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Discrete nonlinear Schrödinger model is a nonlinear lattice model used to investigate different nonlinear
phenomena arising in many physical contexts. In this work we used this model to observe linear traveling
phonon scattering by time-periodic discrete breathers in the piecewise smooth �PWS� version of nonlinearity. In
one-dimensional system the single-channel scattering is found to be elastic �with the incoming and outgoing
fluxes of energy being equal to each other�. Considering one-site symmetric breather solution we are able to
calculate the exact expression for the transmission coefficient �T� or the ratio of the transmitted to incident flux
of energy in such a system using transfer-matrix formalism. From the condition of perfect transmission �T
=1, and hence reflection coefficient R=0� or the ratio of reflected to incident flux of energy for elastic
scattering is zero, our observation shows that perfect transmission happens to appear at the threshold of a
localized mode, which occurs at the band edge of the extended eigenmodes �plane waves�. We have also
presented the results obtained from the condition of perfect reflection. The advantage of using the PWS version
of nonlinearity in the model is that all the results derived are exact. Numerical simulations complement our
results.
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I. INTRODUCTION

There is a growing interest in the literature of nonlinear
physics concerning modeling and analysis of different lat-
tices that can be taken as prototypical systems. Investigations
reveal that the existing laws of linear physics cannot properly
describe many physical phenomena. One such important ob-
servation was the discovery of localized solutions known as
discrete breathers �DBs�.

Discrete breathers, by definition, are time-periodic and
spatially localized excitations observed frequently in discrete
nonlinear Hamiltonian systems. After their discovery many
observations have been made both in the theoretical and nu-
merical fields �1–8� related to their existence, stability, and
other important properties. One such observation, in particu-
lar, related to their existence and stability reveals that the
presence of nonlinearity and discreteness are two essential
conditions for the generic existence of these localized ob-
jects. These conditions also make them distinct from other
types of localized modes �LMs�, e.g., Anderson modes �9�.
Breathers are observed in translationally invariant systems
�e.g., perfectly regular lattice� induced by nonlinearity �as we
discretize a partial differential equation to its corresponding
differential-difference form it loses the continuous transla-
tional symmetry, but it still possesses discrete translational
symmetry�, but for Anderson modes we have to break the
translational invariance or homogeneity by introducing dis-
order or impurity to observe the localized objects.

Linear stability of DBs only states that the solutions are
stable against small perturbations. This implies in turn that

any small perturbation applied to a DB does not grow expo-
nentially with time. Numerical investigations reveal that
many physical situations can be satisfactorily explained by
considering the interactions between various DBs and also
their interactions with the environment. Therefore, to study
these interactions their responses in any experiment are im-
portant to a great extent. In this context we are interested
here in one particular type of such interactions that involves
elastic scattering of phonons by a DB acting as a scattering
center. Moreover, the study of the dynamical properties of
different nonlinear lattices also reveals that the existence of
the LM threshold in the linearized problem about the DB
solutions provides a systematic way to explore some impor-
tant aspects of DBs, e.g., quasiperiodicity, pinning mode, and
mobility of the solution. Our analysis of phonon scattering
by DB exhibits that the existence of creation threshold for
the LM is responsible for PT in the process. Numerical in-
vestigations show that some of the Floquet modes �10� are
localized about the DB solutions. These can be taken as LMs
about the localized solutions �11�. In our analyses we will
show that the presence of those internal modes is responsible
for the occurrences of perfect transmission �PT� and perfect
reflection �PR�. In �11� the author showed similar phenomena
by considering elastic scattering of phonons by a static kink
used as a scatterer in the discrete nonlinear Schrödinger
�DNLS� model. But we present our results based on the scat-
tering of phonons by DBs, which are time-periodic and spa-
tially localized solutions. Observations show that the scatter-
ing phenomenon changes drastically at the threshold of these
localized modes. In our analysis, we investigate the phonon
scattering by DBs by studying the transmission and the re-
flection coefficients. Important results are that we are able to
find exact analytical expression for the transmission coeffi-*majumdar_priyadarshi@yahoo.com
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cient for this scattering process and show that PT and PR are
connected with the internal modes of the DBs �12�. The
method can further be developed by taking corrections to this
linear process due to nonlinearity to its lowest significant
order.

In this paper we mainly investigate the elastic scattering
of traveling phonons by time-periodic DBs in the piecewise
smooth �PWS� version of the DNLS model. The important
feature is that although our scattering center is a time-
periodic and spatially localized object, the nature of scatter-
ing related to PT and PR admits the results obtained in �11�.
Another distinguishing feature of our work is that all the
results are exact, which are again complemented by the nu-
merical simulation �using MATLAB in Intel platform�. We ap-
ply transfer-matrix formalism �13,14� to calculate the trans-
mission and the reflection coefficients in this model. This
work is an extension of earlier works �15,16� where exact
analytical results related to the construction and linear stabil-
ity of the discrete breathers and an expression for the thresh-
old value of localized modes at the band edge in the PWS
version of the DNLS model have been derived. We have also
done similar works in the PWS version of the nonlinear
discrete Klein-Gordon �NDKG� model in another paper �17�.

The PWS version of nonlinearity can find its usefulness
even in those physical contexts where the conventional cubic
type of nonlinearities is applicable. Some of those areas are
Raman scattering spectra of complex electronic materials
�18–20�, manifestation of an abrupt and irreversible delocal-
ization of Bose-Einstein condensates trapped in two-
dimensional �2D� optical lattices �21,22�, instability of local-
ized modes in coupled arrays of optical lattices �23,24�, etc.
where cubic model has already been analyzed. These results
are mostly based on the computer simulation and are verified
by the laboratory experiments. These are not solvable by any
easy analytical means. The advantage of the PWS model
over the cubic model is that we can obtain all those results
analytically exact, which may not be possible for the latter.
Comparing PWS type �Eq. �9�� and the conventional cubic
type of nonlinearities xf�x� �where f�x�=−��x�2; see Fig. 1�,
we find that for a definite set of values of parameters the
nature of both functions is very close to each other in a

certain region �in between 1 and 2� for two different � values
�nonlinearity parameter� for each of the PWS model and the
conventional cubic model. In this region therefore, our ana-
lytical results must qualitatively agree with the results of the
DNLS model with cubic type of nonlinearity. Hence, the
physical contexts where the DNLS equation with cubic type
of nonlinearity raised can be the area where the PWS type of
nonlinearity is equally applicable.

The present paper is organized as follows. In Sec. II we
briefly discuss the transfer-matrix formalism and its connec-
tion with the phonon-breather scattering. Section III dis-
cusses some earlier works on one-site monochromatic dis-
crete breathers and their stability. In Sec. IV we present exact
scattering analysis in the PWS version of the DNLS model
supported by numerical simulations. Finally Sec. V ends
with our conclusion and scope for further work.

II. TRANSFER-MATRIX FORMALISM

Our analysis of phonon scattering by DBs is based on
transfer-matrix formalism mentioned earlier. This formalism
is quite a convenient mathematical tool to derive the trans-
mission and reflection coefficients. We present in this section
the main features of this method that are related to our analy-
sis.

Accordingly, with the help of a matrix arising from a dy-
namical equation, we can find a relation between the ampli-
tudes of the incoming and the outgoing waves. That particu-
lar matrix is known as the transfer matrix and is central to the
entire formalism. To elaborate it we consider the DNLS
equation defined on a lattice model as

i�̇n + V��n+1 + �n−1� + f���n���n = 0 �n = 0, � 1, � 2, . . .� .

�1�

The modulus of the complex wave function �n�t� and V
stand for the oscillation amplitude at the nth lattice point and
the nearest-neighbor coupling parameter between the lattice
sites, respectively. The last term in Eq. �1� represents the
nonlinear function in the proposed lattice model. The DB
solution admitted by the model is

�n�t� = �ne−i�t, �2�

where �n and � are the breather amplitude at the nth site
�which is real and independent of time� and the breather
frequency, respectively.

In the scattering process, phonons are simply the solutions
of the linearized time-evolution equation for small-amplitude
perturbation un�t� applied to the breather solution. With the
perturbed solution ��n�t�+un�t�� the evolution equation for
un�t� �as obtained from Eq. �1�� looks like

iu̇n + V�un+1 + un−1� + g = 0, �3�

where g is the linearized version of the nonlinear function
�represented by the last term in Eq. �1�� obtained after the
application of perturbation and is in general a function of �n,
�n

�, un, and un
�.

Since the amplitude �n and its complex conjugate �n
� both

are involved in Eq. �3� we have to consider two different
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FIG. 1. Comparison between the functional natures: f�x�=
−��x�2 for �=1, the conventional form �solid line�, and the PWS
version f�x�=��1−1 / �x�����x�−1� for a properly scaled value of �
�=7.5� �dashed line� show an overlapping region confirming our
assumption.
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frequency components ��� p� in un. In particular we assume

un = ane−i��+p�t + bne−i��−p�t, �4�

where an and bn correspond to two different channels in the
scattering process. Substituting Eq. �4� in Eq. �3� and con-
sidering the coefficients of e−i��+p�t and e−i��−p�t separately,
we obtain a pair of coupled equations for an and bn. A single
iterative relation can replace those equations and can be writ-
ten as

EnYn + I�Yn+1 + Yn−1� = 0. �5�

Here, Yn is an amplitude vector and I ,En are matrices of the
same order as Yn. In particular I is an identity matrix. The
explicit forms of g, En, and Yn depend on the specific form of
f defined in Eq. �1�. We will present these functional forms
in Sec. IV where we shall discuss phonon-breather scattering
in the DNLS model in detail. On the other hand from Eq. �5�
we obtain a recursive relation

� Yn

Yn−1
� = Mn�Yn+1

Yn
�, with Mn = � 0 I

− I − En
� . �6�

Here, Mn is a unimodular square matrix �and moreover this
is an area preserving mapping�. Equation �6� can be taken as
representing the dynamics of the scattering process since re-
peated applications of it relate the amplitudes of the incom-
ing and the outgoing waves. The amplitudes at the source
�n=−N� and at the receiving points �n=N� for phonons are
related to each other as

� Y−N

Y−N−1
� = M�YN+1

YN
� , �7�

where we assume that N is sufficiently large, so that the
source is far away from the breather center, and the product
matrix M �square� is defined as

M = M−NM−N+1 ¯ M−1M0M1 ¯ MN−1MN. �8�

Therefore, once we are able to construct the transfer matrix
M, we can find the reflection coefficient �R� or the ratio of
the reflected to incident flux of energy and the transmission
coefficient �T� or the ratio of the transmitted to incident flux
of energy. Quite clearly the matrix M is invertible. Also from
the fact that in a regular lattice the left- and the right-hand
sides with respect to the breather center are equivalent we
can say that M will be symplectic in nature, which implies
that M is antisymmetric and nondegenerate and obviously
invertible.

III. SUMMARY OF RESULTS FOR THE ON-SITE
MONOCHROMATIC DISCRETE BREATHER SOLUTIONS

IN THE PWS VERSION OF THE DNLS MODEL AND
ITS STABILITY ANALYSIS

In �15� authors presented exact analytical results for the
construction of one-site monochromatic breathers in the
PWS version of the DNLS model, and its stability analysis is
presented in �16�. In this section we briefly discuss the main
results of those works.

The force function in this particular model as represented
by the last term in Eq. �1� is

f���n�� = ��1 −
a

��n������n� − a� , �9�

where �, �, and a are the strength of nonlinearity, the Heavi-
side step function, and the threshold parameter of the non-
linearity, respectively. All these parameters and the wave
function �n are scaled appropriately such that a=1, and all of
them become dimensionless. The Heaviside step function is
defined such that when ��n��a �=1�, ����n�−a�=1; other-
wise, it is zero. Combining Eqs. �1� and �9� the PWS version
of the DNLS model becomes

i�̇n + V��n+1 + �n−1� + ��1 −
1

��n������n� − 1��n = 0

�n = 0, � 1, � 2, . . .� . �10�

Assuming kink-antikink type �bright breather� of localized
solutions �see Eq. �2�� admitted by the above equation, the
following mapping has been arrived with scaled variables
�
V →� and �

V →�:

�n+1 + �n−1 + ��n + ���n − sgn��n������n� − 1� = 0.

�11�

This can be expressed as a 2D mapping. The PWS version of
the DNLS model enables one to construct the homoclinic
trajectory associated with a hyperbolic fixed point of the
mapping exactly. The breather trajectory can be related to a
homoclinic orbit of the mapping by choosing the breather to
be centered at n=0. Following this approach one is able to
construct the trajectory of the monochromatic breather solu-
tion as

�n =
���n�

� + � −
1

�

, ��� 	 1, �12�

where � is the spatial decay rate of the breather profile de-
fined as

� = − �� +
1

�
� . �13�

The boundary conditions ��0�1 and ��1	1� imply that the
necessary conditions for the existence of the breather solu-
tion require

��� � 1 +
1

���
, �� 	 0. �14�

In other words for any given breather frequency � outside
the linear band and � satisfying Eq. �14� an exact breather
solution to the PWS version of the DNLS equation has been
obtained �following Eq. �2�� and is given by �15�
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�n =
���n�

� + � −
1

�

e−i�t. �15�

Now from Eqs. �14� and �15�, Fig. 1, and also from the fact
that ��n�= ��n�, we observe that the PWS model �in the com-
mon region of overlap in between 1 and 2 as mentioned
earlier� follows the cubic one provided n	1.

The linear stability analysis �see �16�� of the breather so-
lution given by Eq. �15� has been studied against a small
perturbation

un�t� = xn�t� + iyn�t� , �16�

where xn�t� and yn�t� are real and small, and are such as to
satisfy a pair of coupled differential equations,

Ẍ = AY , �17a�

Ÿ = ATX , �17b�

with X= �. . . ,x−2 ,x−1 ,x0 ,x1 ,x2 , . . .�T, Y
= �. . . ,y−2 ,y−1 ,y0 ,y1 ,y2 , . . .�T, and A being a banded matrix.
The eigenvalues 
 of A are related to the growth rate of
perturbations �P� through 
= P2 and can be real negative or
real positive or complex. The breather is linearly stable when

 is negative, while for the latter two cases it will be un-
stable. The real and negative eigenvalues of A may be asso-
ciated with either localized or extended eigenmodes. The ei-
genvalues corresponding to the extended eigenmodes form a
band

�2 cos � + ��2 + 
 = 0, 0 � � �  . �18�

It implies that the band extends from −��+2�2 to −��−2�2.
In addition each eigenvalue 
 in the interior of the band �0
	�	� is doubly degenerate, while for a given � the band
edges are empty except when � satisfies �for the inner band
edge, �=0�

� = �1��� =
�� − �−1���� + �−1�2 − 2�� + �−1�

�� − �−1� + ��� + �−1�2 − 2�� + �−1�
, �19�

and similarly for the outer band edge, �=,

� = �2��� =
�� − �−1���� + �−1�2 + 2�� + �−1�

�� − �−1� + ��� + �−1�2 + 2�� + �−1�
. �20�

In that case the band is occupied by a single symmetric lo-
calized mode. After the appearance of the localized mode, as
� is continued to vary from below, this localized mode ap-
proaches the origin 
=0 in the eigenspace, and finally the
breather gets destabilized as 
 touches the origin.

IV. PHONON SCATTERING BY DISCRETE BREATHERS
IN DNLS MODEL

The extensive use of the DNLS model in the literature is
due to the fact that it is found to arise in many physical
contexts. In one-dimensional systems the model is repre-
sented by Eq. �1�. The DNLS model admits different types of

solutions. But we are looking for a typical solution known as
discrete breathers. Starting from the anti-integrable limit
�also known as anticontinuous limit�, MacKay and Aubry
�25� first proved the existence of breather solution in an in-
finite chain of anharmonic lattices. Instead of the usual cubic
type of nonlinearity, a PWS function has been chosen to
represent the nonlinearity. In this particular version of the
DNLS model, as discussed earlier �15,16�, we present exact
analytical expressions for one- and two-site �antiphase� DB
solutions with their linear stability analysis. To study the
phonon scattering by DBs we first apply a small perturbation
un�t� to the breather solution �Eq. �1�� and study the
asymptotic behavior of un�t�, provided the perturbation is
allowed to evolve for a sufficiently long time. The perturbed
solution becomes

�n�t� = �n�t� + un�t� , �21�

where �n�t�=�ne−i�t is the unperturbed solution. Applying
Eq. �21� in Eq. �1� and after linearization we obtain the time-
evolution equation for the perturbation as

iu̇n�t� + �un+1 + un−1� + �	�1 −
1

��n��un

+
�n

2��n�� un

�n
+

un
�

�n
�e−2i�t�
����n� − 1� = 0. �22�

We have used the scaled variables �
V →� and �

V →�, and the
wave function �n is normalized in such a fashion that the
threshold parameter becomes unity �a=1�. Now substituting
Eq. �4� in Eq. �22�, expanding it, and equating the real and
imaginary parts to zero separately, we obtain

�� + p�an + �an+1 + an−1� + �	�1 −
1

2��n��an

+
1

2��n�
bn

�
����n� − 1� = 0, �23a�

�� − p�bn + �bn+1 + bn−1� + �	�1 −
1

2��n��bn

+
1

2��n�
an

�
����n� − 1� = 0. �23b�

These are two coupled equations for an and bn corresponding
to two different scattering channels �channels are pathways
for plane waves; if the frequency of the wave is inside the
linear spectrum, it is called an open channel; otherwise, it is
a closed channel� in our scattering analysis. In the
asymptotic regions �in our analysis it is the region with �n�
�1� Eqs. �23a� and �23b� decouple and yield �as Eq. �15�
suggests, ��n�	1 in this region�

�� + p�an + an+1 + an−1 = 0, �24a�

�� − p�bn + bn+1 + bn−1 = 0. �24b�

The asymptotic solutions corresponding to those channels
are an�eiqan and bn�eiqbn; hence,
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cos qa = −
� + p

2
, �25a�

cos qb = −
� − p

2
, �25b�

where qa and qb are the wave vectors corresponding to those
channels. These asymptotic solutions are either traveling
modes �with velocity �p���

q � or growing �decaying� modes.
For traveling modes, both qa and qb are real, and hence
� �p−�

2 ��1. If on the other hand one channel is traveling �say
that corresponding to an� and the other channel is decaying
�or growing�, qa is real while qb imaginary implies � −p−�

2 �
�1 and � p−�

2 ��1, and vice versa. To describe the scattering
process we consider a chain of �2N+1� lattice sites where
n=−N and n=N are the source and target points, respec-
tively. To construct the transfer matrix for the said process
�see Fig. 2� we first define an amplitude vector Yn as

Yn = �an,bn
��T. �26�

Using this vector we can replace Eqs. �23a� and �23b� with a
recursive relation as defined in Eq. �5� where I is a 2�2
identity matrix and En is another 2�2 matrix involving the
parameters � , p ,� of the model, respectively. From Eq. �5�
we obtain the same recursive relation as Eq. �6� with

En =�p + � + �
�

2b − 1

�

2b − 1
− p + � + � , �27�

where �=��1− 1
2b �����n�−1�, � is the breather frequency,

and

b = ��0� =
�

� + � −
1

�

�28�

is the breather amplitude at the lattice site n=0. Repeated
applications of Eq. �6� over the entire chain of �2N+1� lat-
tice sites obtain an equation similar to Eq. �7�.

Since the asymptotic behavior of the channels for an and
bn is either a traveling or a growing �decaying� mode, the
general solutions for an and bn can be written as

an = al
+eiqan + al

−e−iqan, bn = bl
+eiqbn + bl

−e−iqbn,

for n → − � , �29a�

an = ar
+eiqan + ar

−e−iqan, bn = br
+eiqbn + br

−e−iqbn, for n → � ,

�29b�

where the coefficients al
� ,ar

� ,bl
� ,br

� are small. Here, the
subscripts l and r indicate left and right sides with respect to
the breather center �see Fig. 3�, respectively. Substituting
Eqs. �29a� and �29b� in Eq. �7� we obtain,

�
al

+e−iqaN + al
−eiqaN

�bl
+��eiqb

�N + �bl
−��e−iqb

�N

al
+e−iqa�N+1� + al

−eiqa�N+1�

�bl
+��eiqb

��N+1� + �bl
−��e−iqb

��N+1�


= M�
ar

+eiqa�N+1� + ar
−e−iqa�N+1�

�br
+��e−iqb

��N+1� + �br
−��eiqb

��N+1�

ar
+eiqaN + ar

−e−iqaN

�br
+��e−iqb

�N + �br
−��eiqb

�N
 , �30�

where M is a 4�4 square matrix. The elements of that ma-
trix involve the parameters �, p, �, and b �=�0�. We obtain
four linear independent equations from Eq. �30�.

From Eqs. �29a� and �29b� we observe that if both chan-
nels for an and bn are traveling modes, both qa and qb are real
and all eight scattering coefficients need not be zero. Four
more constraints are necessary to satisfy a unique solution on
the four-dimensional solution set. These constraints specify a
particular scattering configuration. For example, if the ampli-
tudes for the incoming phonons from the left and the right
sides of the DB through two channels, al

+, bl
+, ar

−, and br
−, are

given, the amplitudes of the outgoing phonons, al
−, bl

−, ar
+,

and br
+, will be determined uniquely by four independent

equations in Eq. �30�. In this bichannel scattering process
two different frequencies are involved as seen from Eq. �4�.
On the other hand for the NDKG model we may have as
many as infinite scattering channels and also the outgoing
waves have different harmonic frequencies compared to the
breather frequency �26�. In other words the inelastic effect
can be observed. In such cases the total incident flux of en-
ergy is less than the total outgoing flux of energy. In a closed
system there is no such incident energy from outside to the
breather except the incident phonon energy; hence, this ex-

�������� �	
�
�

�������� �	
�
�

����������� �	
�
�

���

�������
��������
�����	��

FIG. 2. Schematic for phonon transmission by discrete
breathers.
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FIG. 3. Configuration of phonon transmission by discrete
breathers in traveling mode for �a� real qb and that in growing
�decaying� mode for �b� imaginary qb.
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cess amount of energy comes from the breather itself. As a
result the breather will gradually lose energy and decay
thereby.

If only one channel, say an, is a traveling mode, qa is real
and qb is imaginary. Then the coefficients for the exponen-
tially growing parts of the asymptotic solution should be zero
for a physical solution, i.e., br

−=0 and bl
+=0. This provides

two more constraints; hence, a 2D solution set can be ob-
tained thereby. Let al

+ and ar
− are given; hence, we can deter-

mine al
− and ar

+ uniquely. Similar set of results can be ob-
tained for bn as the only traveling channel. This type of
scattering happens to be elastic by nature and satisfies energy
conservation relation.

If on the other hand neither an nor bn is traveling we must
have both qa and qb imaginary. We may call this situation as
zero-scattering channel. Hence, ar

−=br
−=al

+=bl
+=0 �as now

they are the coefficients of exponentially growing solutions
in the asymptotic region�. So we can solve Eq. �30� for the
other four coefficients uniquely. If instead we consider that
the channel for an have only the exponentially decaying parts
�i.e., al

+=ar
−=0� then we may consider the scattering property

of the bn channel in the nontraveling region. The two other
constraint conditions �which are the basic need for the solu-
tion of Eq. �30� as mentioned earlier� that we consider are the
various scattering configurations of the bn channel in the
nontraveling mode, namely, growing, decaying, PT, and PR
modes.

In the analysis to follow we mainly consider the single-
channel scattering process �elastic� in the traveling phonon
mode and determine exact analytical expression for the trans-
mission coefficient �T�, complemented by the numerical
simulation. Similar analysis can be done for the other two
scattering configurations staring from Eq. �30�, hence yield-
ing the expression for T. Nevertheless, for our present analy-
sis we kept one channel open while the other is closed and
show that the analysis can be done quite easily in the PWS
version of the nonlinearity which we are considering
throughout our previous analysis. In particular we assume
that the bn channel is open and an is closed. Also let the wave
be incident from the left-hand side of the DB center. In that
case bl

+ is known and br
−=0. For the closed channel since the

coefficients of the exponentially growing �decaying� mode is
zero, hence, al

+=ar
−=0. Further assuming the amplitude of

the incident wave along the channel for bn as unity, the scat-
tering configuration in this case finally corresponds to bl

+

=1, br
−=0, al

+=0, ar
−=0. We therefore have four con-

straints. These constraints together with the four independent
equations obtained form Eq. �30� determine a unique solu-
tion. Taking this configuration we can rewrite Eq. �30� as

�
al

−eiqaN

eiqb
�N + �bl

−��e−iqb
�N

al
−eiqa�N+1�

eiqb
��N+1� + �bl

−��e−iqb
��N+1�

 = M�
ar

+eiqa�N+1�

�br
+��e−iqb

��N+1�

ar
+eiqaN

�br
+��e−iqb

�N
 .

�31�

For a symplectic unimodular area preserving mapping Mn as
defined by Eq. �6� and also from the nature of Yn �as defined

by Eq. �26�� we observe that each of 0 , I ,En is of order 2
�2, where 0 is a null matrix and I is the identity matrix.
From Eq. �9� M is a product of 2N+1 Mn like matrices. Let
us evaluate M for some typical values of N.

When N=1 we have M =M1M0M1. Hence,

M = �0 I

I − E1
��0 I

I − E0
��0 I

I − E1
� = � S11 S12

− S12 S22
� .

�32�

It can be easily shown that det�M�=1.
Again for N=2 we have M =M2M1M0M1M2. Hence,

M = �0 I

I − E2
�� S11 S12

− S12 S22
��0 I

I − E2
� = � S11� S12�

− �S12� �t S22�
� .

�33�

Explicit calculation again shows det�M�=1. Therefore, M is
a unimodular and symplectic matrix with real elements as
stated earlier. Again as M is a 4�4 matrix with nonzero
elements along the two principal diagonals the combined op-
erations �addition, subtraction, and multiplication� of any
number of En’s will have the same structure. This implies
that for any N, M can be written as given by Eq. �33� where
Sij is a 2�2 matrix with nonzero elements and with �Sij�t

being its transpose. Hence,

M =�
M11 M12 M13 M14

M21 M22 M23 M24

− M13 − M23 M33 M34

− M14 − M24 M43 M44

 . �34�

Here, Mij is simply the notation of the elements of the prod-
uct matrix M as represented by Eq. �8�.

With the scattering configuration mentioned earlier we
have obtained the following set of four equations obtained
from Eqs. �31� and �34�:

al
−eiqaN = ar

+eiqaN�M11e
iqa + M13�

+ �br
+��e−iqb

�N�M12e
−iqb

�

+ M14� , �35a�

e−iqbN + bl
−eiqbN = br

+eiqbN�M22e
iqb + M24�

+ �ar
+��e−iqa

�N�M21e
−iqa

�

+ M23� , �35b�

al
−eiqa�N+1� = ar

+eiqaN�− M13e
iqa + M33�

+ �br
+��e−iqb

�N�− M23e
−iqb

�

+ M34� , �35c�

e−iqb�N+1� + bl
−eiqb�N+1� = br

+eiqbN�− M24e
iqb + M44�

+ �ar
+��e−iqa

�N�− M14e
−iqa

�

+ M43� .

�35d�

Since the an channel is closed while bn is kept open, we have
qa imaginary and qb real. From Eqs. �35a�–�35d�, with iqa

�

=ka for real ka and with the scaling bl
+=1 we obtain
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br
+ =

e−2iqbN�1 − e−2iqb��1

�1�2 + �3�4
, �36�

where

�1 = M11e
−ka + 2M13 − M33e

ka, �37a�

�2 = M22e
iqb + 2M24 − M44e

−iqb, �37b�

�3 = �− M23e
iqb + M34�eka − �M12e

iqb + M14� , �37c�

�4 = �M14e
−iqb + M21�e−ka + �M23 − M43e

−iqb� . �37d�

Similarly

bl
− = − e−2iqbN��3

�

�3
� +

br
+ekaeiqb

�3
�− �2��4� + �2��4�� , �38�

where

�2� = M22e
iqb + M24, �39a�

�2� = M24 − M44e
−iqb, �39b�

�4� = M14e
−iqbe−ka − M43e

−iqb, �39c�

�4� = M21e
−ka + M23, �39d�

such that

�2 = �2� + �2�, �40a�

�4 = �4� + �4�. �40b�

Now, by definition, the transmission and reflection coeffi-
cients are

T = � br
+

bl
+�2

= � e−2iqbN�1 − e−2iqb��1

�1�2 + �3�4
�2

, �41�

R = � bl
−

bl
+�2

= �− e−2iqbN��3
�

�3
� +

br
+eka

�3
eiqb�− �2��4� + �2��4���2

.

�42�

The exact expressions for T and R depend on the explicit
form of �i’s.

Now with reference to Eq. �8� taking N=1 the elements
Mij of Eq. �34� are M11=x0, M12=z0=M21, M13=−1+x0x1,
M14=z0y1, M22=y0, M24=−1+y0y1, M23=z0x1, M33=2x1
−x0x1

2, M34=−x1y1z0=M43, and M44=2y1−y0y1
2, where x0

= p+�+�, xn�n�0�= p+�, y0=−p+�+�, yn�n�0�=−p
+�, z0= �

2b , and zn�n�0�=0. Again with the aid of Eqs.
�37a�–�37d� and �39a�–�39d� and the matrix elements men-
tioned above, we obtain �1=e3ka�2 sinh ka+��, �2

=e3iqb�2i sin qb+��, �3=− �
2be2ka−iqb, �4= �

2beka−2iqb, �2�
= �2 cos qb−��e−iqb −1, and �4�=− �

2beka.
Hence, using Eqs. �40a�, �40b�, and �41� we can simply

derive

T =
4 sin2 qb

�� − H�2 + 4 sin2 qb
, �43�

R =
�� − H�2

�� − H�2 + 4 sin2 qb
, �44�

where

� = ��1 −
1

2b
� , �45a�

H =
� �

2b
�2

e−ka − eka + �
, �45b�

eka − e−ka = 2�cos qb + � + 1�1/2�cos qb + � − 1�1/2.

�45c�

The last equation �Eq. �45c�� has been derived from Eqs.
�25a� and �25b� by noting that

eka + e−ka = − �p + �� = − �2 cos qb + 2�� . �46�

Equations �43� and �44� clearly show that

R + T = 1. �47�

Hence, the sum of the reflected and the transmitted fluxes of
energy is equal to the incident flux of energy, which is noth-
ing but the energy conservation relation. Hence, as we have
mentioned earlier the energy conservation holds well in the
case of single-channel scattering.

Similar calculations for N=2 �referring to Eq. �8� again�
show that M11=−2x1+x0x1

2, M12=x1y1z0=M21, M13=1
−x0x1−x1

2�2−x0x1�+x1y1z1z0, M14=z0x1�y1
2−1�−z1x1�2

−x0x1�, M22=−2y1+y0y1
2, M24=1−y0y1−y1

2�2−y0y1�
+x1y1z1z0, M23=z0y1�x1

2−1�−y1z1�2−y0y1�, M33=−x0
+2x1�−1+x0x1�+x1

3�2−x0x1�, M34=z0�−1+2x1y1−x1
2y1

2�
=M43, and M44=−y0+2y1�−1+y0y1�+y1

3�2−y0y1�, and we
have �1=e5ka�2 sinh ka+��, �2=e−3iqb�2i sin qb+��, �3=
−4 sinh ka cos qbe3ka−2iqb �

2b , �4=4 sinh ka cos qbe2ka−3iqb �
2b ,

�2�=2�1+� cos qb−2 cos2 qb��3+2e2iqb −4 cos2 qb�−1, and
�4�=−2 cos qb

�
2b �−2 cos qae−ka +4 cos2 qa−1�. Using this set

of �i’s we again obtain Eqs. �41� and �42�. We can generalize
the above results, namely, N=1 and N=2 for the entire lattice
by using the property of the PWS version of nonlinearity.
Equations �29a� and �29b� clearly indicate that the solution is
plane wave by nature. Again Eq. �12� shows that the breather
amplitude varies with n as ��n�. Even for values of n slightly
greater than 1 the amplitude rapidly decays and heads toward
zero. So we can say that as n�1 we will enter the
asymptotic region where the behavior of the solution is in-
dependent of the lattice site.

We now study the cases of perfect transmission and re-
flection with the aid of Eqs. �43� and �44�. The first of those
equations suggests that under the limit �−H→0 we may
have a perfect transmission. In order to evaluate that particu-
lar limit we use Eqs. �45a�–�45c�, �13�, and �28�. As a con-
sequence we obtain
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�2�1 −
1

2b
�2

− � �

2b
�2

= 2��1 −
1

2b
��cos qb − � − �−1

+ 1�1/2�cos qb − � − �−1 − 1�1/2.

�48�

Hence,

�

=
�� − �−1��cos qb − � − �−1 + 1�1/2�cos qb − � − �−1 − 1�1/2

�� − �−1� + �cos qb − � − �−1 + 1�1/2�cos qb − � − �−1 − 1�1/2 .

�49�

Taking now the limits qb→0 and qb→, respectively, in Eq.
�49� we obtain

��qb→0 =
�� − �−1���� + �−1�2 − 2�� + �−1�

�� − �−1� + ��� + �−1�2 − 2�� + �−1�
, �50a�

��qb→ =
�� − �−1���� + �−1�2 + 2�� + �−1�

�� − �−1� + ��� + �−1�2 + 2�� + �−1�
. �50b�

In the stability analysis of one-site monochromatic DB solu-
tion in the PWS version of the DNLS model given by Eqs.
�1� and �9� �see �16��, it is shown that as the nonlinear pa-
rameter � is made to vary from below or above one can
encounter a situation where for a certain value of � �keeping
the other parameters fixed� a localized mode starts to appear
at the band edge of the extended eigenmodes. Hence, com-
paring Eqs. �50a� and �50b� with Eqs. �19� and �20� we can
say that perfect transmission happens to appear at the thresh-
old of a localized mode �LM�, which occurs at the band edge
of the extended eigenmodes. Taking now the limit qb→ 

2 in
Eq. �49� again we may have

��qb→/2 =
�� − �−1���� + �−1�2 − 1

�� − �−1� + ��� + �−1�2 − 1
, �51�

which determines the condition of getting PT at the band
center. In a similar way we can obtain the relation between �
and � at perfect transmission for any qb, but in doing that we
also have to keep in mind the breather existence criteria men-
tioned in Eq. �14�. Figure 4 depicts the ranges of variations
of � against qb at perfect transmission for various �’s. The

0 0.5 1 1.5
−1

0

1

2

3

4

5

6

q
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10
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λ=0.3
λ=0.6
λ=0.9

FIG. 4. log10 � vs wave vector qb plot �because of large varia-
tions in � even for a very small change in qb� at PT keeping � as a
parameter ��=0.1,0.3,0.6,0.9� following Eq. �49� within the range
0�qb�
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FIG. 5. Transmission coefficient T vs wave vector qb plot for a
set of different � values keeping �=0.5 �constant�. The � values are
chosen with the help of Eq. �49� by taking qb=s /2, where differ-
ent s values are mentioned in the legend. The corresponding �
values are 4.6559, 6.4861, 14.9964, and 187.7064. Numerical data
support that the perfect transmission points �T=1� in the graph are
indeed obtained at qb=s /2. Also for s=0.1 and s=0.25 we have
qb=0.8410 and qb=1.2610 at which T=0, again supported by Eq.
�54� with �=4.6559, and �=6.4861 and �=0.5.
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FIG. 6. Transmission coefficient T vs nonlinear parameter � plot
for �=0.5 and for qb=s /2 with s values mentioned in the legend.
The � values at which PT occurs can be calculated again with the
aid of Eq. �49� and also can be verified from the numerical data; in
fact �=4.7 for s=0.1 and �=13 for s=0.4. Again T=0 for �
=3, �=4, �=5, �=7 corresponding to s=0.1, s=0.4, s
=0.6, s=0.9, respectively, verified both from numerical data and
Eq. �54�.
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FIG. 7. Nonlinear parameter � vs wave vector qb plot at perfect
reflection for four different values of �, namely, 0.1, 0.3, 0.6, and
0.9.
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sign�s� and minimum value�s� of � follow as a consequence
of Eq. �14�. The plots are done only for the positive values of
�. It is clearly seen from Fig. 4 that PT can only be obtained
within the range qb=0 to qb= /2. Similar set of plots can
also be done for negative values of � as well, where we can
obtain PT for the other half of the wave vector, namely, qb
= /2 to qb=.

After analyzing the behavior of the parameters at PT we
shall now study Fig. 5 where the nature of variation of T with
qb for different �’s in the channel for bn when the channel for
an is kept closed is shown. It is straightforward from Fig. 5
that only for a definite � we can have perfect transmission at
a definite qb. The numerical data show that a particular �
follows from Eq. �49� with a properly chosen � and the cor-
responding qb. Hence, we may conclude that only phonons
of a particular frequency depending on � and � can pass
through the breather with unmodified amplitude. All other
phonons not having that particular frequency will be either
blocked by the breather or their amplitudes will be somewhat
diminished after transmission. The figure also reveals that at
some definite frequencies �as mentioned in Fig. 5� the DB
behaves as opaque to the incident photons. Those zero trans-
mission points obviously indicate perfect reflection, which is
again verified by Eq. �54�.

On the other hand Fig. 6 presents the T-� plot for differ-
ent qb’s while � is kept constant. PT points of the plot follow
as a consequence of Eq. �49� again.

Again since we are considering elastic scattering only,
hence, for perfect reflection �R=1� we must have T=0. On
the other hand T=0 �for qb�0� implies �−H→� �see Eq.
�43��, which in turn shows that

� = eka − e−ka. �52�

As a consequence of that we may have with the aid of Eqs.
�13�, �45a�, and �45c�

��1 −
1

2b
� = 2�cos qb − � − �−1 + 1�1/2

��cos qb − � − �−1 − 1�1/2, �53�

and hence using Eq. �28�

� = � − �−1 + 4��cos qb − � − �−1 + 1��cos qb − � − �−1 − 1� .

�54�

Figure 7 depicts the � vs � plot at perfect reflection for
different wave vectors qb on the basis of Eq. �54�.

In Figs. 8 and 9 we show the numerical simulation of Eq.
�22� using MATLAB in Intel platform. In performing that
simulation task we adopt the usual fourth-order Runge-Kutta
method on the chain of lattice sites of length 2N+1 �from −N
to N�. As the time evolution of the perturbation un at each
lattice site depends �as suggested by Eq. �22�� on a coupling
term involving the value of the perturbation at just the pre-
vious and very next lattice sites �namely, un−1 and un+1�,
hence, it is quite clear that we cannot define Eq. �22� at the

� ��� ��� ���

����

�����

�

����

���

����

���

����

�

�
�

FIG. 8. In the figure the solid line in the left and the dotted line
in the right indicate the incident and transmitted waves, respec-
tively. Also the dashed line in the middle indicates the breather
itself. The figure shows T→1 �transmitted amplitude becomes al-
most equal to incident wave amplitude� for �=0.5, qb=0.1 /2, and
�=4.6559 with the aid of Fig. 5 and for a time period of t=12.
Again using Eqs. �13� and �25b� and with the above qb and � we
obtain p=2 cos qb+�=−0.5246, and the velocity of the wave is
given by V= �p−�� /qb=12.57. Hence, during the time interval cho-
sen the wave advances through a distance of Vt=150.89. Also from
the figure it is clearly evident that there is no reflected wave at all.
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�����

�
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���
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���

����
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�

FIG. 9. This figure shows T=0.62 for �=3.5, qb=1.6, �=0.5
for a time period of t=12, in agreement with the corresponding
theoretical value T=0.7 supported by Eq. �43�. Different lines in the
figure have the same significance as in Fig. 8. Figure clearly shows
that a part of the incident wave reflects toward left, which is shown
by the dotted line similar to transmitted wave in the right.
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edges of the lattice, namely, at n=−N and n=N. Hence, in
our numerical analysis we limit the simulation process of Eq.
�22� within the range n=−N+1 to n=N−1 and take the
boundary condition un=0 at n= �N.

In fact Fig. 8 shows that a phonon having constant ampli-
tude is incident on the breather solution from the left. After
scattering from the breather the transmitted wave travels to-
ward right with the same amplitude as the incident wave, and
there is no reflected wave �perfect transmission�. On the
other hand Fig. 9 reveals that after scattering the transmitted
part with diminished amplitude travels toward right and the
reflected part also with diminished amplitude travels toward
left. All these results confirm our earlier analyses. Both these
figures show that the transmitted radiation’s amplitude and
also the reflected radiation’s amplitude in Fig. 9 rapidly di-
minish near the edges; this happens because of the finite
lattice size. The nearest-neighbor linear coupling term in the
DNLS equation seems to work well inside the lattice. But as
one moves toward the ends of the lattice the coupling gets
weaker, and finally just at the end point of the lattice the
coupling term does not work at all because of the absence of
any further lattice point. This difficulty can be partially re-
moved by taking the lattice size as large as possible, but it
will also increase the run time of the simulation program and
more errors will be accumulated thereby. We can remove the
finite-size error of the lattice in another way by taking a ring
�27� instead of the linear lattice. Diminishing of amplitude at
the left edge is not so prominent because of the superposition
of the reflected and the incident amplitudes. This diminishing
in amplitude does not seem to be applicable for incident
waves because the incident waves are traveling inward from
the left edge, and not toward the edge.

V. CONCLUSION

In this paper we address linear phonon scattering by DBs.
Analyses reveal a number of important properties of nonlin-
ear lattices. We have determined exact expressions for T and

R in the PWS version of nonlinear model that help us to
explore different nonlinear properties.

Discrete breathers are found to be almost transparent for
certain specific values of the wave vectors. We have shown
that this transparency is to be connected with the existence of
breather internal modes. The transmission coefficient
changes drastically at a threshold value of the nonlinear pa-
rameter when there appears a localized mode about the
breather solution. This property is physically relevant to the
cases where filtering of some definite frequencies corre-
sponding to maximum energy is required. For example, if a
small-amplitude wave packed with phonons with broad time-
Fourier spectrum �noise� is sent to the DB, only the phonons
with frequencies corresponding to PT are able to pass
through the breather.

Again from the condition of PR we observe another fea-
ture. We see that there exist certain frequencies for which
DBs are almost opaque to the incident phonons. This feature
is responsible for a number of nonlinear phenomena, for ex-
ample, targeted energy transfer, to create large-amplitude
breather or to store an amount of breather between DBs, etc.,
which is important in the context of energy trapping. In the
numerical experiment of thermal relaxation in anharmonic
systems �28� it was observed that the relaxation rate does not
obey the exponential law, but rather it obeys an extended
exponential law making the process slower. This phenom-
enon would become impossible to explain without consider-
ing the energy trapping by single DB or between two DBs. In
such cases perfect reflection plays a major role. We can also
apply the transfer-matrix approach to analyze phonon scat-
tering in another lattice model known as nonlinear discrete
Klein-Gordon model �NDKG�. In the PWS version of that
model we can also show all the results to be exact �17�.
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