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We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction
and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We
derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-
dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a
much richer dynamics than for the previously studied cases (without time-delayed global feedback). We
explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf
bifurcation as the delay time increases. We show that for certain delay times, the prevailing phase is different

from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial
differential equation are in agreement with the analytical predictions.
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I. INTRODUCTION

The effects of global coupling (or feedback) and other
types of nonlocal interactions on pattern formation have been
studied in chemical [1-18], physical [19-25], and biological
[26-31] spatially extended systems. Often, the resulting pat-
terns are localized structures consisting of spatial domains,
or clusters, of one type of dynamical behavior embedded in a
background of another type separated by either static or
moving boundaries. Typical examples are homogeneous
clusters in different steady states, clusters oscillating out of
phase, and clusters oscillating with different amplitudes. We
refer the reader to the following reviews [32,33] on dissipa-
tive localized structures and solitons for further information.
Localized structures with two clusters in different homoge-
neous steady states, or phases, arise in the bistable reaction-
diffusion equation

€= €MD+ f(P) + eh (1)

defined in a domain ) € R" (n=1,2) with a global feedback
term proportional to

n

“9=1a1l,

o(x,1)dx (2)
added to the right-hand side of Eq. (1) where ()| is the size
of the domain [8] (see also [25]). In Eq. (1), ¢ is an order
parameter, €<<1 (fast reaction and slow diffusion limit), and
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f is a cubiclike function; i.e., a real odd function with a
positive maximum, a negative minimum, and precisely three
zeros located at ¢_, ¢ and ¢, respectively with f'(¢-) <0
and f'(¢y) >0 [Fig. 1(a)]. We assume that f is “minus” the
derivative of a double-well potential having two equal
minima at ¢-. For simplicity, and without loss of generality,
here we consider ¢.==*1 and ¢y=0. The prototype ex-
ample is f(¢p)=(¢—¢)/2. The constant & specifies the dif-
ference between the potential local minima of the system;
i.e., when h# 0 the double-well potential has two minima:
one local and one global.

When h=0 (no potential difference between the two
minima of the double well) Eq. (1) has two homogeneous
stationary solutions: ¢=¢,=+1 or ¢p=¢_=—-1. We refer to
them as the phases of the system. In a front solution for Eq.
(1), the domain () is divided into two subdomains (clusters)
Q, and Q_, where ¢p=¢,=+1 and ¢=¢_=—1 respectively,
separated by a very thin interface I' of width O(e) (e<<1)
inside which ¢ varies rapidly between the values corre-
sponding to the two phases (¢= * 1) [34] as we show sche-
matically in Fig. 1(b) (left panel). The motion of the front
represents a transition from one phase to the other. We use
the convention adopted in Fig. 1: for 2> 0 the function f(¢)
moves upward and the front moves to the left causing a
phase transition from ¢=¢_=—1 to p=d,=+1 (d_— &,
phase transition). In a stationary, or localized front solution
the two phases coexist. The evolution of fronts in spatially
extended bistable systems has been extensively studied [35]
(see also references therein). We review some points relevant
to this paper at the end of this section.

The bistable equation has been used to describe phase-
transition dynamics and the evolution of chemical concentra-
tions [35,36]. In the former case, it is known as the Allen-
Cahn equation [36]. The phases (¢.) represent different
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FIG. 1. (a) Schematic graph of a bistable function f(¢)+h for various values of 4. The zeros of f(p)+h (¢_, ¢y with ¢, from left to right)
are local extrema of the double-well potential function F(¢)—he satisfying f(¢p)=—F'(¢). The prototype example is f()=(p—¢>)/2 with
F(¢p)=¢*18—¢*/4. The area above (below) the curve between ¢, and ¢, (¢_) is proportional to the difference in heights between the
maxima and the corresponding minimum of the double-well potential function. If the sign of the integral I of the bistable function between
¢_ to ¢, is positive (negative), then ¢, (¢p_) is the absolute minimum. The bistable function f(¢) is symmetric and has three zeros:
¢_=—1, ¢y=0, and ¢p,=1; i.e., F(¢) is also symmetric and has two local (and also absolute) minima: ¢_ and ¢,. For 1>0, Iz>0 and ¢,
is the absolute minimum of the double-well potential F(¢p)—h¢. For h<0, I;<0 and ¢_ is the absolute minimum of the double-well
potential F(¢)—he. (b) Schematic diagrams of a one-dimensional front (left) and bump (right).

chemical species or aggregation states of the system. In the
context of brain dynamics the bistable equation is known as
the Hodgkin-Grafstein model, and has been used as an early
model to describe the evolution of extracellular potassium
ions in the investigation of spreading depression in the brain
[37] (see also [38]). The two phases correspond to a physi-
ological and pathological states respectively [30,38].

The goal of this paper is to study the effects of delayed-
time global feedback (or coupling) on the dynamics of fronts
for the one- and two-dimensional bistable equation

€= EAG+[(d) + el + (), 3)

where (¢,)=(@)(t—7) and where the constants y and 7 are
the global feedback parameter (intensity) and delay-time, re-

spectively. We consider Neumann boundary conditions. All
the variables and parameters considered here are assumed to
be dimensionless. An appropriate non-dimensionalization
can be performed to reduce dimensional cases to the one
considered here. (See [39,40] for a dimensional formulations
of related problems.) We use formal asymptotic analysis, dy-
namical system tools and numerical simulations to investi-
gate both the effects of the delay time 7 on the dynamics of
localized fronts generated as a result of instantaneous
(7=0) inhibitory global feedback (y<0) [8,40] and the role
that delayed-time global feedback may play as a control
mechanism for the selection of a resulting stationary homog-
enous phase. More specifically, in the absence of global in-
hibition (y=0) fronts evolve toward a homogeneous station-
ary solution with either ¢=¢, or ¢p=¢_. We refer to the
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corresponding phase as the natural phase of the system. Sta-
tionary fronts are created for appropriate levels of instanta-
neous global inhibition (y<<0 and 7=0) but this alone is not
enough to reverse the phase of the system; i.e., to create a
homogeneous solution with a phase different from the natu-
ral one.

Time-delayed feedback, either local or global in space,
arises in a variety of fields [41]. It has been used to control
pattern forming systems [42-45], the emergence of traveling
pulses in excitable media [30], chemical turbulence [46],
rapid directional solidification [47], and chaos [48,49]. It has
also been used to investigate networks of bistable oscillators
[50,51], laser dynamics [52], and the spontaneous motion of
cavity solitons [53]. We refer the reader to [41] for further
applications. (See also [54]).

In bistable systems, time-delayed feedback, both local and
global in space, arise in the context of brain dynamics
[30,38,55]. Local time-delayed feedback has been investi-
gated in the bistable equation [56], a bistable piecewise lin-
ear equation [57], and an extended version of the Hodgkin-
Grafstein model of FitzHugh-Nagumo type. Time-delayed
global feedback arises in the context of neural field dynamics
[55] where the order parameter (neural field) captures the
neural population activity. In Eq. (2.12) in [55] the time-
delay parameter is space dependent and the reaction term is
linear since this investigation focused on the stability of the
rest state [58]. However, bistable functions have been used in
spatially extended globally coupled models of neural dynam-
ics where the neural activity is measured in terms of firing
rate [59,60]. To our knowledge, the effects of delayed-time
global feedback on the evolution of fronts in bistable systems
have not been investigated before.

A. Background

One-dimensional fronts are also referred to as kinks.
Standard singular perturbation arguments show that Eq. (3)
with y=0 (no global feedback) possesses a traveling kink
moving with velocity proportional to % [34,35]. Hence, no
localized solutions exist unless 7=0 [61]. For the prototype
bistable function f(¢)=(¢—¢)/2 and h=0 (no potential dif-
ference between phases) the localized kink is given by
¢,(x)=*tanh[(x—x,)/(2€)], which is the solution of
€ ¢ +f(h)=0 satisfying ¢(x,)=0. Note that the size of the
interface decreases with e. If 41 # 0, then the kink propagates
from the locally stable minimum to the globally stable mini-
mum of the double-well potential [34].

In the two-dimensional (2D) case there exist front solu-
tions, called quasi-2D kinks, which are locally kinks along
normal directions to the interface I" [34]. For every time ¢
this interface can be approximated by the set of points s(x,?)
for which the order parameter ¢ vanishes. Note that
['(t;€)=s(x,0)+O(€) and |Q|=]Q,|+|Q_|+O(e) for appro-
priate size of |Q.|.

The evolution of this interface characterizes the evolution
of the corresponding front. These two terms will be used
indistinctly in this paper. For y=h=0 (no global feedback
and no potential difference between phases), planar curved
fronts move with normal velocity proportional to their cur-
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vature, according to the flow by mean curvature (FMC)
equation [36,62]

St Sxx
2)1/2 = 2)3/2 —h. (4)

(1+s (1+s

In eq. (4), the left-hand represents the normal velocity and
the first term in the right-hand represents the mean curvature.
For 1D fronts, Eq. (4) reduces to s,=—h consistently with the
results mentioned above. For a circular interface and ~A=0
(no potential difference between phases), the curvature is the
reciprocal of the radius R, and Eq. (4) becomes R,=—R"!(1),
whose solution is given by R(r)=\R5—2t for any initial con-
dition Ry; i.e., circles shrink to a point at a critical finite time
tC=R(2)/2. For h>0 the value of ¢, decreases while for 4 <0
there exists a critical value A, such that circles either shrink
to a point in finite time (h>h,) or grow unboundedly
(h<<h,); i.e., the potential difference between phases and the
curvature effects compete, and the “winning” phase is deter-
mined by the initial radius. A qualitative similar behavior
occurs for closed, convex interfaces; they remain convex and
become asymptotically circular as they shrink to a point in
finite time [63]. See also [64] for more general results.

Eq. (3) with instantaneous global inhibitory feedback
(y<0 and 7=0) possesses stationary fronts [8,65]. (See also
[40] for the overdamped nonlinear wave equation.) The sim-
plest argument for the 1D case is that the stationary kink
solution ¢y(x) of €, +f(¢$)=0 is also a solution of
E o +f(P)+e(h+yYp)) provided h+y{¢)=0 [65]. This
heuristic argument remains true for the 2D case but it does
not predicts the location of the interface.

B. Overview

In Sec. II, we use standard formal asymptotic techniques
to derive an equation of motion that governs the evolution of
fronts for Eq. (3). This equation generalizes the classical
FMC Egq. (4) to include time-delayed global feedback effects.
In Sec. III, we study the dynamics of one-dimensional fronts.
We show how oscillatory fronts develop as delay time in-
creases for y<<O (inhibitory global feedback). They either
stabilize into stationary fronts or, for large enough values of
7, they grow unboundedly eventually reaching one of the
boundaries of the domain. In Sec. IV, we study the dynamics
of two-dimensional fronts with radial symmetry. For curved
fronts, there is a competition between curvature and delayed-
time global feedback effects. For the appropriate parameter
values, the latter oppose shrinkage of curved fronts due to
curvature effects thus creating either localized solutions or
oscillatory fronts with growing amplitude which eventually
cause phase reversal. The asymptotic techniques we use here
have been applied before to investigate bistable systems in
the absence of delayed-time global feedback. However, it is
not clear a priori that the resulting equation of motion pro-
vides a good approximation to the front dynamics for Eq. (3)
when delayed-time global feedback effects are included. In
order to show that our results are not an artifact of these
techniques we compare them with the results of numerical
simulations using Eq. (3). We discuss the implications of our
findings for pattern formation in Sec. V.
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II. DERIVATION OF THE EQUATION OF FRONT
MOTION

Here we follow other authors [8,34,66,67] and use formal
asymptotic analysis to derive an equation that describes the
evolution of a fully developed front. Although some of the
arguments are standard for systems with no delayed-time
global feedback we include them here for completeness. We
assume that for small e=0 and all 7 €[0,T], the domain ()
can be divided into two open regions (), (z; €) and )_(z, €) by
a curve I'(¢; €), which does not intersect d€). This interface,
defined by

I'(z;e) := {x € Q:¢(x,1;€) =0}, (5)

is assumed to be smooth, which implies that its curvature and
its velocity are bounded independently of €. We also assume
that there exists a solution ¢(x,z;€) of Eq. (3), defined for
small e, for all x € () and for all € [0,T] with an internal
layer. As €e— 0 this solution is assumed to vary continuously
through the interface, taking the value 1 when x e Q,(z;¢€),
—1 when xeQ_(¢,e), and varying rapidly but smoothly
through the interface. By carrying out a singular perturbation
analysis for e<<1, we obtain the law of motion of the inter-
face, treating it as a moving internal layer of width O(e). We
focus on the dynamics of the fully developed layer, and not
on the process by which it was generated.

The asymptotic expansion for ¢ away from a small, O(e),
neighborhood of the interface is assumed to have the form
o~ P’ +edp'+O(€?) as e—0. Substituting into Eq. (3) and
equating coefficients of the corresponding powers of € we
obtain the following O(1) and O(e) problems for the outer

solution:  f(¢”)=0 and f'(¢)d'+h+¥p2=0. The
corresponding  solutions are ¢’=*1 (xe.) and
¢ =—[h+yQ,|(t= 1N (=1 ]/ f (¢, respectively.

Away from the interface the solution is given by the phases
(¢pp= = 1) corrected by an O(e) term.

We now look at the inner solution in the interface of width
O(e). In Cartesian coordinates this interface is represented
by y=s(x,7,€). We assume that the curvature of the front is
small compared to its width and define a new variable

M =0O(1) as €—0 in a neighborhood of the inter-
face (In the one-dimensional case s=s(z;€) and y:= ’%’—Q)

We call ®(z,x,7,€) the asymptotic form of ¢ as e—0
with z fixed. Equation (3) in (z,x,f) coordinates becomes

e, - es,P.= edb, - 2es, D, + (1 + 5)25)@Zz - es, P, + f(P)
+ eh+ ey(p,). (6)

The asymptotic expansion of @ is assumed to have the
form ® ~ @+ ed!+O(€?) as e— 0. Substituting into Eq. (6)
and equating coefficients of the corresponding powers of €
we obtain the following problems for O(1) and O(e) respec-
tively,
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(1+5)®% + f(@%) =0, (7)
1+ si)(l)zlz + £ (DD = (s,, — st)fbg + ZSX(I)SX —h- 'y{d)g}.
(8)

In order to solve Eq. (7) we define a new variable

Z

=—. 9
1+ s)%)l/2 ©)
In terms of &, Eq. (7) reads

DY+ (D) =0, (10)
whose solution is ®°=W(§), the unique solution of

P+ f(W)=0, W(*xw)==*1, ¥(0)=0. Thus
<1>0=c1>0(—Z ) (11)

1+ si)l/2

Note that as z moves away from zero ®° approaches
=1,
In terms of &, x and 7, Eq. (8) reads

— 5

(D§§+f ((I)O)(I)l W

p—

SZ

(1+’§;3/2(§”‘1’”+\1’) h= A (12)

It is straightforward to check that W’ (&) satisfies the homo-
geneous equation

D+ (D)D" =0. (13)
Thus the operator A := fﬂ+ £'(®°) has a simple eigenvalue at

the origin with W’ as the corresponding eigenfunction. Then
the solvability condition for the Eq. (12) gives

e K

xf (EV" + VW' dé—[h+ y(¢2>]fm P de=0.

(14)
A simple calculation shows that [T _&P'W"dE
=—1 /", (V')2d¢. Calling
+00) = P(—o0
W(+ %) = W(=) (15)
f (P')’d¢
and rearranging terms we get
St
(1+S)2r)1/2 1+ 2)3/2+ah+a'y(q5) 0. (16)

We know take care of the last term in Eq. (16).
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f ¢°(x,t)dx = @O(x,1)dx + ¢°(x,1)dx
Q Q* () Q™1
+ f ¢°(x,1)dx
r
= ¢°(x,1)dx + ¢ (x,0)dx + O(e€)
Q* () Q™ (1)
=0%(0) - |Q7°(1)] + O(e)
= (1Q-2[Q_(1)]) + O(e). (17)

Substituting Eq. (17) into Eq. (16) and rearranging terms we
get

St Sxx

_ @y
(1 +s)26)”2 B (1 +s)2()3/2

19|

ah Q] -2]Q7|(t- 7)) =0.

(18)

Eq. (18) governs the evolution of fronts for Eq. (3) and gen-
eralizes the classical FMC Eq. (4) to include delayed global
feedback effects. Note that the constant « given by Eq. (15)
depends on the function f(¢) with W(&) the unique solution
of  W4f(¥)=0, W(+)==1, W(0)=0. For the
prototype case f(¢)=(¢p—¢)/2 (Ginzburg-Landau theory),
\If(g)ztanhg‘ and «a=3. Note that for f(¢)=sin ¢
(overdamped sine-Gordon equation), W(&)=4 tan™' ef—7
and a=7. For simplicity and without loss of generality,
throughout this paper we will consider |Q|=1 and a=1; i.e.,
the values of |()| and « are absorbed by the parameters 4 and
Y.
In polar coordinates Eq. (18) reads

pp(p* + ) + p* = ppos+ 2p;
+ [+ AL=2Q70(= D)+ pg) (19
Eq. (19) can be obtained from its corresponding Cartesian
version [Eq. (18)] by changing variables or it can be derived

directly from Eq. (3) in a similar fashion as for the Cartesian
version presented in Sec. II. (See [66] for technical details).

III. DYNAMICS OF ONE-DIMENSIONAL FRONTLIKE
STRUCTURES

The evolution of a one-dimensional front in a domain
Q0=[0,1] is given by following linear delay-differential
equation

s;=—h—H1-2s(t-7)]. (20)

Equation (20) is obtained from Eq. (18) by disregarding spa-
tial variations (s,=s,,=0). A schematic diagram of a front is
given in Fig. 1(b) (left).

As mentioned in Sec. I (Background), for y=0 (no global
feedback) the sign of & governs the dynamics of the front and
determines the homogeneous steady phase. For i # 0, no lo-
calized solutions are possible. If 2>0, the zero of the
bistable function f(¢)+e€h is moved to the right [see Fig.
1(a)] and, to first order approximation, the phase ¢,=+1
becomes an absolute minimum of the corresponding double-
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well potential; i.e., a front as the one shown in Fig. 1(b)
(left panel) moves to the left, in a direction that favors the
¢_— ¢, phase transition, eventually generating a homoge-
neous steady solution. Analogous results hold for the case
h<0. In the context of neural dynamics fronts moving to the
left (p_— ¢b,) are referred to as depolarizing and fronts mov-
ing in the opposite direction are referred to as nondepolariz-
ing (or hyperpolarizing). In the context of solid-liquid phase-
transition dynamics, the former are referred to as
solidification fronts.

Localized solutions for Eq. (20) exist for parameter values
such that the fixed point s=1/2+5h/(27) is stable and satis-
fies 0 <5< 1. The latter constraint, imposed by the endpoints
of the domain (), yields =1 <h/y<1 (|y|>|h|). When there
is no delay (7=0), 5 is stable for y<<0 (global inhibition) and
unstable for y>0. Hence, localized solutions are created as
the result of global inhibition (and not global excitation).
Fronts initially away from § converge to s and cease to move.
As global inhibition increases (y increases in absolute value),
s—1/2; i.e., localized solutions persist for all negative val-
ues of y. Therefore, given A, instantaneous global inhibition
is not enough to reverse the phase of the system. Below we
show that phase reversal can be achieved as the delay time
increases above a critical value through a Hopf-bifurcation
mechanism.

For 7> 0 stability of s can be investigated following stan-
dard procedures [41]. We sketch the analysis in Appendix A
for completeness. We show that stable localized solutions
exist for values of 0<7<7y=—7/(4y) and y<0 (global
inhibition), and they loose stability at the Hopf bifurcation
point 75 In addition, there 1is a critical value
7.=7=(27ye)”!, 7.<y, such that upon perturbations to s
front oscillations will be observed for 7. <7< 7y and no os-
cillations will be observed for 7<<r..

In Fig. 2 we illustrate the evolution of one-dimensional
fronts for =0, y=—1 and various representative values of 7.
For these values our asymptotic approximation predicts
7.~0.184 and 75~ 0.785. The solid lines correspond to the
solutions to the asymptotic Eq. (20). The superimposed
circles correspond to the solution of the one-dimensional
PDE [Eq. (3)] with €=0.01 (see below). Figure 2(a) shows
the localized front corresponding to 7=0 (no delay). For
small values of 7<7. the localized solutions persist [Fig.
2(b)]. For larger values of 7 (but still 7<<7y) damped oscil-
lations develop which eventually converge to the localized
solution 5 [Figs. 2(c)-2(e)]. For higher values of 7> 7y, os-
cillations grow unboundedly [Fig. 2(f)] and eventually the
front will reach one of the boundaries (either s=0 or s=1)
leaving the domain in a homogeneous phase with either ¢
=+1 or ¢=-1, respectively. Appropriate values of y and 7
can be used so that either a localized solution or a stationary
solution with a desired phase is selected.

In Fig. 3(a), we present graphs of the frequency of the
oscillatory fronts as a function of the delay-time 7 for =0
and three representative values of y. The “Red curve”
(y=-1) corresponds to Fig. 2. The arrows pointing down-
ward above each curve indicate the Hopf-bifurcation delay-
time 7. For each value of v, points left to the arrows corre-
spond to stable oscillations while points right to the arrows
correspond to unstable oscillations. The front’s oscillatory
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FIG. 2. (Color online) Evolution of one-dimensional fronts for 2#=0, y=-1 and various values of 7. For these values of & and
v, 7y~0.785 and 7.~ 0.184. Solid lines correspond to the solution to the asymptotic Eq. (20). Superimposed circles correspond to the
solution of the one-dimensional PDE [Eq. (3)] with €=0.01.

frequency is a decreasing function of 7, for fixed-values of 7,
and an increasing function of vy for fixed values of 7. The
parameters vy and 7 can be finely tuned for the front to be on
either side of the arrows. The “similarity” among the three
curves in Fig. 3(a) is not surprising since eq. (20) can be

rescaled to the following y-independent equation
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FIG. 3. (Color online) Frequency of the oscillatory one-dimensional fronts as a function of the delay-time 7 for 2=0 and various values
of vy. The circles (light gray) graphs correspond to the solutions presented in Fig. 2. (a) Frequency of the oscillatory fronts for the asymptotic
Eq. (20). The arrows indicate the values of 7 corresponding to a Hopf-bifurcation. (b) Frequency error between the solutions to the

asymptotic Eq. (20) and the PDE [Eq. (3)] as a function of 7. For each value of 7, the error was calculated as the absolute value of the
difference between the two frequencies divided by the frequency corresponding to 7.

f=yt, #=yr, h=—, 3§ =s(ilv). (22)
For Eq. (21), ty=/4 (see Appendix A). The curves in Fig.
3(a) are representative for values of ## 0. Changes in the
value of h are reflected in the location of the equilibrium
front 5 but not in the stability properties of the front solution
s(t) (see Appendix A).

In order to show that our findings are not an artifact of the
asymptotic approximation, we performed direct simulations
of Eq. (3) (one-dimensional case) for y=—1, h=0, €=0.01
and various values of 7 and compare with our asymptotic
predictions. Our results are presented in Figs. 2—4. Numeri-
cal simulations of Eq. (3) were performed for the prototypi-
cal bistable function f(¢)=(¢—¢°)/2 using a Crank-
Nicholson finite difference scheme together with the Newton
method for the nonlinear term [68]. We have considered a
computational domain defined by Q:=[0,1], a spatial dis-
cretization of 200 points, Neuman boundary conditions at
x=0 and x=1, a time discretization Az=0.01 (or sometimes
At=0.001), and the following initial condition
¢(x)=tanh(x_2'6). The results for representative values of 7
and y=-1 are presented in Fig. 4. The thin interfaces can be
observed in between the “red” and “blue” regions corre-
sponding to the two phases, ¢=+ and ¢$=-1, respectively.
These graphs illustrate the fact that the front structure of the
solution is preserved for values of y<<0 and 7>0 even when
the front looses stability. In Fig. 2 we superimposed (circles)
the values of x approximating the interface [ ¢(x)=0] corre-
sponding to the PDE Egq. (3) to the asymptotic front solution
s(f). The asymptotic prediction and the numerical solutions
are in good agreement although the values of 7 that give the

best approximation between the asymptotic and numerical

solutions slightly differ as 7 increases.
Further comparisons between the asymptotic and numeri-
cal results are presented in Fig. 3(b). There we plotted the

relative frequency error between the solutions to the
asymptotic Eq. (20) and the numerical solutions to the PDE
[Eq. (3)] as a function of 7. For each value of y we calcu-
lated the relative frequency error as the absolute value of the
difference between the two frequencies divided by the fre-
quency corresponding to the Hopf-bifurcation delay-time 7.
Overall, there is good agreement between the asymptotic and
numerical predictions; the relative error is below 0.02. The
error is larger for small values of 7, slightly above the critical
delay-time 7. for the emergence of oscillatory solutions.
These may not necessarily indicate a lack of accuracy in the
asymptotic approximation but rather in the calculation of the
frequency since for these values of 7 the amplitude of the
damped oscillations decreases very rapidly. This is further
supported by the fact that the asymptotic prediction is very
accurate for smaller values of 7as shown in Figs. 2(a)-2(d).
Deporalization spreading in two directions gives rise to
bumps [see Fig. 1(b) (right)] which are characteristic in the
dynamics of neural fields [69]. The evolution of bumps for
Eq. (3) can be investigated by looking at the motion of two
separate fronts s; and s, moving in opposite directions for
the same value of . The corresponding equations are

sie=—h=A1=2|Q7|e-7l],

sy, =h+A1-2|Q7|r-17)

1. (23)

with 51(0)=s; o and 5,(0)=s,, and where we assume with-
out loss of generality that s, —s; o>>0. Since

|Q7[() = 1+ 51 (2) = 55(0),
egs. (23) become

si=—h—A-1+2(s55—5 Nt —7)

1.

sa =h+ U=1+2(s,— 570t = 7)|]. (24)
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FIG. 4. Evolution of one-dimensional fronts for Eq. (3) for =0, y=—1, €=0.01 and various values of 7. The gray level codes for values
of ¢. The interface (or front) corresponds to the small region of fast transition between ¢=+1 (white) and ¢p=—1 (black). The values of 7
appearing at the top of each figure are approximation of the values used in our simulations: (a) 7=0.0, (b) 7=0.1, (¢) 7=0.51, (d) 7=0.61,
(e) 7=0.72 and (f) 7=0.82.

For y=0 (no global feedback), the two fronts move in y=h=2%(s50-510)
opposite directions. Following our previous discussion, if 51(2) = ’ =(e-1)
h>0, s, decreases and s, increases; i.e., the fronts move in a
direction that favors the transition from ¢=-1 to ¢=+1,
eventually generating a homogeneous solution. If #<<0, the _y—h- 29520~ 51.0)
bump collapses (when the two fronts meet) and a homoge- s,(t) = 4~
neous solution in the opposite phase is created.

For y# 0 and 7=0 (no delay), the solution to system [Eq. A stable bump exists provided y<<0 (inhibitory global feed-
(24)] is given by back). In this case

+51 0,
4y 1,0

(1 - €4W) + $20-
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FIG. 5. Evolution of one-dimensional bumps according to Eq. (23) for 47=0, y=-1 and various values of 7: (a) 0.0, (b) 0.36, and (c)

0.385.
—h=2v(si9+s
lim () = - Y 04 1,0 2,0)
t—© 4‘)/
and
—h+2¥(s{g+s
lim 5,(7) = Y 24 1,0 2,0)
t—00 4’)/

and the size of the stable bump is

limLs» (1) —s,(0] = 22

t—o 2‘}/

(25)

Note that the size of the bump is independent of the initial
conditions and, as expected, the size of each phase in the
localized bumps and fronts are the same. Note also that glo-
bal inhibition is able to stop the spread of depolarization but
is not able to reverse the process. The linear stability analysis
for bumps is similar to that for fronts.

In Fig. 5 we illustrate the evolution of the bump solution
to Eq. (24) for h=0, y=—1 and representative values of 7.
Figure 6 shows the results of direct simulations of Eq. (3)
(one-dimensional case) for y=—1, h=0, €=0.01, and repre-
sentative values of 7 chosen to produce fronts qualitative

similar to these in Fig. 5. We used the following initial con-
ditions: d)(x)=tanh(x_g'3)tanh(0‘7€_x). As expected, the dy-
namics of bumps are qualitatively similar to the dynamics of
fronts. Figure 5(a) shows a localized bump for 7=0. For
values of 7<< 7y, the localized bump persists. If front oscil-
lations develop they decay in amplitude and the “oscillatory
bump” eventually stabilizes [Fig. 5(b)]. For values of
7> 7 [Fig. 5(c)], oscillations grow in amplitude. Depending
on the values of y and 7, the bump may collapse or reach the
boundaries of the domain thus creating homogeneous solu-
tions. The prevailing phases are ¢=-1 and ¢=1 in the
former and latter cases respectively as we show in Figs. 6(d)
and 6(e). These figures also show that the bump structure of
the solutions is preserved in the PDE even for values of 7 for
which these bumps loose stability.

Comparison between Figs. 5 and 6 show a good agree-
ment between the analytical and numerical predictions. As
for fronts, in Fig. 6 we have chosen values of 7 that produce
graphs qualitatively similar to the ones in Fig. 5 (i.e., the best
approximation). Then we compared the values of 7 which
coincide (7=0 and differ by 0.02 and 0.035 in the other two
graphs). As it occurs for fronts, these results are representa-
tive for other values & and 7.
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FIG. 6. Evolution of one-dimensional bumps for Eq. (3) for =0, y=-1, €=0.01 and various values of 7. The gray level codes for values
of ¢. The interface (or front) corresponds to the small region of fast transition between ¢=+1 (white) and ¢p=—1 (black). The values of
appearing at the top of each figure are approximation of the values used in our simulations: (a) 7=0.0, (b) 7=0.38, (c) 7=0.41,

(d) 7=0.42, (¢) and 7=0.44.
IV. DYNAMICS OF TWO-DIMENSIONAL FRONTS WITH
RADIAL SYMMETRY
The evolution of the radius p of a two-dimensional front
with radial symmetry in a domain  with |Q)|=1 is given by

p,=—:)—h—a{1—zwp2<r—r>], (26)

which can be obtained from Eq. (19) by disregarding angular
variations (pg=pgy=0). We consider an initial radius
p(0)=p, and p(t)=p_ for —7<r<0.

Equation (26) is a first order, nonlinear, delay-differential
equation. For y=0 and A=0 (no global feedback and no po-
tential difference between phases) Eq. (26) is the classical
flow by mean curvature equation discussed in Sec. I (back-
ground) whose solution describes shrinkage of circles to a
point in finite time. The same occurs for #>0 with a larger
shrinkage time. For 2<<0, Eq. (26) has an unstable steady
state p=—h who acts as a threshold: circles with p<<p shrink
to a point in finite time while circles with p>p increase
unboundedly. Following our convention relating the sign of /
and the sign of the phase (¢), only in this last case the break
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of symmetry in the double-well potential opposes the curva-
ture effects and the system will reach a fully nondepolarized
state.

Global inhibition (y<0) opposes curvature effects by a
different mechanism. For high enough levels, localized cir-
cular fronts arise. Their radii are stable steady states p of Eq.
(26); i.e., p satisfy

27yp° = (h+y)p—-1=0. (27)

Note that p is independent of 7.

We investigate the stability properties of p following stan-
dard procedures. We first linearize Eq. (26) around p by de-
fining v(f)=p—p<<1. Substitution into Eq. (26) gives

dvo(t) 1

e p?

v(t) +4mypv(t— 7). (28)

Next we assume a solution of the form v(f)=vye™ for Eq.
(28). Substituting into Eq. (28) gives the characteristic equa-
tion

FON)=N- _Lz —4arype™". (29)
p
Equation (26) is linearly stable if all the solutions of the
characteristic Eq. (29) are negative, and linearly unstable
otherwise. Note that unlike the 1D case, the characteristic
Eq. (29) includes the steady state p, and no rescaling similar
to Egs. (22) is possible due to the nonlinearities; i.e., differ-
ent dynamic situations arise for different values of y and h.
Note also that although the steady radii p are independent of
the delay parameter 7, the characteristic equation depends on
7, and in consequence the stability properties of p also de-
pend on 7.

We first consider 7=0 (global feedback with no delay).
From Eq. (29), p is stable if 1+47yp><0 and unstable
1+47yp®>>0. Figure 7 shows radii p of the steady circular
fronts and their stability properties as a function of the global
feedback parameter y for various representative values of &
(potential difference between the two phases) and 7=0. Solid
curves correspond to stable radii p; and dashed curves cor-
respond to unstable radii p,. Both p, and p, depend on vy and
h. For given values of i and 7y, circles with initial radius
below p, shrink to a point in finite time while circles with
initial radius above p, converge to localized circles with ra-
dius p,. For some values of & there is a range of values of y
for which no equilibrium radii exist. For this values of 7 and
v, circles shrink to a point in finite time independently of
their initial radius.

For y<0 (negative global feedback) localized solutions
emerge as predicted in [8,65]. A stable and unstable equilib-
rium radii coexist within some range of values of y which
depends on the value of 4. It increases with 4 for values of &
small enough [Figs. 7(a)-7(d)] and it decreases with & for
higher values of & [Figs. 7(e) and 7(f)]. For y>0 (positive
global feedback) steady states p are always unstable (dashed
curves) and no localized solutions are possible. However,
these unstable radii p play the role of a threshold radii divid-
ing between regions of shrinkage and unbounded growth
even for positive values 4. In Fig. 8 we illustrate the evolu-

PHYSICAL REVIEW E 82, 036601 (2010)

tion of the radius of circular fronts for 7=0, £=0 and various
representative values of y [included in the diagram presented
in Fig. 7(b)]. For low enough levels of global inhibition (y
negative and small enough in absolute value), circular fronts
shrink to a point in finite time; The shrinkage time increases
as global inhibition increases. For 7y close enough to the knee
of the “horizontal parabola” in Fig. 7(b) the shrinkage time
approaches its upper bound (solid curve in Fig. 8). As global
inhibition increases further, stable radii, corresponding to lo-
calized circular fronts, emerge (dashed and dash-dotted
curves in Fig. 8).

As the result of global inhibition, fronts that would other-
wise shrink to a point in finite time can stabilize into a lo-
calized front (separating the two coexisting phases) by cross-
ing a curve of unstable equilibria in Fig. 7. For example,
consider a circle with initial radius py=0.1. In the absence of
inhibition y=0 the representative point is located to the right
(and below) of the dashed threshold-curve (unstable equilib-
ria) in Fig. 7. Such a circle shrinks to a point in finite time.
By increasing global inhibition, this point moves to the left
in the equilibrium diagrams in Fig. 7. For a sufficiently small
value of v it crosses the threshold (dashed) curve and enters
the basin of attraction of the stable equilibrium eventually
converging to a localized front. For small enough values of &
[Figs. 7(e) and 7(f)] there is a small range of values of vy for
which an initial radius point will lay above the curve of
threshold equilibria (dashed) but not below the curve of
stable equilibira (solid). In these cases, the corresponding
circles grow eventually reaching the boundaries of the do-
main. This range of values of y increases with decreasing
values of A. In this sense, global inhibition acts as a control
mechanism for the selection of the stationary phase of the
system. However, if / is fixed and high enough, global inhi-
bition alone is not enough to fully reverse the stationary
phase; i.e., circles that shrink to a point in finite time can at
most stabilize into a localized front but never reach the
boundaries of the domain. Below we show that phase rever-
sal can be achieved as the delay times increase above some
values causing the stable circular fronts to loose stability.

We now consider values of 7>0 (delayed-time global
feedback). The location the steady radii p, and p, are as in
Fig. 7. However, as 7 departs from zero, their stability prop-
erties change. More specifically, stable steady state radii (p,)
become unstable for large enough values of 7. We illustrate
the dynamics of p for various representative parameter val-
ues in Figs. 9 and 10. In these figures, the horizontal, green
and red dashed lines correspond to the unstable and stable

radii p, and p, respectively. We call () e Q the circular do-
main of radius 0.5. (The radius of a circular domain ) with
|Q|=1 is ~0.564.) Figure 9 shows the evolution of p for
y=-8, h=0 and p_=p, (i.e., p=p, for 1<0) and various
representative values of 7. Radii initially below the unstable
radius p, decrease to zero in finite time (not shown). In Fig.
9(a), the initial radius p, is just above p,. For low enough
values of 7, p converges to p, (not shown). As 7 increases, p
displays damped oscillations eventually converging to p;. Fi-
gigure 9, top-left panel, shows the first few periods. (Note
that the oscillations’ amplitude decreases very slowly with
time.) The initial amplitude of these oscillations increases
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FIG. 7. Radii of the equilibrium circular fronts pg (p) as a function of the global feedback parameter 7y for various values of 4: (a) 01.5,
(b) 0.9, (c) 2.5, (d) 2.6, (e) 2.7, (f) 4.0, and 7=0 (no delay). Full and dashed curves correspond to stable and unstable circular fronts,

respectively.

with 7. For the value of 7 corresponding to the top-right
panel, the initial amplitude is maximal within Q (a slightly
higher value of 7 such the one corresponding to the left-
bottom panel brings the solution outside €)). After p turns
around, it decreases and, since |0.5— Py, is larger than
|P,—Pul (p=0.5 is the boundary of (), it crosses p,. Once this
happens, p decreases to zero in finite time as it occurs for
initial radii below p,. Note that the upper steady radius p;

does not need to loose stability in order for p to cross the
lower steady radius p,,. Oscillations may still be damped but
if their initial amplitude, determined by [0.5-p,|, is larger
than |p,—p,|, then p crosses the unstable radius p, before
being able to turn around. Note also that p may display mul-
tiple oscillations before crossing p,. For a slightly larger
value of 7 (Fig. 9(a), left-bottom panel) the initial amplitude

of the oscillation allows p to escape {) before turning around.
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FIG. 8. Evolution of radii p of circular fronts for various values of the global feedback parameter vy, h=0 (two phases with equal

potential) and 7=0 (no delay).

For larger values of 7, p escapes () faster (not shown). The
dynamics described in these panels is robust to changes in
parameters provided the initial radius p, lies between p, and

p,. We refer to the smallest value of 7 such that p escapes ()
as T,.,. In Fig. 9(a) (bottom-right panel) we present graphs
T, as a function of the initial radius p, for various repre-
sentative values of +. In all cases 7,,, is an increasing func-
tion of p, since the initial oscillations amplitude decreases as
po approaches p,. This panel also shows that inhibitory glo-
bal feedback facilitates the escape since 7,,, decreases with
increasing values of |-/

This scenario changes for initial radii p, above p, [Fig.
9(b)]. A slight increase in 7 causes the initial amplitude of the
damped oscillation (left panel) to be large enough so that p
crosses p,, before being able to turn around (right panel), and
thus decreases to zero in finite time. A significant difference
between the two cases described in Figs. 9(a) and 9(b)
(p<p, and py>p,) is the fact that p(¢) is initially increasing
in the former case and decreasing in the latter case. This is a
consequence of having considered p(t)=p, for t<<0. More
specifically, initially, p,(t)=[2myp3—(h+7y)p—1]p,'. From
Eq. (27), the numerator vanishes for p,=p,. It is positive for
po<p, and negative for p,> p,.

One strategy to change the direction of motion of circular
fronts with radius above p; is to change the initial conditions
to p(r)=0 for negative values of ¢. In this case, initially,

() ==~ —h-y. (30)

Po

If py>—(h+7)~!, then p(¢) is initially increasing. We illus-
trate this in Fig. 10 (with y and & as in Fig. 9). For p,<p,
[Fig. 10(a)], the dynamics is similar to Fig. 9(a), and p es-
capes Q) for large enough values of 7. Differently from the
previous case, p initially increases for p,> p, instead of de-
creasing [Fig. 10(b)]: for large enough values of 7 the evo-
lution of p will be governed by Eq. (30) with p, substituted
by p. Provided 7y is large enough, p will increase eventually

escaping ().

A second strategy to change the direction of motion of
circular fronts with radius above p; is to increase the magni-
tude of global inhibition (decrease ). Since p; is a decreas-
ing function of vy (see Fig. 7), the relative position of an
initial radius with respect to p, can be changed (from above
to below) by decreasing the value of . Circular fronts with
initial radii below p, are not affected by changes in 7 since
they are not in the basin of attraction of p,. However, then
can be brought to that basin of attraction by changing either
the magnitude of global inhibition or, if possible, the value of
h (see Fig. 7).

The dynamics described here can be qualitatively pre-
dicted by investigating the behavior of the characteristic
polynomial F(\) given by Eq. (29). We illustrate the analysis
here for y=—10 and h=0. For these parameter values
p,=0.334 and p,=0.108.

Figure 11(a) shows the graphs of F(\) corresponding to
these parameters. For p=0.108 (right panel) F(\) has posi-
tive roots for all values of 7; i.e., p=0.108 is always unstable.
For p=0.334 (left panel) F(\) has a single negative root for
7=0 explaining the stability of p,. As 7 increases, F(\) de-
velops a minimum \,,;, with an increasing value of F(\,,;,).
For A for 7<7,~0.01 F(\) has two negative roots and p is
stable; i.e., the localized solution persists. For 7> 7., F(\)
has no real roots [F(\,,;,,) >0]. In this case oscillatory solu-
tions are possible. These oscillatory solutions may be stable
7> Ty Or unstable.

In order to show that our results are not an artifact of the
asymptotic approximation, in Figs. 12 and 13 we present the
results of direct simulations of Eq. (3) (two-dimensional
case) for y=—12, h=0, €=0.01 and various values of 7. We
used f(p)=(¢—¢?)/2 (prototypical case) and we choose
various representative values of y and 7. We considered a
square domain Q=[0,1]%x[0,1] (|Q|=1) with Neuman
boundary conditions. We used a forward finite difference
scheme with a discretization of 100 points for both the x and
y directions. In order to set the initial conditions we have
considered a circle C centered at the point (0.5,0.5) with
radius r=0.3, and we have defined
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FIG. 9. (Color online) Evolution of the radius p of a circular front for various delay times (7), y=-8, h=0, and p(t)=p, for
—7<t<0. The stable and unstable steady states corresponding to 7=0 are p,=0.3073 and p,=0.1435, respectively. (a) Initial radius
po=0.15. The right-bottom panel shows the phase reversal delay times 7,,, for various values of p, and 7. (b) Initial radius py=0.4.
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Note that due to computational limitations, the mesh we used
here is less refined (less discretization points per unit of
length) than the one used in the 1D case (100 points).

In Figs. 12 and 13, we plot the value of the order param-
eter ¢ (gray level) on the middle line y=0.5 (ordinates) as a
function of time (abscissa). Figure 12 corresponds to 7=0

(no delay), =0 (no potential difference between phases) and
various values of the global feedback parameter y. As pre-
dicted analytically (see Fig. 8), for y=0 an initial circle
(blue) shrinks to a point in finite time. As 7 increases, the
shrinkage time also increases. For 7y above some threshold
localized solutions appear. Figure 13 corresponds to y=—12,
h=0 and various values of 7. The localized solutions loose
stability in a Hopf-bifurcation and a homogeneous steady
solution in the nondepolarized ¢=-1 phase emerges. These
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FIG. 10. (Color online) Evolution of the radius p of a circular front for various delay times (7), y=-8, h=0, and p(7)=0.0 for
—7<t<0. The stable and unstable steady states corresponding to 7=0 are p,,=0.3073 and p,,=0.1435, respectively. (a) Initial radius

po=0.15. The right-bottom panel shows the phase reversal delay times

graphs also illustrate the fact that the front structure of the
solution is preserved for values of y<<0 and 7> 0 even when
the front looses stability. We have obtained similar results
using initial two-dimensional fronts with no radial symmetry
(not shown). The dynamics and mechanisms explained+
here persist when the assumption of radial symmetry is re-
moved.

T,e, ToOr various values of py and . (b) Initial radius py=0.35.

rev

V. DISCUSSION

In this paper, we have investigated the dynamics of one-
and two-dimensional fronts in the bistable reaction-diffusion
Eq. (3) with delayed-time inhibitory global feedback. This
equation, referred to as the Hodgkin-Grafstein (HG) equa-
tion, has been used to describe the dynamics of extracellular
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FIG. 11. Characteristic polynomial F(\) as a function of N for two-dimensional circular fronts and two negative values of the global
feedback parameter: (a) y=—10 and (b) y=-8. The left panels correspond to the radii of the stable circular fronts: (a) p(=p,,)=0.334 and (b)
p(=p,)=0.440. The right panels correspond to the radii of the unstable circular fronts: (a) p(=p,,)=0.108 and (b) p(=p,,) =0.086.

potassium ions during spreading depression [37,38]. Al-
though it is an early model, it is an important component in
some more detailed models describing this phenomenon
[30,70]. The sharp transition from a physiological to a patho-
logical state is marked by a front. Understanding the dynam-
ics of these fronts and developing control mechanisms to
prevent their spread and, even better, promote shrinkage of
the depolarized region (by reversing the front direction) has
became an important goals in this field [70] (and references
therein). Our work introduces time-delayed global feedback
to meet these goals thus complementing previous work by

other authors who have used instantaneous (no time-delay)

global feedback [8] or local-in-space, time-delayed feedback

[38,56] to investigate the HG equation. Our results are also
applicable to the study of other phenomena described by the
bistable equation such as phase-transition dynamics and the
evolution of chemical concentrations [35,36].

It was previously shown that localized fronts can be ob-
tained by applying inhibitory global feedback (nondelayed)
[8,40,65]. Fronts fail to propage due to global coupling ef-
fects. Numerical simulations using Eq. (3) have shown that
front structures persist under time-delayed global feedback.
Moreover, for appropriate delay times, we found delayed-
induced fronts, that is, localized fronts that loose stability
and move in a direction opposite to their natural direction
corresponding to the absence of global coupling. More spe-

036601-

cifically, the application of delayed-time global feedback to a
front (that otherwise shrinks to a point in finite time) may
generate front oscillations that loose stability causing the
front to grow unboundedly until it reaches the boundaries of
the domain. In order to investigate the nature of these insta-
bilities we used formal asymptotic techniques and derived
Eq. (18) governing the evolution of fully developed fronts.
Stability analysis shows one-dimensional fronts and two-
dimensional fronts with radial symmetry loose stability in a
Hopf bifurcation. Based on our numerical simulations, we
hypothesize the same is true for two-dimensional fronts with

other geometries. Front oscillations have been observed in

various other fields [25,35,66,67,71,72]. In contrast to the
results presented here, these oscillations are stable result
from the hyperbolicity of the system such as in pulsons and
systems with memory [4,72].

The results and control strategies presented in this paper
are relevant to other spatially extended pattern forming sys-
tems that display bistable dynamics such as the Allen-Cahn
and phase-field equations in liquid-solid phase transitions
[34,36], and other chemical and biological systems
[35,61,73-78] (see also references in the introduction). In
some cases, bistability results from the coupling among the
equations in the system such as in the FitzHugh-Nagumo
model and models of the Belousov-Zhabotinsky reaction (see
[23]). In other cases, such as in phase-field models [34], a

16
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FIG. 12. Evolution of an initially circular front according to Eq. (3) (2D) for 7=0, 7=0, €=0.01 and various values of y: (a) y=0, (b)
y=-6.0, (c) y=-6.5, and (d) y=-7.0. The gray level codes for values of ¢. The interface (or front) corresponds to the small region of fast

transition between ¢=+1 and ¢=-1.

bistable equation describing the evolution of the phase is
coupled to a second equation describing the evolution of the
temperature but not involved in the generation of bistability.
These cases may require a different approach when applying
time-delay and instantaneous (no time-delay) global cou-
pling.

Equation (18) generalizes the flow by mean curvature
equation which is recovered when y=0. The first term cor-
responds to curvature effects that promote shrinkage of con-
vex curves. In a nonplanar two-dimensional front, the change
of direction in front motion depends on the ability of the
remaining terms to overcome the curvature effects. In Eq.
(18), this is expressed by the existence of stable fixed-points
as occurs for Eq. (26). This does not necessarily occur for all
types of time-delayed global feedback. Consider, for ex-
ample, the following time-delay global feedback term

b

all, [P(x,t—7) — P(x,1)]dx.

<¢T> - <¢0> =

resembling the local feedback term ¢(z1—7)—¢p(r) used by
other authors. The corresponding equation for the evolution

of the radius of a two-dimensional front with radial symme-
try is given by

1
pr==" - h+2yalp*(t - 7) - p*(1)].

In this case, the fixed-points for y=0 and y#0 coincide.
Similar results are obtained for one-dimensional fronts.

In this work we have considered linear global feedback.
However, similar arguments can be used for other nonlinear
global feedback terms {(g(¢))(¢) where g is an odd, continu-
ously differentiable function. In this case, a in Eq. (18)
should be substituted by ag(1) (not shown). The use of non-
linear global feedback terms may generate a richer dynamics.

In this paper, we have not considered the effects of the
interaction between fronts and domain boundaries. It is, in
principle, possible that these interactions generate some type
of reflection of the interface, specially when the latter is not
circular. For the cases we considered, our simulations using
the full PDE show that this is not the case. Our results show
that persistent oscillatory fronts emerge in this case. Estab-
lishing how global feedback, delay, front curvature, and
boundary effects combine to generate these localized struc-
tures calls for more research.
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FIG. 13. Evolution of an initially circular front according to Eq. (3) (2D) for h=0, y=—12, €=0.01 and various values of 7: (a) 7=0, (b)
7=0.028 and (c) 7=0.035. The gray level codes for values of ¢. The interface (or front) corresponds to the small region of fast transition

between ¢=+1 and ¢p=-1.
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APPENDIX A: STABILITY ANALYSIS OF ONE-
DIMENSIONAL FRONTS

Here we follow [41] and sketch the stability analysis for
the one-dimensional front Eq. (20). We first define v(z)
=5(t)—5 and substitute into Eq. (20) obtaining

Ul =2w(r-1).

(A1)
Next we look for solutions of the form v () =v,eM. Substitut-
ing into Eq. (A1) gives the characteristic equation

FON)=A=2ye7=0. (A2)

Clearly, s is stable if of all the solutions to the characteristic
Eq. (A2) have negative real part and unstable otherwise. For
7=0 (no delay), N\=2v and s is stable (unstable) for y<<0
(y>0).

For 7>0 and y>0 (positive delayed global feedback) Eq.
(A2) has a positive root and then 5 is unstable; i.e., no local-

ized solutions exist. This can be easily seen by observing that
F(0)=2y<0 and lim,_,,, F(\)=N\>0. Consequently, there
exists a value of A >0 such that F(\)=0.

For 7>0 and y<0, standard calculations show that F(\)
develops a minimum given by

1 1
>\min == 111(— ) . (A3)
T 2vyT
Substitution into Eq. (A2) gives
1 1
F\iw)=—|1=-Inl-—]]. (A4)
T 2yt

F(\,;,) vanishes at 7,=—(2ye)™' corresponding to
Npin(7.)=27ve. If 7<7,, then F(\,,;,) <0. To show this we
first calculate

min

d 1 1
dTF()\mm) - TZIH( 277_> s (AS)
which is positive for 7<-(29)"' and vanishes at
7=—(29)7!. Note that 7,<—(27y)~'. The values of \, for
which F(\)=0 satisfy Ag=2ye07<0. These values cannot
be calculated explicitly. However, the following calculations
show that Ay e (27,27ye),
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F2y)=2¢(1-¢2") >0,

F(2ye) =2vye(1 —e 2771 > .

For 7> 17, F(\,)>0 and the characteristic polynomial
F(\) has no real roots. To find the complex roots we define
N=p+iw. Substituting into the characteristic Eq. (A2) and
separating the real and imaginary parts we get

u=2ye " cos(w7),
w=-2ve " sin(w7).

(A6)

From the first equation in Eq. (A6), if w7<w/2, then
cos(w7) >0 and u<0. If cos(w7)>0 and wr<<w/2, then

PHYSICAL REVIEW E 82, 036601 (2010)

w7<1/4. The second equation in Eq. (A6) is satisfied since
=2y7e™"" sin(w7) <0 for wr<7/2.

From the first equation in Eq. (A6), u=0 for wr=m/2,
and from the second equation in Eq. (A6), this corresponds
to 7=7y given by

Ty=—1/(47y). (A7)

Note that 7,<71y. Note also that for values of 7e (7., 7y),
m<0. Assume that >0, then, from the first equation in Eq.
(A6), wr>/2 (restricted to the first two quadrants). So,
from the second equation in Eq. (A6) and since e <1 and
sin(wr) <1, 07<-2y7<-2vy7y=7/2, which is a contradic-
tion.
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