such a time dependence can be
performed in different ways for different physical systems. In
particular, in the context of the BEC applications, this can be
done by simultaneous change of the frequency of the lasers
controlling the external trap v(r,?) and the detuning from the
Feshbach resonance, responsible for the variation of g(z).
Finally, we notice that one can consider the case of g(z)
= const, which however is reduced to the trivial case of a
plane wave, whose parameters change along the chosen di-
rection (determined by the vector ¢ which is a constant in
this case). Such solutions will not be considered here.

In writing the linear potential v(r,7) we have defined

the diagonal time-dependent 3X3  matrix A(t)
=diag[A,(1),A,(1) ,A,(1)] with the entries

RO
A=~ ) ®

and the vector function b(#)=[b,(¢),b(t),b,(r)] with the en-
tries
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¢o(D)a,(t)

ol = cy(1)

dy(1). )

It is easy to see that the velocity field v(r,7)=Ve(r,1) corre-
sponding to the above-mentioned phase ¢(r,7) is given by

v(r,1) = 2[Q,()x,Q,(1)y, Q. (1)z] + a(1), (10)

such that we have the divergence of the vector field v(r,?) in
the form

div v(r,1) = 2[Q(1) + Q,(1) + ()] = - d, In|c,(t)c,(1)c,(1)].
(11)

Thus, the zeros of any of the components of ¢(z) mean the
divergence of the field, which occurs at the instants when the
nonlinearity g(z) becomes infinite [see Eq. (7b)]. Such cases
will not be considered in the present paper.

It follows from Egs. (7¢) and (8) that if we require that the
linear potential v(r,?) is a second degree polynomial for ev-
ery space x,y,z, then we have A,#0, i.e., CJEU—Zc'?ﬁﬁ 0,
which denotes that ¢,’s are not equivalent to constants, but
are some functions of time. These time-dependent functions
¢,(t) will affect the other variables [see Egs. (6a)—(6c¢), (7a)—
(7¢), (8), and (9)] such that self-similar solutions of Eq. (1) in
form (4) exhibit abundant structures. In what follows we will
use specific solutions (e.g., rogue wave solutions) of the NLS
equation to illustrate the nontrivial dynamics of three-
dimensional rogue wavelike solutions defined by Eq. (1) for
the different parameters mentioned above.

IV. TWO TYPES OF LOCALIZED 3D ROGUE WAVELIKE
SOLUTIONS

As two representative examples, we consider the lowest-
order rational solutions of the NLS equation which serve as
prototypes of rogue waves. First, we use the first-order ratio-
nal solution of Eq. (2) (see [23]). As a result, we obtain the
first-order nonstationary rogue wave solutions of Eq. (1) in
the form

(a)
-200

a(t)

-400

-600

(c)

o

0 10 t 20 30

0 10 t 20

FIG. 1. (Color online) Profiles of (a) nonlinearity g(t) given by Eq. (7b); (b) the coefficients A,(r) (solid line), A,(#) (dashed line), and
A_(1) (dashed-dotted line) of second degree term of the linear potential v(r,#) given by Eq. (8); and (c) the gain or loss term () vs time for
the parameters are given by Eq. (13) with £,=0.9, k,=0.6, k,=0.1, and k=0.6.
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FIG. 2. (Color online) Color coded plot of wave intensity (a) [W[*(x,0,0,7) with maxy, oo 4/¥|*=0.06, (b) [¥[*(0,y,0,r) with
maxyg , 0.4/ ¥;|*=0.068, and (c) [¥[*(0,0,z,1) with maxgq_ 4/¥;[*=0.068 defined by solution (12) for the parameters given by Eq. (13)
with k,=0.9, k,=0.6, k,=0.1, k=0.6. Note that for a given set of parameters, the wave is localized in space.

W (r,1) =pO\/|cx(t)cy(t)cz(t)|exp{f y(s)ds}
0

x[1 4+ 8it(t)
L4 272(n,0) +47(1)

]ei[sa(r,z)m)],

(12)

where the variables #7(r,7), 7(r), and the phase ¢(r,r) are
given by Egs. (6a)-(6¢).

For the illustrative purposes, we can choose these free
parameters in the form

co(t) = a,(t) =dn(t,k,),

¥(t) = sn(t,k)cn(z, k) (13)

(where dn, sn, and cn stand for the respective Jacobi elliptic
functions, and k,,k are their moduli) and w(¢)=0. Figure 1
depicts the profiles of nonlinearity g(¢) given by Eq. (7b), the
coefficients of second degree terms of the linear potential
v(r,?) given by Eq. (8), and the gain or loss term y(z) vs time
for the chosen parameters given by Eq. (13). The evolution
of intensity distribution of the 3D field (12) is shown in Fig.
2. We can see that the simple Lorenzian function of the (1
+1)-dimensional case is transformed into a significantly
more complicated evolution along the ¢ axis. The solution is
localized in space and keeps the localization infinitely in
time, which differs from the usual rogue wave solutions (see

[23]).

po=1,

On the other hand, if we choose the free parameters in the
form

c()=at)=1+cysin(z),
c,(t) =a,(1) = 1.2+ ¢, cos(t),

c.(t)=a, (1) =08 +cysin(r), c¢,=0.01, (14)

and p,, (), and y(r) are same as the ones given by Eq. (13),
then the evolution of intensity distribution of the 3D rogue
wave solutions (12) will be changed. Figure 3 displays the
profiles of nonlinearity g(¢) given by Eq. (7b) and the coef-
ficients of second degree terms of the linear potential v(r,?)
given by Eq. (8) vs time for the chosen parameters given by
Eq. (14). For this case, the 3D rogue wave solution (12) is
shown in Fig. 4. The solution is localized both in time and in
space, thus revealing the usual “rogue wave” features. It is
worth emphasizing here that although the “generating” func-
tion ¢(f) was chosen as a monochromatic function, the re-
spective change in the nonlinearity g(¢) required for the ex-
istence of the exact solution is periodic, but depending on
various frequencies. This is natural reflection of the fact that
we are dealing with a nonstationary solution of the nonlinear
problem, characterized by the generation of multiple fre-
quencies.

Generally speaking, we have large degree of freedom in
choosing the coefficients of transformation. As a result, we
can describe infinitely large class of solutions of the three-

FIG. 3. (Color online) Profiles of (a) nonlin-
earity g(r) given by Eq. (7b) and (b) the coeffi-
cients A,(t) (solid line), A,(r) (dashed line), and
A_(t) (dashed-dotted line) of second degree term
of the linear potential v(r,) given by Eq. (8) vs
time for the parameters are given by Eq. (14).

-150 ﬂ (@) 0.006
-200
0.002
-250
a(t) A)
-300
-0.002
-350
400 U d -0.006| 1/ .\_I. \ \J .\/.
0 5 10 t15 20 25 0 5 10 t15 20 25
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(c)

y 15 -15 z 15

FIG. 4. (Color online) Color coded plot of wave intensity (a) |¥,|*(x,0,0,7) with maxg,o4/¥,[*=0.027, (b) [¥,*(0,y,0,7) with
maxy , .4/ ¥1[*=0.03, and (c) |¥,]*(0,0,z,1) with max, 4/¥[*=0.029 defined by solution (12) for the parameters given by Eq. (14).

dimensional NLS equation with every exact solution of the
one-dimensional NLS equation. Additional possibility of
choosing the solution of the latter one increases tremen-
dously the variety of solutions that we can obtain.

When a higher-order rational solution of the NLS equa-
tion (2) (see [23,24]) is applied to transformation (4), we
obtain the second-order nonstationary rogue wave solutions
of Eq. (1) in the form

Wy (r,0) = pOVch(t)cy(t)cz(t)lexp[ f v(s)ds]
0

x[1+

where the functions P(%,7), Q(%,7), and H(%,7) are given
by [24]

P( 7, T) - l'T(t)Q( 7 7-) :| ei[<p(r,t)+f(l)]
H(n,7) ’
(15)

1 3 3
P(77,7')=—5774—677272—10T4—5772—972+§,

O(n.7) = 774+477272+4r4—3772+272—14_5,

-8 X 8

(a) (b) ()
60
t
-60
-8 y 8 -8 z 8

1 1 2. 1, 9, 3

H(77,7')=E776+E77472+ 1727'4+§76+§774+5 4—577272
9 33, 3

T+ T+ 16

TR (16)

The variables 7(r,f), 7(¢), and the phase ¢(r,r) here are
given by Egs. (6a)—(6¢).

As in the previous cases, we choose the parameters given
by Egs. (13) and (14) except for a,(r)=0. The intensity dis-
tributions of the second-order rogue wave solutions (15) are
depicted in Figs. 5 and 6. Clearly, the field evolution in this
case is more complicated. In one case, shown in Fig. 5, the
solution is localized in all three dimensions in space. In the
other case, shown in Fig. 6 the solution is localized both in
space and in time, thus displaying the basic feature of a
rogue wave that “appears from nowhere and disappears with-
out a trace.”

It follows from the above-mentioned two cases for the
parameters that the parameters c,(z), a,(f), and ¥(r) can be
used to control the wave propagations related to rogue
waves, which may raise the possibility of relative experi-
ments and potential applications in nonlinear optics and
BECs. Similarly we can also obtain three-dimensional
higher-order time-dependent rogue wave solutions of Eq. (1)
in terms of transformation (4) and higher-order rogue wave
solutions of the NLS equation (2), which are omitted here.

As always happen with the nonlinear Schrodinger equa-
tion in two and three dimensions, their localized solutions

FIG. 5. (Color online) Color coded wave intensity (a) |W,*(x,0,0,r) with maxgg4/¥2>=0.135, (b) |¥,*(0,y,0,) with
max(g , 04| ¥2[*=0.13, and (¢c) [¥,|*(0,0,z,1) with maxgg . 5| ¥,[*=0.125 given by solution (15) for a,(r)=0 and other parameters given by

Eq. (13) with k,=0.9, k,=0.6, k,=0.1, and k=0.6.
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y 10 -10 F4 10

FIG. 6. (Color online) Color coded wave intensity (a) |W,*(x,0,0,r) with maxg o4¥2*=0.038, (b) |¥,*(0,y,0,r) with
max(g , 0.4/ W2|*=0.036, and (c) [¥,]*(0,0,z,7) with max . 4| ¥2/*=0.038 given by solution (15) for a,(r)=0 and other parameters given by

Eq. (14).

may collapse. The stability of the solutions presented in our
work is still an open question. This question deserves sepa-
rate studies, as it is a task that is far from being trivial. We
leave these studies to later publications.

V. CONCLUSIONS

In conclusion, we have presented similarity reductions
of the (3+1)-dimensional inhomogeneous nonlinear
Schrodinger equation with variable coefficients to the
(1+1)-dimensional one with constant coefficients. This
transformation allows us to relate certain class of localized
solutions of the (3+1)-dimensional case to the variety of
solutions of integrable @NLS equation of the
(1+1)-dimensional case. As an example, we illustrated our

technique by two lowest-order rational solutions of the
NLSE. These are transformed into rogue wave solutions lo-
calized in 3D space that have complicated evolution in time.
The technique may also be extended to other NLS-type equa-
tions to exhibit their rogue wave solutions.
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