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We consider the nonlinear Dirac equations �NLDE’s� in 1+1 dimension with scalar-scalar self interaction
g2

k+1 ��̄��k+1, as well as a vector-vector self interaction g2

k+1 ��̄����̄����1/2�k+1�. We find the exact analytic
form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the
nonlinear Schrödinger equation �NLSE� and reduce to these solutions in a well defined nonrelativistic limit. We
perform the nonrelativistic reduction and find the 1 /2m correction to the NLSE, valid when ��−m��2m,
where � is the frequency of the solitary wave in the rest frame. We discuss the stability and blowup of solitary
waves assuming the modified NLSE is valid and find that they should be stable for k�2.
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I. INTRODUCTION

Beyond the usual applications in field theory, the nonlin-
ear Dirac equation �NLDE� also emerges in various con-
densed matter applications. An important example being the
Bose-Einstein condensate �BEC� in a honeycomb optical lat-
tice in the long wavelength, mean-field limit �1�. The multi-
component BEC order parameter has an exact spinor struc-
ture and serves as the bosonic analog to the relativistic
electrons in graphene.

Classical solutions of nonlinear field equations have a
long history as a model of extended particles �2,3�. The sta-
bility of such solutions in 3+1 dimensions was studied in
detail by Derrick �4�. He showed that the classical solutions
of the self-interacting scalar theories �with both polynomial
and nonpolynomial interactions� were unstable to scale trans-
formations. However he was not able to make any conclu-
sive statements about the spinor theories. In 1970, Soler �3�
proposed that the self-interacting four-Fermi theory was an
interesting model for extended fermions. Later, Strauss, and
Vasquez �5� were able to study the stability of this model
under dilatation and found the domain of stability for the
Soler solutions. Solitary waves in the 1+1 dimensional non-
linear Dirac equation have been studied �6,7� in the past in
case the nonlinearity parameter k=1, i.e., massive Gross-
Neveu �8� �with N=1, i.e., just one localized fermion� and
massive Thirring �9� models�. In those studies it was found
that these equations have solitary wave solutions for both
scalar-scalar �S-S� and vector-vector �V-V� interactions. The
interaction between solitary waves of different initial charge
was studied in detail for the S-S case when k=1 in the work
of Alvarez and Carreras �10� by Lorentz boosting the static
solutions and allowing them to scatter. Stability of the k=1
problem was also studied by Bogolubsky �11�, who found

using a variational method that preserved charge, that the
frequencies ��1 /�2 should be unstable. However, subse-
quent numerical work by Alvarez and Soler �12� showed that
this result was incorrect �i.e., the solitary waves were nu-
merically stable�. Further analytic work on stability for the
S-S model using the Shatah-Strauss formalism �13� by Blan-
chard et al. �14� turned out to give inconclusive results in
that they could not prove that the solutions to the Dirac equa-
tion were minima of the variational energy functional. Thus
the domain of stability of solutions to self interacting four-
Fermi theories is still an open question.

In this paper we generalize the work of Lee, Kuo, and
Gavrielides �6� to arbitrary k and find exact solutions for all
k. The paper is organized as follows: In Sec. II we find rest-
frame solitary wave solutions of the form ��x , t�=e−i�t��x�,
for both the case of the S-S and V-V interactions. We calcu-
late the rest-frame frequency, �, and the energy, H, of a
solitary wave of charge Q, as a function of the parameters k
and g. We find the range of k and g values for which � and
H are in the range 0� � �

H ��m. In Sec. III we derive the
nonrelativistic limit of the NLDE and find the leading term
which is the nonlinear Schrödinger equation with corrections
of the order of 1 /2m. Our derivation agrees with the heuris-
tic result for k=1 for modification of the nonlinear
Schrödinger equation �NLSE� found earlier by �15�. We find
that the correction term has the same magnitude but opposite
sign for the V-V as compared to the S-S case and find that
the expansion is always valid whenever ��−m��2m. In the
V-V case, the NLDE solutions are numerically quite close to
those of the NLSE for all values of �. However for the S-S
case, when we depart from the domain of validity of the
nonrelativistic reduction, the solitary wave solutions depart
dramatically from the NLSE limit and become double
humped. We plot the crossover to this regime as a function of
the nonlinearity parameter k. In Sec. IV we first discuss sta-
bility of solitary waves in the NLSE using an auxiliary La-
grangian for the static solutions. We find that the criterion for
stability is 0�k�2 and that identical results are obtained
using stability against scale transformations �Derrick’s theo-
rem �4��. However, the scale transformation argument leads
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to the conclusion that there should be unstable solitary waves
in the NLDE for k	1 which violates continuity argument to
the nonrelativistic regime. It also led to contradictions with
numerical experiments at k=1. We then discuss the stability
question in the modified NLSE �mNLSE� and show that it is
essentially the same as for the NLSE. In Sec. V we discuss
how to obtain information about self-focusing in case k=2
and k	2 for both the NLSE and mNLSE assuming that the
time dependent solitons are self-similar generalizations of
the exact solution of the NLSE. We find that the correction
terms in the mNLSE eventually dominate at late times during
self-focusing and so the approximation breaks down during
the late stages of self-focusing. We conclude with a summary
of our main findings as well as a discussion about the pos-
sible future directions for settling issues of stability using
various approaches including numerical methods.

II. SOLITARY WAVE SOLUTIONS

We are interested in solitary wave solution of the NLDE
given by

�i���� − m�� + g2��̄��k� = 0, �1�

for the scalar-scalar interaction and

�i���� − m�� + g2�����̄������̄����̄����1/2�k−1� = 0,

�2�

for the vector-vector interaction. These equations can be de-
rived in a standard fashion from the Lagrangian

L = �̄�i���� − m�� + LI. �3�

For scalar-scalar interactions, we have

LI =
g2

k + 1
��̄��k+1, �4�

whereas for vector-vector interactions we have instead

LI =
g2

k + 1
��̄����̄����1/2�k+1�. �5�

Note that in the above equations, g2 is the dimensional cou-
pling constant, i.e., g2=G2m1−k, where G is dimensionless.
The � matrices in two dimensions in our convention satisfy

���,�
�+ = 2g�
; g�
 = 	1 0

0 − 1

 . �6�

We are looking for solitary wave solutions where the field �
goes to zero at infinity. It is sufficient to go into the rest
frame, since the theory is Lorentz invariant and the moving
solution can be obtained by a Lorentz boost. In the rest frame
we have that

��x,t� = e−i�t��x� . �7�

We are interested in bound-state solutions that correspond to
positive frequency in the rest frame less than the mass pa-
rameter m, i.e., 0���m. For these bound-state solutions
one requires that the energy of the solitary wave H obeys

0�H�m. Choosing the representation �0=�3, i�1=�1,
where the �i are the standard Pauli spin matrices, we obtain

i�3�t� + �x�x� − m� − VI� = 0, �8�

where VI=−
�LI

��̄
. Defining the matrix,

��x� = 	u

v

 = R�x�	cos 

sin 

 , �9�

we obtain the following equations for u and v. For scalar-
scalar interactions, we find:

du

dx
+ �m + ��v − g2�u2 − v2�kv = 0,

dv
dx

+ �m − ��u − g2�u2 − v2�ku = 0. �10�

For the vector-vector case one has instead:

du

dx
+ �m + ��v + g2�u2 + v2�kv = 0,

dv
dx

+ �m − ��u − g2�u2 + v2�ku = 0. �11�

A first integral of these equations can be obtained using con-
servation of the energy-momentum tensor,

T�
 = i�̄���
� − g�
L ,

��T�
 = 0, �12�

which yields for stationary solutions

T10 = constant, T11 = constant. �13�

For all the cases we want to study we can write

T11 = ��†� − m�̄� + LI. �14�

For solitary wave solutions vanishing at infinity the constant
is zero and we get the useful first integral,

T11 = ��†� − m�̄� + LI = 0. �15�

Multiplying the equation of motion for either the scalar-

scalar or vector-vector interaction on the left by �̄ we have
that:

�k + 1�LI = − ��†� + m�̄� + �̄i�1�1� . �16�

We find from Eqs. �15� and �16� that

�k�†� − mk�̄� + �̄i�1�1� = 0. �17�

For the Hamiltonian density we have

H = T00 = �̄i�1�1� + m�̄� − LI � h1 + h2 − h3. �18�

Each of hi are positive definite. From Eqs. �15� and �16� one
derives that
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kLI = �̄i�1�1� , �19�

which further implies that

h3 =
1

k
h1. �20�

In particular, for k=1, we obtain H=m�̄�. In terms of �R ,�
one has

�̄i�1�1� = �†�
d

dx
. �21�

This leads to the simple differential equation for  for soli-
tary waves

d

dx
= − �k + mk cos 2 , �22�

where �k�k� and mk=km. The solution is

�x� = tan−1�� tanh �kx� , �23�

where

� =�mk − �k

mk + �k
=�m − �

m + �
, �k = �mk

2 − �k
2. �24�

In what follows it is often useful to rewrite everything in
terms of � and �. We have the relations,

m + � =
�

�
, m − � = ��, � = �m2 − �2. �25�

A. Scalar-Scalar interaction

First let us look at the S-S interaction. Using Eqs. �4� and
�15� we obtain

�R2 − mR2 cos 2 +
g2

k + 1
�R2 cos 2�k+1 = 0. �26�

Thus

R2 = � �k + 1��m cos 2 − ��
g2�cos 2�k+1 1/k

. �27�

We have

d

dx
=

�k
2

�k + mk cosh 2�kx
= − �k + mk cos 2 , �28�

so that

cos 2 =
mk + �k cosh 2�kx

�k + mk cosh 2�kx
=

m + � cosh 2�kx

� + m cosh 2�kx
. �29�

One important expression is

m cos 2 − � =
�k

2

k2�� + m cosh 2�kx�
. �30�

Using this we get

R2 =
� + m cosh 2�kx

m + � cosh 2�kx
� �k + 1��k

2

g2k2�m + � cosh 2�kx�1/k

,

�31�

Using the identities:

1 + �2 tanh2 �kx = 	m cosh 2�kx + �

m + �

sech2 �kx ,

1 − �2 tanh2 �kx = 	� cosh 2�kx + m

m + �

sech2 �kx , �32�

we obtain the alternative expression

R2 =
1 + �2 tanh2 �kx

1 − �2 tanh2 �kx
� �k + 1��k

2 sech2 �kx

g2k2�m + ���1 − �2 tanh2 �kx�1/k

.

�33�

The equation for � in terms of g2 is determined from the fact
that the single solitary wave has charge Q,

Q = �
−�

�

dx�†� = �
−�

�

dxR2�x� . �34�

Thus the equation we need to solve for � is

Q =
1

�k
� �k + 1��k

2

g2k2�m + ��1/�k�

Ik��2� , �35�

where

Ik��2� = �
−1

1

dy
1 + �2y2

�1 − y2�1/k�k−1��1 − �2y2�1/k�k+1� . �36�

For k=1, one obtains

I1��2� =
2

1 − �2 ,

Q = �
−�

�

dxR2 =
4�

�1 − �2�g2 =
2�

g2�
, �37�

with the solution

� =
m

�1 + Q2g4/4
, �38�

in agreement with earlier results of �6�. For k= 1
2 , we obtain

I1/2��2� = �
−�

�

dy
�1 − y2��1 + �2y2�

�1 − �2y2�3 =
4

�3 �tanh−1 � − ��

�39�

and

Q =
�k + 1�2�k�

2

k2g4 I1/2. �40�
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For k= 3
2 , we obtain

I3/2��2� = − 2K��2� +
4���2�
1 − �2 , �41�

where K�k� is the complete elliptic integral of the first kind.
In general we can cast Ik��2� into the sum of two hypergeo-
metric functions 2F1. Letting y=x1/2 we have that

Ik��2� = �
0

1

dx
x−1/2�1 + �2x��1 − x�−1/k�k−1�

�1 − �2x�1/k�k+1� . �42�

From the definition

�
0

1

dt
tb−1�1 − t�c−b−1

�1 − tz�a =
��b���c − b�

��c� 2F1�a,b,c;z� , �43�

we find that

Ik��2,k� = B	1

2
,
1

k

2F1	1 +

1

k
,
1

2
,
1

2
+

1

k
;�2


+ �2B	3

2
,
1

k

2F1	1 +

1

k
,
3

2
,
3

2
+

1

k
;�2
 . �44�

which, when substituted into Eq. �35� is the equation we
solve to obtain � in terms of k, Q, m, and g. Here B�x ,k�
denotes the Beta function.

In order to see if the classical solution describes a bound
state, one must calculate the value of the Hamiltonian for this
solution and show that it is less than m. The Hamiltonian
density is given by Eq. �18�, so that the energy of the solitary
wave is given by

Hsol =� dxH

=� dx�h1 + h2 − h3�

=� dx�h1	1 −
1

k

 + h2

= H1	1 −
1

k

 + H2, �45�

where we have used Eq. �20�. We find

H1 =� dyR2�y�
d�y�

dy
=

�k

k�m + ��� �k + 1��k
2

g2k2�m + ��1/k

� B	1

2
,1 +

1

k

2F1	1 +

1

k
,
1

2
,
3

2
+

1

k
;�2
 . �46�

H2 = m� dyR2�y�cos 2�y� =
1

�k
� �k + 1��k

2

g2k2�m + ��1/k

� B	1

2
,
1

k

2F1	1

k
,
1

2
,
1

2
+

1

k
;�2
 . �47�

Without loss of generality, in the remaining part of this sub-
section we now put m=1 so that 0���1, in order to mea-
sure � ,H in units of m. For k=1 we find

H1 =
2�1 + ��

g2Q
��1 + �2�tanh−1 � − �� ,

H2 =
4

g2Q
tanh−1 � . �48�

Therefore we find that the energy of the solitary wave is

Esol =
4

g2Q
tanh−1 �sol, �49�

where in �sol, �sol=
1

�1+Q2g4/4
. We notice that the energy of the

solitary wave with k=1 does not depend on the width param-
eter �. Simplifying we obtain for k=1 and for all values of
g2

Hsol =� dx�̄� =
2

g2Q
sinh−1�g2Q/2� � 1, �50�

so that all the solutions are “bound states.” This agrees with
the result of Lee et al. �6�.

For k= 1
2 one finds that

H1 =
9�1 − ��2

16g4Q
��3�4 + 2�2 + 3�tanh−1 � − 3��1 + �2�� ,

H2 =
9�1 + ��

2g4Q
�− � + �1 + �2�tanh−1 �� . �51�

For Q=1 and selected values of k we determine � and Hsol
and plot in Fig. 1 the allowed values for which Hsol�1. Note
that the range of g values for the existence of a bound state,
as a function of k, is bounded from below. The functional
dependence of the lower bound gmin, together with the cor-
responding solution ��gmin�, as a function of k, are depicted
in Fig. 2. We note the rapid increase of gmin at large values of
k. At k�2, the upper bound of the solution ��gmin� becomes
lower than 1, and we notice an inflection in gmin�k�. Summa-
rizing, we find that in the S-S case, bound states exist for all
values of k and g	gmin.

B. Vector-vector interaction

For the V-V interaction case, we obtain

LI =
g2

k + 1
��̄����̄����1/2�k+1� =

g2

k + 1
R2�k+1�. �52�

Equation �15� now becomes

�R2 − mR2 cos 2 +
g2

k + 1
R2�k+1� = 0. �53�

Thus

R2 = � �k + 1��m cos 2 − ��
g2 1/k

. �54�
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This can be rewritten in the following two forms:

R2 = � �k + 1��k
2

g2k2�� + m cosh 2�kx�1/k

= � �k + 1��k
2 sech2 �kx

g2k2�m + ���1 + �2 tanh2 �kx�1/k

. �55�

The equation for � can then be determined by using the
charge defined in Eq. �34�. This gives

Q =
1

�k
� �k + 1��k

2

g2k2�m + ��1/�k�

Îk��2� , �56�

where

Îk��2� = B	1

2
,
1

k

2F1	1

2
,
1

k
,
1

2
+

1

k
;− �2
 . �57�

For k=1, this gives

Q = �
−�

�

dxR2 =
4 tan−1 �

g2 , � = m cos�g2Q/2� . �58�

This imposes the restriction on the coupling constant, i.e.,
g2Q�� so that the spectrum is composed of positive-energy
fermion states. On the other hand, for k= 1

2 this gives

Q =
9�1 + ��

2g4 �� − �1 − �2�tan �� . �59�

The energy of the solitary wave is given by integrating the
Hamiltonian density �Eq. �18��, and we obtain

Hsol =� dxH =� dx�h1 + h2 − h3� = H1	1 −
1

k

 + H2,

�60�

where

H1 =
�k

k�m + ��� �k + 1��k
2

g2k2�m + ��1/k

� B	1

2
,1 +

1

k

2F1	1 +

1

k
,
1

2
,
3

2
+

1

k
;− �2
 , �61�

H2 =
1

�k
� �k + 1��k

2

g2k2�m + ��1/k

B	1

2
,
1

k



��2 2F1	1

k
,
1

2
,
1

2
+

1

k
;− �2
 − 2F1	1

2
,
1

k
,
1

k
+

1

2
;− �2
 .

�62�

Without any loss of generality, in the remaining part of this
subsection we put Q=m=1, i.e., we measure � ,H in units of
m so that 0���1. For k=1, we find

H1 =
2�1 + ��

g2 �� − �1 − �2�tan−1 �� ,

H2 =
4�

g2�1 + �2�
. �63�

For k=1, we have an analytic solution,

Hsol =� dx�̄� =
2

g2sin�g2/2� � 1, �64�

since 0�g2��, thereby showing the bound-state behavior
even in the vector case. For k= 1

2 , one finds
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FIG. 1. �Color online� NLDE bound states for the scalar-scalar
interaction case: � and Hsol as a function of k and g for Q=1.

0

4

8

12

16

0 1 2 3 4 5
k

g
m
in

0.0

1.0

(
g

)
m
in

1.5

0.5

FIG. 2. �Color online� Plot of the lower bound of the allowed
range of g values in the scalar-scale interaction case, as a function
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H1 =
9�1 + ��2

16g4 ��3�4 − 2�2 + 3�tan−1 � − 3��1 − �2�� ,

H2 =
9�1 + ��

4g4 ��1 + �2�tan−1 � −
��1 − �2�
�1 + �2�  ,

H3 = 2H1. �65�

In Fig. 3 we map out the allowed values of � and g2 for
various values of k. The allowed range of g values for the
existence of a bound state, as a function of k, has both a
lower and an upper bound, and the domain shrinks as k in-
creases. Around k=2.5, these bounds cross, and no bound
states are possible for k	2.5. The functional dependence of
gmin and gmax, together with the corresponding solutions
��gmin� and ��gmax�, as a function of k, are depicted in Fig.
4. As in the S-S case, ��gmin� becomes less than 1 for k
�2, and we notice an inflection in gmin�k�. However, we now
find that ��gmax� approaches one in case k	2.

III. CONNECTION TO THE SOLUTIONS OF THE NLSE

In this section we will perform the nonrelativistic reduc-
tion of the NLDE to determine how it compares to the
NLSE. The NLDE can be written as

i�3�t� + �x�x� − m� − VI� = 0, �66�

where VI=−
�LI

��̄
=−g2��̄��k. Next, we use Moore’s decoupling

method �16� and write

VI��� =
1 + �3

2
VI + �

1 − �3

2
VI. �67�

We see that VI��=1�=VI. It has been shown that doing a
perturbation theory in � is a valid way of obtaining the cor-
rections to the nonrelativistic theory. Moore’s decoupling
technique was used for the �relativistic� hydrogen atom using
conventional Rayleigh-Schrödinger perturbation theory and
computer algebra and it was shown that the perturbative so-
lution converges to the correct solution �16�. It has been
applied successfully to the relativistic calculations on alkali
atoms and represents one of the many relativistic perturba-
tive schemes investigated by Kutzelnigg �17�. We will show
that this procedure leads to the heuristically derived nonrel-
ativistic reduction of the NLDE as discussed by Toyama et
al. for the case k=1 �15�.

We let

�0�x� = e−i�t	u0

v0

 , �68�

be a solution of the theory when �=0. For scalar-scalar in-
teractions, we find

du0

dx
+ �m + ��v0 = 0,
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FIG. 3. �Color online� NLDE bound states for the vector-vector
interaction case: � and Hsol as a function of k and g.
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dv0

dx
+ �m − ��u0 − g2�u0

�u0 − v0
�v0�ku0 = 0. �69�

From Eq. �69� we obtain

du0

dx
= − �m + ��v0. �70�

This leads to the following equation for u0:

−
�u0�xx

2m
+ �VI − �0�	1 +

�0

2m

u0 = 0, �71�

where �0=�−m. We notice that the expansion parameter is
�0 / �2m�. When ��−m� / �2m��1 is satisfied then we can be
sure that the NLDE solutions go over to the NLSE solutions.
However, we will find that in the V-V case, the reduction
numerically appears valid over a wider range. The relevant
Schrödinger-like equation is

−
�u0�xx

2m
+ V̂Iu0 = Êu0, �72�

where

V̂I = VI	1 +
�0

2m

, Ê = �0	1 +

�0

2m

 . �73�

For consistency we need to expand VI to first order in 1 /2m.
For the scalar scalar case, we have

VI
s−s = − g2�u0

�u0 − v0
�v0�k

→ − g2��u0
�u0�k −

k

4m2 �u0
�u0�k−1�u0�x

��u0�x . �74�

The resulting modified nonlinear Schrödinger equation
�mNLSE� can be derived from the Lagrangian,

L = i���t� −
1

2m
��x

��x	1 +
ĝ2

2m
�����k
 +

ĝ2

k + 1
�����k+1,

�75�

and the Hamiltonian is given by

H =� dx

2m
��x

��x	1 +
ĝ2

2m
�����k
 −

ĝ2

k + 1
�����k+1,

�76�

where ĝ2=g2�1+�0 / �2m��.
In the case of the V-V interaction, the nonrelativistic re-

duction of the NLDE is similar to the previous case with the
difference that

VI
v−v = − g2�u0

�u0 + v0
�v0�k

→ − g2��u0
�u0�k +

k

4m2 �u0
�u0�k−1�u0�x

��u0�x . �77�

The resulting modified nonlinear Schrödinger equation
�mNLSE� can be derived from the Lagrangian,

L = i���t� −
1

2m
��x

��x	1 −
ĝ2

2m
�����k
 +

ĝ2

k + 1
�����k+1,

�78�

and the Hamiltonian is given by

H =� dx

2m
��x

��x	1 −
ĝ2

2m
�����k
 −

ĝ2

k + 1
�����k+1,

�79�

where ĝ2=g2�1+�0 / �2m��.
Thus we see that the resulting theory in the large 1 /2m

limit �as well as when ��−m��2m�, in both S-S and V-V
cases reduces to the modified NLSE equation. The first cor-
rection has the same magnitude but opposite sign for the two
cases.

A. Comparison with the exact solution of the NLSE and
mNLSE

Here we want to compare the NLDE with the exact solu-
tion of the NLSE as well as mNLSE for arbitrary k. We will
give numerical comparison both when the criterion ��−m�
�2m is satisfied and for general �. We will find that the V-V
NLDE case has solutions that track those of the NLSE for a
broader range of �.

First let us obtain solutions to the NLSE for arbitrary k.
The NLSE is defined by the Lagrangian,

L =
i

2
� dx����t − �t

��� − H , �80�

where for the S-S interaction

H =� dx� 1

2m
� �� � � − g2 �����k+1

k + 1
 . �81�

This leads to the equation of motion

i
��

�t
+

1

2m
	 ��

�x

2

+ g2�����k� = 0. �82�

If we make the ansatz

��x,t� = r�y�exp�i�mvy − �t + ���, y = x − vt , �83�

then it is easy to show that r�y� satisfies the equation

r��y� − �r�y� + g2r2k+1�y� = 0, �84�

where �=−��+ mv2

2 �. Equation �84� has an exact solution

r�y� = A sech1/k�D�y + y0�� , �85�

provided

� =
D2

2mk2 , A2k =
�k + 1�D2

2mg2k2 . �86�

The mass density in the rest frame �v=0� is given by
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� = ��� = � �k + 1�D2

2mg2k2 1/k
sech2/k�D�x + x0�� . �87�

Let us now obtain the solutions of the mNLSE. We first
notice that to the first order in 1 /2m, the static mNLSE equa-
tion in both S-S and V-V cases is given by

− �u0�xx + �m2 − �2�u0 − �m + ��g2�u0
�u0�ku0 = 0, �88�

which has the exact solution

u0�x� = A sech1/k��k�x + x0�� , �89�

with

A2k =
�k + 1��k

2

�m + ��g2k2 . �90�

Hence for mNLSE, the mass density in the rest frame �v
=0� is given by

� = ��� = � �k + 1��k
2

�m + ��g2k21/k

sech2/k��k�x + x0�� . �91�

We will now compare the NLSE and mNLSE solutions with
the solutions of the NLDE. In making these comparisons we
will in all cases compare the solutions for the charge density
�which is the mass density for the NLSE and mNLSE�.

B. Scalar-scalar interaction

One can rewrite the charge density �=R2, Eq. �33� in the
following form which isolates the previous solution to the
NLSE:

� = � �k
2�k + 1�

g2k2�m + ��1/k

sech2/k �kxf��,�,x� ,

f��,�,x� =
1 + �2 tanh2 �kx

�1 − �2 tanh2 �kx��1+1/k� . �92�

If we compare NLSE and S-S case, we find that ��x=0� is
same in both cases only if we can identify D with �k. We
also have that f�� ,� ,x=0�=1, so that with this identifica-
tion, the charge and mass densities have the same value as a
function of k for the NLSE and NLDE.

On the other hand, ��x=0� is strictly identical for S-S and
mNLSE cases and no identification needs to be made.

We have seen that the nonrelativistic limit is obtained
when ��−m� /2m�1. In Fig. 5, we compare the solutions to
the NLSE and NLDE when � /m=0.9 �top panel� and � /m
=0.3 �bottom panel�, for k=1. In the latter case, we notice
that the solution to the NLDE is double humped. For any
���c�k� for which the solution becomes double humped in
the NLDE is shown in Fig. 6.

C. Vector-vector interaction

Now we rewrite the solution found for the charge density
�=R2, Eq. �55� in the following form:

� = � �k
2�k + 1�

g2k2�m + ��1/k

sech2/k �kxf��,�,x� ,

f��,�,x� = �1 + �2 tanh2 �kx�−1/k. �93�

We have seen that the nonrelativistic limit is obtained when
��−m� /2m�1. For the V-V case, the modification of the
NLSE result is small even at very small � /m and, unlike in
the case of S-S interactions, the NLDE solution never be-
comes double humped. In Fig. 7 we compare the solutions of
the NLSE and NLDE when � /m=0.01 and k=1. The main
difference compared to the S-S case is that the convergence
to the nonrelativistic limit as � /m→1, occurs from above in
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FIG. 5. �Color online� Comparison of the NLSE and NLDE
solutions in the case of scalar-scalar interactions for k=1, and
� /m=0.9 �top panel� and � /m=0.3 �bottom panel�, respectively.

k

0.0

0.2

0.4

0.6

0.8

1.0

�
c

(k
)

0 4 6 8 102

FIG. 6. �Color online� Critical value, �c�k�, for any ���c�k�
the solution of the NLDE equation becomes double humped in the
case of scalar-scalar interactions.

COOPER et al. PHYSICAL REVIEW E 82, 036604 �2010�

036604-8



the vector case instead of from below as in the scalar case
�see Fig. 7 and the top panel of Fig. 5�. Again notice that
��x=0� is identical in NLSE and V-V case only if we identify
D with �k.

On the other hand, ��x=0� is strictly identical for mNLSE
and V-V case and no identification needs to be made.

IV. STABILITY OF STATIC SOLUTIONS

The stability of the solitary waves of the NLSE have been
studied for a long time. A recent discussion of this is found in
�18�. In this section we will first show that an analysis of the
solutions of the NLSE equation using the slope criterion
�dM���

d� �0 for stability� where M is the mass of the solitary
wave and � the frequency gives the same result �0�k�2�
as an analysis based on whether a scale transformations
raises or lowers the energy of the solitary wave. The latter
criterion is similar to the arguments first used by Derrick �4�
in his study of the relativistic scalar field theories. We will
then use a similar scaling argument first made by Bogolub-
sky �11� for the NLDE equation to obtain a criterion for
stability. We will find that the results of this approach do not
agree with a smooth continuation of the result for the NLSE.
We will discuss the most likely reason for the failure of this
method when applied to the NLDE. Finally we will look at
the stability in the mNLSE which contains the first relativis-
tic correction to the NLSE and show that it gives essentially
the same criterion as that found for the NLSE, i.e., when 0
�k�2 we expect the solutions to be stable.

Most studies of the stability of static solutions of the
NLSE rely on the existence of a variational principle

�E = ��H − �M� = 0, �94�

from which the ordinary differential equation for the solution
u�x ,�� can be derived. Here the NLSE Hamiltonian is

H =� dx� 1

2m
�x�

��x� −
g

k + 1
�����k+1 , �95�

and the mass is given by

M =� dx��� . �96�

This variational principle is quite similar to the one used to
study the stability in the generalized KdV systems �19–22�.
There one derives the solitary wave equation from

�� = ��H − cP� = 0, �97�

where c is the velocity of the solitary wave while the gener-
alized KdV equation is

ut + ul−2ux + ��2upuxxx + 4pup−1uxuxx + p�p − 1�up−2�ux�3�

= 0. �98�

This can be derived from the Hamiltonian

H =� dx�−
ul

l�l − 1�
− �up�ux�2 , �99�

and the corresponding momentum P is given by

P =� dx
1

2
u2�x,t� . �100�

Stable solitary waves of the form ��x , t�=u�x ,��e−i�t need to
be local energy minimizers of the functional �Eq. �94��.
Based on linearized perturbation theory and using this varia-
tional principle Vakhitov and Kolokolov �21� showed that a
necessary criterion for stability is that

dM���
d�

� 0. �101�

This criterion is the analog of the result found for the gener-
alized KdV equations by Karpman �19� and Dey and Khare
�20� who obtained that stable solitary waves for that system
of equations required

dP�c�
dc

	 0. �102�

The exact solution for u�x� of NLSE for arbitrary k is given
in Eq. �85�. Using that solution, one finds that the mass has
the following dependence on �:

M = C�− ���2−k�/�2k�, �103�

and the necessary criterion for stability is

k � 2. �104�

Another approach to stability, which leads to the same result
as Eq. �104�, is based on whether a scale transformation
which keeps the mass M invariant, raises or lowers the en-
ergy of a solitary wave. For the NLSE with Hamiltonian

H =� dx��x�
��x� −

g

k + 1
�����k+1 � H1 − H2,

�105�

both H1 and H2 are positive definite. A static solitary wave
solution can be written as
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��x,t� = r�x�e−i�t. �106�

The exact solution has the property that it minimizes the
Hamiltonian subject to the constraint of fixed mass as a func-
tion of a stretching factor �. This can be seen by studying a
variational approach as done in �22� or by directly studying
the effect of a scale transformation that respects conservation
of mass.

In the latter approach, which generalizes the method used
by Derrick �4�, we let

x → �x , �107�

and consider

���x� = �1/2r��x�e−i�t, �108�

this leaves

M =� dx��� =� dx��
���, �109�

unchanged. One defines H� as the value of H for the
stretched solution ��. One then finds that

� �H�

��
�

�=1
= 0, �110�

is consistent with the equations of motion, and the stable
solutions satisfy

�2H�

��2 � 0. �111�

If we write H in terms of the two positive definite pieces H1,
H2, then

H� = �2H1 − �kH2. �112�

We find

�H�

��
= 2�H1 − �k��k−1H2. �113�

We obtain

� �H�

��
�

�=1
= 0 → H1 =

k

2
H2. �114�

This result is consistent with the equation of motion. The
second derivative is given by

�2H�

��2 = 2H1 − k�k − 1��k−2H2, �115�

which when evaluated at the stationary point yields

�2H�

��2 = 2�2 − k�H1. �116�

This result indicates that solutions are unstable to changes in
the width �compatible with the conserved mass� when k	2.
The case k=2 is the marginal case where it is known that
blowup occurs at a critical mass �see for example Ref. �22��.
The result found above for the NLSE has also been found by
various other methods such as linear stability analysis and

using strict inequalities. Numerical simulations have been
done for the critical case k=2 showing that blowup �self-
focusing� occurs when the mass M 	2.72 �23�. For k	2 a
variety of analytic and numerical methods have been used to
study the nature of the blowup at finite time �24�.

Let us now apply this scaling argument, as was done by
Bogolubsky �11��, to the 1+1 dimensional NLDE. Again we
will assume that the exact solution minimizes H� when �
=1 with the constraint that the charge is kept fixed. �The
validity of this assumption will be challenged below. All that
is known is that H� is a stationary point at the solution.�

Our exact solution is of the form

��x� = 	u

v

 = R�x�	cos 

sin 

e−i�t. �117�

Because we want to keep the charge fixed, we consider the
following stretched solution:

���x� = 	u

v

 = �1/2R��x�	cos ��x�

sin ��x�

e−i�t. �118�

The value of the Hamiltonian

H =� dx��̄i�1�1� + m�̄� −
g2

k + 1
��̄��k+1 � H1 + H2 − H3,

�119�

for the stretched solution is

H� = �H1 + H2 − �kH3, �120�

where again Hi are all positive definite. The first derivative is

�H�

��
= H1 − k�k−1H3. �121�

At the minimum, setting �=1, we find in general

H3 =
1

k
H1, �122�

which is consistent with the equation of motion result we
obtained earlier, see Eq. �20�. We see that for k=1 the energy
is given by just H2. The second derivative yields

�2H�

��2 = − k�k − 1��k−2H3. �123�

From this we see that if k	1, this analysis �if correct� would
suggest that solitary waves are unstable to small changes in
the width. For 0�k�1 the solitary waves are stable to this
type of perturbation. This argument does not depend on LI as
long as LI is positive definite. The same result is valid for
both scalar and vector type interactions.

For k=1, this argument does not give any insight into
whether the solutions are stable. However, it is known that
the solitary waves discussed here for k=1, do appear to be
stable numerically. Further, when they are scattered in nu-
merical experiments, they interchange charge and energy,
and sometimes show bound-state production. Detailed nu-
merical simulations have been performed by Alvarez and
Carreras �10�. These results contradict the work of Bogolub-
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sky �11� who studied changes in the frequency � while keep-
ing the charge fixed. There a similar analysis gave a maxi-
mum for the Hamiltonian when ��1 /�2, even though, as
remarked above, numerical studies show that solitary waves
in that frequency range are in fact stable.

We have already shown above that the solutions of the
NLDE reduce to those of the NLSE in the nonrelativistic
limit. Assuming continuity arguments apply, one would ex-
pect that there would be at least a range of values of � for
which the solutions to the NLDE are stable for k�2.

So one needs to understand the reason for this apparent
discrepancy. The main reason for assuming instability when
the second derivative of H��� is positive, is that the stable
solutions to the Dirac equation are at least relative minima of
the effective action. However, the study by Blanchard et al.
�14� to find an analytic criterion for stability in the 1+1
dimensional NLDE using the Shatah-Strauss formalism
found that bound states were not local minima on the mani-
fold of constant charge. This result is quite different from
what happens in the NLSE where the bound states are local
minima on the manifold of constant mass. So one cannot
assume that the sign found in Eq. �123� yields information
about the stability of the solution. On the other hand we can
assume by continuity that there is a region where the analysis
of stability in the mNLSE will give us information about
stability at least in the regime where the expansion parameter
� /2m is small. For the mNLSE we can use the scaling argu-
ment or the auxiliary variational approach to discuss stabil-
ity. It is interesting that Derrick �4� in his seminal paper was
unable to find a suitable method for discussing stability for
self-interacting spinor theories.

For the mNLSE the Hamiltonian for the S-S interactions
is given by

H =� dx

2m
��x

��x	1 +
g2

2m
�����k
 −

g2

k + 1
�����k+1.

�124�

It is well known that using stability with respect to scale
transformation to understand domains of stability applies to
this type of Hamiltonian. This Hamiltonian is a sum of two
positive and one negative term, i.e.,

H = H1 + H2 − H3. �125�

For the V-V case, the Hamiltonian is instead

H = H1 − H2 − H3. �126�

We also know that H2 is of order g2 /2m and is presumed
small. If we again make a scale transformation on the solu-
tion which preserves the mass M =����dx,

�� = �1/2���x� , �127�

we obtain

H = �2H1 � �2+kH2 − �kH3. �128�

Here the upper�lower� sign corresponds to the S-S �V-V�
case. The first derivative is

�H

��
= 2�H1 � �2 + k��k+1H2 − k�k−1H3. �129�

Setting the derivative to zero at �=1 gives the equation con-
sistent with the equations of motion,

kH3 = 2H1 � �2 + k�H2. �130�

The second derivative at �=1 can now be written as

�2H

��2 = �4 − 2k�H1 � 2�2 + k�H2. �131�

This will be positive for k�2 and the addition of a small H2
should extend the stability of the solutions beyond k=2 in
the S-S case. However, in the V-V case there is a somewhat
lower region of stability. At k=2, as we shall see below, the
usual NLSE solitary waves blow up once the mass exceeds a
critical value. For k=1, numerical experiments for the time
evolution of an initial wave of the form

��x,t = 0� = ��/2 sech��y�ei�mvx−1/2mv2t−�0t� �132�

at t=0 relaxed to an exact solitary wave solution of the
mNLSE that was not very different than the NLSE solution
�15�. This result supports the conclusion that the solitary
waves of the mNLSE are stable for k=1.

V. SELF-SIMILAR ANALYSIS OF BLOWUP AND
CRITICAL MASS FOR THE NLSE AND THE MNLSE

To study in a “mean-field” approximation blowup and
critical mass, we look for self-similar solutions of the form:

��x,t� = A�t�f��y�exp i�mvy + ��t�y2 + �t� . �133�

Here ��t�, A�t�, and ��t� are arbitrary functions of time
alone, and y=x−vt. What we have in mind is to start at t
=0 with the exact solution of the form A sech1/k�Dy� and
assume that this solution just changes during the time evolu-
tion in amplitude and width conserving mass. With this as-
sumption one can derive the dynamical equations for A and
D from the action principle. The action for the NLSE is
given by

� =� dtL , �134�

where L is given by

L =
i

2
� ddx����t − �t

��� − H , �135�

with

H =� dx��x
��x

2m
− g2 �����k+1

k + 1
 . �136�
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The NLSE follows from the Hamilton’s principle of least
action,

��

��
=

��

���
= 0. �137�

The NLSE has three conservation laws: mass, momentum
and energy which can be derived from Noether’s theorem in
the usual fashion. The conservation of mass

M =� ���dx =
A2

�
C1, C1 = �

−�

�

f2�z�dz , �138�

allows one to rewrite A�t� in terms of the conserved mass and
the width parameter � and a constant C1 whose value de-
pends on f�z�. Thus,

A2 =
M�

C1
. �139�

For f�z�=sech��z�, one obtains

C1 =
������
��� + 1

2� . �140�

First consider the kinetic energy �Ekin� term in the Lagrang-
ian density

i

2
����t − �t

��� = f2 M�

C1
�mv2 − �̇y2 + 2v�y − �� .

�141�

Integrating over space and scaling out �, we obtain

Ekin/M = mv2 − � − �̇G2C2

C1
, �142�

where G= 1
� and

C2 = �
−�

�

z2f2�z�dz

=
2

�34�−1
4F3��,�,�,2�;� + 1,� + 1,� + 1;− 1� .

�143�

Next consider

H0 =� dx
1

2m

���

�x

��

�x
. �144�

We obtain

H0/M =
mv2

2
+

C3

C1

1

2mG2 + 4�2C2

C1

G2

2m
, �145�

where

C3 = �
−�

�

�f��2�z�dz =
������ + 1�

2��� + 3
2� . �146�

Finally for the interaction term,

HI = −
g2

k + 1
� dx�����k+1, �147�

we obtain

HI/M = −
g2

�k + 1�
C4

C1
	 M

C1G

k

, �148�

where

C4 = �
−�

�

f �2k+2��z�dz =
�����k + 1���
���k + 1�� + 1

2� . �149�

Putting this together we get the following “effective La-
grangian” for the time dependent functions G ,�:

L =
mv2

2
− � − �̇G2C2

C1
−

C3

C1

1

2mG2

= − 4�2C2

C1

G2

2m
−

g2

�k + 1�
C4

C1
	 M

C1G

k

. �150�

Lagrange’s equation for � yields

� =
2mĠ

4G
. �151�

The first integral of the second order differential equation
resulting from the Lagrange’s equation for G can be obtained
by setting the conserved Hamiltonian to a constant E. One
then has

E =
C3

C1

1

2mG2 + 4�2C2

C1

G2

2m
−

g2

�k + 1�
C4

C1
	 M

C1G

k

.

�152�

Using Eq. �151� we obtain the first order differential equation
for G,

E =
C2

C1

2mĠ2

4
+

C3

C1

1

2mG2 −
g2

�k + 1�
C4

C1
	 M

C1G

k

. �153�

We notice that at the critical value of k=2, that the last two
terms both go like 1 /G2. Self-focusing occurs when the

width can go to zero. Since Ġ2 needs to be positive, this
means that at k=2, the mass has to be greater than or equal to
M� for G to be able to go to zero. Here

g2

3
	M�

C1

2

=
C3

C4

1

2m
, �154�

or

�2mgM� =�3C1
2C3

C4
=

�

3
�2 = 2.7207 . . . , �155�

provided we use the exact solution for k=2, namely f
=sech1/2�z� �which is a zero-energy solution�. This agrees
well with numerical estimates of the critical mass �23� and is
slightly lower than the variational estimate obtained earlier
by Cooper et al. �25� using post-Gaussian trial wave func-
tions. In the supercritical case we have that
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C2

C1

2mĠ2

4
=

g2

�k + 1�
C4

C1
	 M

C1G

k

. �156�

Thus G approaches zero in a finite time in this self-similar
approximation with critical index,

G � �t − tc�2/�k+2�. �157�

This “mean-field” result was obtained earlier in �22,25�.
Now we would like to see how this argument is modified

when we add the 1
2m corrections coming from the nonrelativ-

istic reduction of the NLDE. We now have

L =
i

2
� dx����t − �t

��� − H , �158�

where for the mNLSE, the Hamiltonian is given by

H =� dx
1

2m
��x

��x	1 �
g2

2m
�����k
 −

g2

k + 1
�����k+1.

�159�

Here upper �lower� sign corresponds to the S-S �V-V� case.
Now we get one more term in the energy conservation equa-
tion. Also Lagrange’s equation for � gets modified. The new
term is

�H/M = �
1

M

g2

4m2� dx�x
��x�����k

= �
g2

4m2	 M

C1

k

� �E1

C1
G−�k+2� +

C2

C1
m2v2G−k +

E2

C1
4�2G2−k ,

�160�

where

E1 = �
−�

�

�f��2f �2k+2��z�dz =
���2���k + 2���
2���k + 2�� + 3

2� �161�

and

E2 = �
−�

�

z2f �2k+2��z�dz

=
22�k+1��−1

�k + 1�3�3 4F3�k� + �,k� + �,k� + �,2k� + 2�;k� + �

+ 1,k� + � + 1,k� + � + 1;− 1� . �162�

Lagrangian’s equation for � now yields

� = 2m
Ġ

4G
�1 �

g2

2m
	 M

C1

k E2

C2
G−k−1

. �163�

Conservation of energy in the comoving frame �v=0� now
leads to

E =
C3

C1

1

2mG2 + 4�2C2

C1

G2

2m

−
g2

�k + 1�
C4

C1
	 M

C1G

k

�
g2

4m2	 M

C1

k

��E1

C1
G−�k+2� +

E2

C1
4�2G2−k , �164�

or

E =
C3

C1

1

2mG2�1 �
g2

2m

E1

C3
	 M

C1G

k

+
2m

4
Ġ2C2

C1
�1 �

g2

2m

E2

C2
	 M

C1G

k−1

−
g2

�k + 1�
C4

C1
	 M

C1G

k

.

From this expression we again see that k=2 is the critical
value. If the initial value of G is large enough so we can

ignore the g2 /2m corrections then in order for Ġ2	0, so that
the width can decrease, one needs that

�2mgM� ��3C1
2C3

C4
. �165�

When G gets very small then the g2 /2m corrections get large
and our expansion breaks down. Blowup then needs to be
studied using the full NLDE. We intend to do numerical
studies of blowup in the NLDE in the near future.

VI. CONCLUSIONS

In this paper we have found new solutions to the NLDE
with arbitrary nonlinearity parameter k in the case of both the
S-S and V-V interactions. The solutions for the S-S interac-
tions have the property that for �	�c�k� the shape of the
solitary wave is similar to a sech��x� profile, whereas for �
��c�k�, the shape is double humped. In the V-V case, the
shape of the profile is always of the form sech��x�. We dis-
cussed the nonrelativistic reduction of the NLDE and ob-
tained a modified NLSE �mNLSE� whose stability properties
could be studied in a variety of ways. By continuity we ex-
pect that at least in the regime where the solutions of the
NLDE are small perturbations of those of the NLSE, the
solutions we have found will be stable for k�2. We dis-
cussed the case k=2 for the mNLSE approximation in detail
as well as blowup for k	2 using a self-similar ansatz.

Before ending we point out some of the possible open
questions.

�1� Is there a connection between instability and the
double hump behavior?

�2� In the V-V case we notice from Fig. 4 that while for
k�2, ��gmin�	��gmax�, for k	2, the opposite is true. Is this
somehow related to the fact that the NLDE V-V bound states
are stable �unstable� for k� �	 �2? Further, the dip in the
value of ��gmin� precisely occurs around k=2 in both the S-S
and the V-V cases. Is that just a coincidence or is it related to
the instability for k	2?
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�3� For k=1, it is known that the bound states of N local-
ized fermions are stable in both the S-S and V-V cases. It
would be interesting to examine if this continues to be true
for arbitrary positive k.

We hope to address some of these questions in the near
future. Also we intend to do numerical simulations of colli-
sions to see how energy and charge are exchanged, and also
study blowup to understand whether there is much difference
between self-focusing in the NLDE and the NLSE.

Note added in proof: Recently it was brought to our at-
tention that the existence of the solitary wave solutions dis-
cussed in this paper was also noted in a study of the

solutions of the Dirac equation with homogeneous nonlin-
earities �26�.
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