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Aspects of magnetoelectric birefringence phenomena are investigated in the context of electromagnetic wave
propagation in isotropic nonlinear media in the eikonal approximation. It is shown that these phenomena can
be produced as a unique effect in isotropic systems in the presence of external electric and magnetic fields,
provided specific dielectric properties are present.
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I. INTRODUCTION

In nonlinear media electromagnetic wave propagation is
governed by nonlinear equations �1�. Nonlinearities are in-
troduced by means of constitutive relations linking external
and induced fields. In isotropic media these relations can be
presented as D� =��E ,B�E� and H� =�−1�E ,B�B� where � and �
describe the permittivity and the permeability of the medium,
respectively. Several effects concerning light propagation
can appear in such media depending on its specific dielectric
properties and the applied external fields. Of particular inter-
est in this paper is birefringence �or double refraction�, which
appears when the speed of the wave takes a distinct value for
each propagating mode �2� in a given direction. These dis-
tinct modes correspond to ordinary and extraordinary rays.
The former propagates isotropically while the latter depends
on direction. Birefringence is found not only in nonlinear
media but also in the context of nonlinear electrodynamics,
as is predicted to occur in quantum electrodynamics �3,4�.
This effect is used widely in optical devices technology �5�,
as well as a technique for investigating properties of several
physical systems, including astrophysical systems �6,7�.

Magnetoelectric birefringence is a birefringence effect
whose difference between the refractive indexes associated
with the propagation of ordinary and extraordinary rays is
proportional to the product of the applied electric and mag-
netic fields. It was long ago reported in the literature �8–11�
but it was only recently measured �12,13�. One of the diffi-
culties reported �12� in its measurement is the presence of
other standard birefringence, as Kerr �14� and Cotton-
Mouton �15� effects, whose magnitude is usually far greater
than the magnetoelectric one. Magnetoelectric birefringence
is also predicted to occur in nonlinear electrodynamics in the
context of quantum electrodynamics �16�. A theoretical de-
scription of magnetoelectric birefringence in isotropic media
was recently considered �17� in the context of the eikonal
approximation, where the possibility to produce it as a
unique effect in isotropic nonlinear media was suggested.

In this paper monochromatic waves of circular frequency
� and propagation vector q� incident on an isotropic nonlin-

ear medium are considered in the regime of the eikonal ap-
proximation. In such a medium, the electromagnetic fields
are governed by nonlinear equations. Dispersive effects are
neglected and the speed of the waves is defined by � /q. We
examine two circumstances where magnetoelectric birefrin-
gence as a unique effect could be implemented and eventu-
ally measured. These two circumstances occur when light is
propagating in a nonlinear medium with dielectric coeffi-
cients satisfying �=��B� and �=�c or, symmetrically, �
=�c and �=��E�. In both cases the presence of electric and
magnetic external fields �those not associated with the inci-
dent wave� are fundamental. With only one externally ap-
plied field the effect disappears.

In the next section, the eigenvalue problem is stated in
terms of the dielectric coefficients. In Sec. III, two cases
where magnetoelectric birefringence appears as a unique ef-
fect in isotropic nonlinear media are shown. Final remarks
are presented in Sec. IV. In all sections the units are such that
c=1.

II. FRESNEL EQUATION

In the absence of sources and currents, the electrodynam-
ics in a continuum medium at rest is completely determined
by the Maxwell equations

�� · D� = 0, �1�

�� · B� = 0, �2�

�� � E� = −
�B�

�t
, �3�

�� � H� =
�D�

�t
, �4�

together with the constitutive relations D� =�J·E� and H� =�J ·B� .
The dielectric tensors �J and �J are usually known as the
permittivity and permeability tensors, respectively, and they
encompass all information about the electromagnetic proper-
ties of the medium.

For the cases of our interest the constitutive relations will
be simply D� =��B�E� and H� =�−1�E�B� . Particularly, the cases
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with ��B� and constant � or ��E� and constant � will be
considered separately in the next section.

In order to describe the propagation of the electromag-
netic waves within the eikonal approximation �2� the method
of field disturbances �1,18� is here employed. Let �, defined
by Z�t ,x��=0, be a smooth �differentiable of class Cn ,n�2�
hypersurface. The function Z is understood to be a real-
valued smooth function of the coordinates �t ,x�� and regular
in the neighborhood U of �. The spacetime is divided by �
in two disjoint regions U−, for Z�t ,x���0, and U+, for
Z�t ,x���0. The discontinuity of an arbitrary function f�t ,x��
�supposed to be a smooth function in the interior of U	� on
� is a smooth function in U, and is given by

�f�t,x���� � lim
�P	�→P

�f�P+� − f�P−�� , �5�

with P+ , P− and P belonging to U+ ,U− and �, respectively.
The electromagnetic fields are smooth functions in the inte-
rior of U+ and U− and continuous across �. However they
have a discontinuity in their first derivatives, behaving as
�18�

�E� �� = 0, �B� �� = 0, �6�

��tE� �� = �e�, ��tB� �� = �b� , �7�

��� · E� �� = q� · e�, ��� · B� �� = q� · b� , �8�

��� � E� �� = q� � e�, ��� � B� �� = q� � b� , �9�

where e� and b� are related to the derivatives of the electric
and magnetic fields on � as e� � ��E� /�Z�� and b�

� ��B� /�Z��, and they correspond to the polarization vectors
of the propagating waves �19�.

Applying these boundary conditions to the Maxwell equa-
tions we obtain the eigenvalue equation �20�

�
j=1

3

Zijej = 0, �10�

where the Fresnel matrix Zij is given by

Zij = �� −
q2

��2	
ij +
1

��2qiqj −
�̇

�
�q� � B� � jEi

−
��

��2 �q� � B� �iEj �11�

with �̇� �1 /B��� /�B and ��� �1 /E��� /�E. Further, for
any vector y� we denote its ith component as yi.

Non trivial solutions of the eigenvalue problem stated by
Eq. �10� can be obtained if, and only if,

det
Zij
 = 0. �12�

The above equation is known as the generalized Fresnel
equation and its solutions are identified as the dispersion
relations, which describe the propagation of electromagnetic
waves in the nonlinear medium characterized by the coeffi-

cients � and � under the action of external applied fields E�

and B� .

III. MAGNETOELECTRIC BIREFRINGENCE

Magnetoelectric birefringence has been investigated since
long ago �8–11� but only recently has it been measured
�12,13� in the laboratory. This effect is difficult to measure
because its magnitude is small compared to the standard bi-
refringence effects �Kerr and Cotton-Mouton birefringence�,
which are claimed to always appear together with the mag-
netoelectric birefringence.

Within the eikonal approximation it was suggested �17�
the possibility of producing a kind of linear �in the product of
the electric and magnetic fields� magnetoelectric birefrin-
gence as a unique effect in isotropic nonlinear media. In this
section two possible configurations where this effect can be
implemented are examined.

The standard method used to solve the eigenvalue equa-
tion �Eq. �10�� consists in expanding the corresponding ei-
genvector e� in a particular basis of vectors in the three-
dimensional space �3,17,21�. We adopt an alternative method
which consists of deriving the formulas for the traces of lin-
ear operators �22�. Following this method, the determinant of
the Fresnel matrix yields

det
Zij
 = −
1

6
�Z1�3 +

1

2
Z1Z2 −

1

3
Z3 = 0, �13�

where we defined the traces

Z1 � �
i=1

3

Zii, �14�

Z2 � �
i,j=1

3

ZijZji, �15�

Z3 � �
i,j,l=1

3

ZijZjlZli. �16�

A. Magnetoelectric birefringence in dielectric media with
ε=ε(B) and constant �=�c

For this class of nonlinear media, Eq. �11� takes the form

Zij = �� −
q2

��2	
ij +
1

��2qiqj −
�̇

�
�q� � B� � jEi �17�

leading to the following traces:

Z1 = 3�� −
q2

�c�
2	 +

q2

�c�
2 +

�̇

�
q� · E� � B� , �18�

Z2 = 3�� −
q2

�c�
2	2

+
q4

�c
2�4 +

�̇2

�2 �q� · E� � B� �2

+ 2�� −
q2

�c�
2	� q2

�c�
2 +

�̇

�
q� · E� � B�	 , �19�
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Z3 = 3�� −
q2

�c�
2	3

+
q6

�c
3�6 +

�̇3

�3 �q� · E� � B� �3

+ 3�� −
q2

�c�
2	� q4

�c
2�4 +

�̇2

�2 �q� · E� � B� �2	
+ 3�� −

q2

�c�
2	2� q2

�c�
2 +

�̇

�
q� · E� � B�	 . �20�

Now, introducing Eqs. �18�–�20� in Eq. �13�, yields

��� −
q2

�c�
2	�� −

q2

�c�
2 +

�̇

�
q� · E� � B�	 = 0. �21�

It is worth to mention that the above result can also be ob-
tained from the general dispersion relation presented before
�17�, where the expansion in a particular basis of vectors was
considered.

The above equation presents two distinct solutions. The
first one does not depend on the direction of propagation of
the wave and is recognized as the dispersion relation for the
ordinary ray. The corresponding speed � /q is given by

vo = 	
1

��c�
. �22�

The second solution presented in Eq. �21� corresponds to the
dispersion relation associated with the extraordinary ray and
it depends on the direction of propagation of the wave q̂
=q� /q. Its corresponding speed is

ve
	 = −

�̇q̂ · E� � B�

2�
	� �̇2�q̂ · E� � B� �2

4�2 +
1

�c�
. �23�

In this paper the indexes o and e denote quantities associated
with the ordinary and the extraordinary rays, respectively.

Let us assume the expansion of the permittivity coeffi-
cient � as

� = �c + �2B2. �24�

For all cases it is assumed that �2B2��c. Thus, the speeds of
ordinary and extraordinary rays reduce to

vo = 	
1

��c�c
�1 −

�2

2�c
B2	 , �25�

ve
	 = −

�2

�c
q̂ · E� � B� 	

1
��c�c

�1 −
�2

2�c
B2	 . �26�

We notice that birefringence does not occur if either of the
following cases occurs: �i� direction of propagation belong-

ing to the plane containing the external fields, i.e., q̂ · �Ê
� B̂�=0; �ii� parallel electric and magnetic fields Ê · B̂=1. In
these cases ve=vo as expected.

With respect to the direction of wave propagation, the
difference between the values of ordinary and extraordinary
speeds achieves a maximum when we set q̂= 	 �E� �B� � / �E�
�B� �. In this case q̂ ·E� �B� =EB sin � and the magnitude of
the birefringence effect is found to be


n� − n�
  �c�2EB sin � , �27�

where n� � �1 /ve�� =1 /vo and n�� �1 /ve�� are the refractive
indexes in the directions parallel and perpendicular to the
direction of the external electric field, respectively. As it can
be inferred from Eq. �27�, the effect achieve its maximum
value when the external fields are crossed ��= /2�. As an-
ticipated, for the case of parallel external fields ��=0� bire-
fringence disappear.

In Fig. 1 the normal surfaces associated with ordinary
�circular solid line� and extraordinary �dashed line� rays
propagating in an isotropic nonlinear medium with permit-
tivity � given by Eq. �24� are presented. It is assumed that
the waves were produced in a given earlier time at the origin.

The plot is based on Eqs. �22�–�24� with Ê= ŷ, B̂= ẑ and

q̂ · B̂=0. The choice of crossed fields ��= /2� was done in
order to produce a stronger effect, but the same qualitative
behavior occur with �� /2. The direction of propagation is

determined by the angle � given by q̂ · Ê� B̂=cos �. The
maximum birefringence effect occurs when � is equal to 0 or
, corresponding to Eq. �27� with �= /2. As shown in the
figure, the speed of extraordinary ray is smaller than the
speed of ordinary ray in the interval − /2��� /2. The
opposite occurs if  /2���3 /2 and they are the same in
the case of � being equal to  /2 or 3 /2, which appears as
nonbirefringent directions.

Summing up, in the presence of external electric and mag-
netic fields, electromagnetic waves propagating in isotropic
media whose dielectric properties are described by Eq. �24�
present double refraction, whose magnitude is measured by

E

E�B

�1.0 �0.5 0.5 1.0
X

�1.0

�0.5

0.5

1.0

Y

FIG. 1. �Color online� Normal surfaces associated with ordinary
�circular solid line� and extraordinary �dashed line� rays propagat-
ing in an isotropic nonlinear medium with dielectric coefficients
given by �=�c+�2B2 and constant �. The plot is based on Eqs.

�22�–�24� with Ê= ŷ, B̂= ẑ and q̂ · B̂=0. The numerical values were
taken such that ��c�c�−1/2=0.9, �2 /�c=0.001, and vo�0.896.
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means of Eq. �27�. This corresponds to a kind of magneto-
electric birefringence appearing as a unique effect, i.e., with-
out any other standard accompanying effects.

The polarization modes described by e� can be obtained
for the ordinary and extraordinary rays. They correspond to
the eigenvectors of Eq. �10� with Zij given by Eq. �17�. Let
us consider an expansion of e� in terms of a convenient basis
of the three-dimensional space, which can be chosen as the
external fields E� and B� and the wave vector q� . Thus,

e� = aE� + bB� + cq� . �28�

Thus, introducing this equation in Eq. �10� and using the
assumptions set for the nonlinear medium, we obtain

a�� −
q2

�c�
2 +

�̇

�
q� · E� � B�	 = 0, �29�

b�� −
q2

�c�
2	 = 0, �30�

a� q� · E�

�c�
2	 + b� q� · B�

�c�
2	 + c� = 0. �31�

The solution of the above system leads to the general polar-
ization vectors,

êo = a1�B� −
q� · B�

��c�
2q�	 , �32�

êe = a2�E� −
q� · E�

��c�
2q�	 , �33�

where a1 and a2 are normalization factors �êo · êo= êe · êe=1�.
We notice that when the external fields tend to be parallel �no
birefringence situation� the polarization vectors tend to be
the same, as expected. One can see that if the propagation
occurs perpendicularly to the plane containing the external

fields, the polarization vectors reduce to êo= B̂ and êe= Ê. It
corresponds to the birefringence effect described by Eq. �27�,
which achieves its maximum value with �= /2. For the
case presented in Fig. 1 the propagation vector associated

with the ordinary ray reduces to êo= B̂. In these two cases

êe · êo= Ê · B̂=cos �.
It should be remarked that the polarization vectors can

also be derived by using other basis of the vector space, as
the Cartesian basis x̂ , ŷ , ẑ, for instance. The obtained results
does not depend on the particular choice of basis.

B. Magnetoelectric birefringence in dielectric media
with �=�(E) and constant ε=εc

In this case Eq. �11� reduces to

Zij = �� −
q2

��2	
ij +
1

��2qiqj −
��

��2 �q� � B� �iEj . �34�

The traces of Zij can be derived in a similar way as done in
last section. However, for this symmetric case these quanti-

ties can be obtained directly from Eqs. �18�–�20� by identi-
fying ��→�c , �c→� , �̇→�� /�2�. Thus, using Eq. �13�
we obtain,

�c��c −
q2

��2	��c −
q2

��2 +
��

��2q� · E� � B�	 = 0. �35�

As before, the dispersion relations for ordinary and ex-
traordinary rays can be obtained from the above expression,
leading to the corresponding speeds. Assuming the expan-
sion of the permeability coefficient � as �=�c+�2E2, with
�2E2��c, we obtain

vo = 	
1

��c�c
�1 −

�2

2�c
E2	 , �36�

ve
	 = −

�2

�c�c
2 q̂ · E� � B� 	

1
��c�c

�1 −
�2

2�c
E2	 . �37�

Again, the speeds of ordinary and extraordinary rays coin-
cide �no birefringence� when propagation occurs in the plane
containing the external fields �electric and magnetic� or even
when these fields are parallel. The qualitative behavior of the
normal waves corresponding to both rays is the same as
found in the case studied in Sec. III A �see Fig. 1�.

With respect to the direction of propagation, the maxi-
mum difference between ordinary and extraordinary speeds
occurs when q̂= 	 �E� �B� � / �E� �B� � and yields


n� − n�
 
�2

�c
EB sin � , �38�

which consists in the measurable quantity corresponding to
the magnetoelectric birefringence phenomenon. Further, the
effect will be maximized in the case of crossed fields
��= /2� and disappear if the external fields are parallel
��=0�. As before, the magnetoelectric birefringence appears
as a unique effect, disappearing if any external field is turned
off.

Finally, the normalized polarization vectors can be ob-
tained in the same lines as done in Sec. III A.

IV. CONCLUDING REMARKS

The propagation of monochromatic electromagnetic
waves in isotropic media was investigated in the limit of
geometrical optics. The corresponding eigenvector problem
was presented and solved for systems characterized by di-
electric coefficients ��B� and constant �, and also for ��E�
and constant �. Magnetoelectric birefringence was examined
for each situation and the polarization vectors were pre-
sented. For certain class of isotropic nonlinear media, as liq-
uids, satisfying the above mentioned conditions, a kind of
magnetoelectric birefringence occurs as a unique effect, that
is, without the appearance of the standard birefringence phe-
nomena �as Kerr and Cotton-Mouton effects�. Since the mag-
nitude of the standard birefringence is far greater than the
magnetoelectric one, producing the latter as a unique effect
may result in an experimental enhancement in its measure-
ment. In both cases, the presence of external electric and
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magnetic fields are necessary to produce birefringence. Fur-
ther, setting the external fields to be parallel, the effect dis-
appears. The magnitude of this phenomenon achieves its
maximum value for crossed external fields, with propagation
occurring perpendicularly to them.

Closing, magnetoelectric birefringence was recently mea-
sured in pure molecular liquids �13�. In the case of a sample
of methylcyclopentadienyl-Mn-tricarbonyl the effect �in this
case not as a unique effect� was measured with KME=51
�10−12 V−1 T−1, where the parameter KME gives an idea of
the magnitude of the birefringence effect. For instance, in
Sec. III A KME=�c�2 /� where � denotes the wavelength of

the light propagating in the medium. Generally, the effect
depends on the properties of the medium and also on the
magnitude of external fields. Finally, in order to produce it as
a unique effect, the requirements stated in Secs. III A or III B
should be provided.
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