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The normal modes of a three-dimensional Yukawa plasma in an isotropic harmonic confinement are inves-
tigated by solving the linearized cold fluid equations. The eigenmodes are found analytically and expressed in
terms of hypergeometric functions. It is found that the mode frequencies solely depend on the dimensionless
plasma parameter �=�R, where R is the plasma radius and � is the inverse screening length. The eigenfre-
quencies increase monotonically with � and saturate in the limit �→�. Compared with the results in the
Coulomb limit �D. H. E. Dubin, Phys. Rev. Lett. 66, 2076 �1991��, we find an additional class of modes
characterized by the number n which determines the number of radial nodes in the perturbed potential. These
modes originate from the degenerate bulk modes of the Coulomb system. Analytical formulas for the eigen-
frequencies are derived for limiting cases.

DOI: 10.1103/PhysRevE.82.036407 PACS number�s�: 52.27.Lw, 52.35.Fp, 52.27.Gr

I. INTRODUCTION

The interaction between charged particles is known to be
strongly affected by a background plasma. Examples include
dusty plasmas, where the screening of the dust-dust interac-
tion is mainly determined by ions �1–3�, and dense two-
component plasmas �4–7�, where the ions are screened by
weakly coupled electrons. These plasmas are expected to oc-
cur in the interior of giant planets and white dwarf stars.
While in the former case the degree of screening is deter-
mined by the ion Debye length, the screening length in the
latter is the Thomas-Fermi length, owing to the degeneracy
of the electrons. The Yukawa one-component plasma model
is often used to describe the heavy plasma component, while
the light component determines the screening length. Its
static properties and collective excitations have been studied
in several publications, e.g., �8–10�.

In many situations the plasma is neither homogeneous nor
macroscopic. Recently, it was shown �11,12� that the density
of a three-dimensional dusty plasma, where gravity is bal-
anced by a thermophoretic force �13�, is not homogeneous.
The reason is the screened dust-dust interaction which pro-
duces an inhomogeneous density profile in a harmonic con-
finement. This is different from experiments with confined
ions �14� where the interaction is Coulombic and the mean
density is constant. In astrophysical plasmas the confinement
is provided by gravity and may also influence the plasma
properties.

Previous continuum theories �11,12� for Yukawa plasmas
were limited to static properties. Here, we extend these re-
sults to a time-dependent theory and investigate the normal
modes of a Yukawa plasma in a spherical harmonic confine-
ment �15–17�. This model is appropriate for the experiments
of �13,18�, for which the normal modes of rather small dust
crystals have recently been measured �19�. On one hand, a
fluid approach is expected to be accurate for long-
wavelength modes in a weakly coupled plasma. On the other
hand, the agreement of theoretical predictions �20� with ex-
periments �21,22� and simulations �23� for confined ions
turns out to be surprisingly good even in the strongly
coupled phase. An analogous result for a confined one-

component plasma with a screened interaction is still miss-
ing. Open questions are the influence of screening on the
normal modes and the eigenfrequencies. Compared with the
Lagrangian description of Ref. �24� for the breathing mode,
the present approach makes no assumption about the particu-
lar mode form. Besides dusty plasmas and compact star in-
teriors, we expect our results to be relevant for other systems
as well, when screening and confinement are not negligible.

This paper is organized as follows. The fluid equations are
introduced and linearized in Sec. II. In Sec. III we explicitly
consider an isotropic harmonic confinement. The density
profile is reviewed and used to calculate the ground-state
potential and energy. Further, the linearized Poisson equation
is solved and the eigenfrequency spectrum is derived. The
normal modes are discussed in detail. We conclude with a
discussion of the theory and an outlook on future work in
Sec. IV.

II. FLUID DESCRIPTION

A. Basic equations

The fluid equations for a spatially confined one-
component plasma read

�n

�t
+ � · �nv� = 0, �1a�

mn� �v

�t
+ �v · ��v� = − n � U − � · P − mn�v , �1b�

where U�r�=V�r�+q��r� denotes the sum of the confine-
ment potential V�r� and the potential ��r , t� induced by the
particles. In the first �continuity� equation n�r , t� is the par-
ticle density and v�r , t� is their mean velocity. The second
equation is the momentum equation, where m denotes the
particle mass, q is their charge, and P�r , t� is the pressure
tensor. A damping term with friction coefficient � is included
to account for collisions with neutral particles.

The fluid equations are complemented by Poisson’s equa-
tion for the �induced� potential �,
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�� − �2�� = − 4�qn , �2�

where the screening of the interaction between the heavy
particles by a polarizable background medium �light charged
components� is explicitly taken into account. The range of
the interaction is determined by the inverse of the screening
parameter �.

B. Linearization

A small perturbation of the plasma equilibrium is well
described by linear-response theory. This could be caused by
an external perturbation �e.g., laser manipulation of particles
in a dusty plasma� or by thermal effects. We are interested in
strongly coupled plasmas and hence can neglect the pressure
term �cold fluid limit�. Equations �1� and �2� are then linear-
ized according to n�r , t��n0�r�+n1�r , t�, v�r , t��v1�r , t�,
and ��r , t���0�r�+�1�r , t�. Products of first-order terms are
assumed negligible.

The classical equilibrium density profile n0�r� and the as-
sociated potential �0�r� are determined from the zero-order
terms of Eqs. �1b� and �2�,

q � �0 = − �V , �3a�

�� − �2��0 = − 4�qn0, �3b�

which are equivalent to the energy minimization in �11� �we
neglect the finite-size factor �N−1� /N, where N is the par-
ticle number�. While Eq. �3a� describes local force equilib-
rium, Eq. �3b� determines the density profile that creates the
required potential for Eq. �3a�, i.e., the two equations are
coupled.

First-order quantities are determined by

�n1

�t
+ � · �n0v1� = 0, �4a�

m
�v1

�t
+ m�v1 = − q � �1, �4b�

�� − �2��1 = − 4�qn1. �4c�

Looking for normal-mode solutions with a time dependence
e−i�t, e.g., �1�r , t�= �̂1�r�e−i�t, we obtain

i�n̂1 = � · �n0v̂1� , �5a�

m�� + i��v̂1 = − iq � �̂1. �5b�

Using Eqs. �5� we can rewrite Eq. �4c� as

� · �	�r,�� � �̂1� = �2�̂1, �6�

where the plasma dielectric function is given by

	�r,�� = 1 −
�p

2�r�
��� + i��

, �7�

where

�p�r� = �4�q2n0�r�/m �8�

denotes the local plasma frequency. n̂1 and v̂1 have been
eliminated in favor of �̂1.

Equation �6� is a self-contained equation for �̂1 and will
be solved in the following section for a special case. Having
found its solution, n̂1 and v̂1 follow from Eqs. �5�.

III. SOLUTION FOR HARMONIC CONFINEMENT

A. Ground state

So far our results are valid for arbitrary confinement. In
order to make further progress let us now explicitly consider
an isotropic harmonic confinement V�r�=m�0

2r2 /2. The
ground-state density n0�r� �cf. Eqs. �3�� is given by �11�

n0�r� =
3

4�a3	1 +
�2

6

3 + �

1 + �
−

�2r2

6


�R − r� , �9�

where a= �q2 /m�0
2�1/3 is the Wigner-Seitz radius in the Cou-

lomb limit, �=0. The normalized cluster radius is denoted by
�=�R. For Coulomb interaction the density is constant, �
�0, and R��=0��RC=aN1/3, while for ��0 n0�r� de-
creases parabolically toward the boundary. In this case
R���=� /� must be determined from �11�

�6 + 6�5 + 15��4 + �3 − kC
3 �� + 1�� = 0, �10�

where kC=�RC is the inverse screening length normalized by
the Coulomb radius. For small kC the asymptotic solution of
Eq. �10� is

��kC� � kC −
2

15
kC

3 +
1

9
kC

4 −
1

25
kC

5 + ¯ , �11�

while for kC�1,

��kC� � 151/5kC
3/5 − 1 +

1

152/5kC
−6/5 − 151/5 3

25
kC

−12/5 +
1

15
kC

−3

+ ¯ . �12�

The relative error of these approximations is �10−2 for kC
1.26 and kC�1.26, respectively.

The case ��1 is encountered if kC=�aN1/3�1, i.e., if
either �a or N is large. This is why we will refer to �→� as
the macroscopic/strong screening limit since the plasma has
a size of many screening lengths. The opposite case, ��1,
will be referred to as the Coulomb limit, where the screening
length is much larger than the plasma radius.

It is straightforward to calculate the moments of the den-
sity, which are given by

�rn =
1

N
� rnn0�r�dr

=
Rn

N
	R

a

3�3 + �n + 6��2 + 3�n + 5��1 + ��

�n + 5��n + 3��1 + ��
. �13�

The ratio of two moments �Fig. 1�a�� could help to determine
the unknown parameters � and R in experiments, where the
particle positions are directly accessible. The moments can
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easily be calculated since the integral reduces to a sum over
all particles as n�r�=�i��r−ri�.

The ground-state potential �0�r� is determined by Eq.
�3b� for which the Yukawa potential is the associated Green’s
function �11�. Thus, the solution is given by �details can be
found in Appendix A�

�0�r� = q� n0�r��
e−��r−r��

�r − r��
dr�

=
q

a

�R/a�2

1 + � �1

2
�3 + � − �1 + ��	 r

R

2� , r  R

R exp�� − �r�/r , r � R .

�14�

Since the confinement is parabolic the potential inside the
plasma must decrease correspondingly to ensure force equi-
librium �cf. Eq. �3a��. It is a well-known textbook result that
the potential inside a homogeneously charged sphere is qua-
dratic for Coulomb interaction. This is why the density for
�=0 is constant. For Yukawa interaction this is not true any
more. Here, the density profile must decrease toward the
boundary according to Eq. �9� in order to yield the same
result.

Outside the cloud the potential behaves like that of a point
charge placed at the origin. While for Coulomb interaction
the �effective� charge is Qeff=Nq, as expected from Gauss’s
law, the result for Yukawa interaction is Qeff=q�R /a�3e� / �1
+��.

The ground-state density and potential can further be used
to calculate the total energy in mean-field approximation,
Etot=Epot+Eint, where �11�

Epot =� V�r�n0�r�dr, Eint =
q

2
� �0�r�n0�r�dr .

Using Eqs. �9� and �14� we find after some algebra,

Epot

q2/a
=

�R/a�5

10
�3 +

�2

7

8 + �

1 + �
� ,

Eint

q2/a
=

�R/a�5

210
�126 + 147� + 72�2 + 18�3 + 2�4

�1 + ��2 � . �15�

The total energy then reads

Etot

q2/a
=

�R/a�5

210
�189 + 273� + 159�2 + 45�3 + 5�4

�1 + ��2 �
�see Fig. 1�b��. For small � the interaction energy yields the
dominant contribution to the total energy since the potential
is only weakly screened. For large � the cluster has a size of
several screening lengths and the potential energy dominates.
The critical point is at ��1.72.

For Coulomb interaction ��=0� the result is Etot
=9 /10N5/3q2 /a, which is the first �mean-field� term in the
energy expansion of the shell model �or the energy of the
neutralizing background� �25,26�. In the opposite limit, �
�1, the asymptote is

Etot

q2/a
� 	R

a

5 �2

42
=

1

��a�5

�7

42
�

157/5

42

N7/5

��a�4/5 , �16�

since ��151/5kC
3/5 �leading-order term in Eq. �12��. In the

limit N�1 we thus have Etot�N5/3, for �=0, and Etot
��−4/5N7/5, for finite screening.

B. Normal modes

Since the ground-state density profile terminates in a finite
step �cf. Eq. �9��, one has to solve Eq. �6� separately for r
R and r�R. The dielectric function inside and outside the
plasma reads

	��r,�� = �	1��� +
�2r2

2�2 , r  R

1, r � R ,
� �17�

where the constant term is given by

	1��� = 1 −
�p

2�0�
��� + i��

= 1 −
�p

2�0�
�2 = 1 −

1

�2	3 +
�2

2

3 + �

1 + �

 ,

�18�

and �2=���+ i�� /�0
2. Accordingly we define a normalized

plasma frequency �p��r�=�p�r� /�0. Note that the plasma
frequency �p�r� only depends on the product �r �see Eqs. �8�
and �9��.

Equation �6� must be supplemented by the boundary con-
ditions

êt · ��̂1
in�r,���r=R = êt · ��̂1

out�r��r=R, �19a�

êr · 	��r,�� � �̂1
in�r,���r=R = êr · ��̂1

out�r��r=R, �19b�

lim
r→�

�̂1
out�r� = 0. �19c�

Here, êt and êr are unit vectors in the tangential and radial
directions at the surface of the sphere with radius R. These
are the usual boundary conditions for the tangential compo-
nent of the electric field −��1 and the radial component of
−	��1.

In order to solve Eq. �7� we use an expansion in spherical
harmonics, i.e.,
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FIG. 1. �Color online� Screening dependence of �a� ratio of nth
to first density moment and �b� ground-state energy contributions.
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�̂1�r,�� � f�r,��Y�
m��,�� .

Since the spherical harmonics are eigenfunctions of the an-
gular part of the Laplacian,

�Y�
m��,�� = −

��� + 1�
r2 Y�

m��,�� ,

this leads to the following equation for the radial function

f̃�x ,��:

�

�x
�	�x,��x2 f̃��x,��� − �x2 + ��� + 1�	�x,��� f̃�x,�� = 0,

�20�

after multiplying by x2. Here, we made a change of variables
from r to the dimensionless radius x=�r and introduced a

new notation f�r�→ f̃�x�. In the remainder of this section we
will separately solve Eq. �20� inside and outside the plasma.

Consider first the situation outside the plasma where the
dielectric function is just a constant. Here, Eq. �20� reduces
to

x2 f̃��x� + 2xf̃��x� − �x2 + ��� + 1�� f̃�x� = 0, �21�

the solutions of which are modified spherical Bessel func-
tions of the first and second kinds, i��x� and k��x�, respec-
tively �27�. They are related to the modified Bessel functions
by

i��x� =� �

2x
I�+1/2�x�, k��x� =� 2

�x
K�+1/2�x� .

Only k��x� is compatible with the boundary condition �19c�
and goes to zero at infinity, so the solution for r�R is

fout�r� = k���r� . �22�

In the Coulomb limit Eq. �22� reduces to fout�r��r−��+1�.
Now let us turn our attention to the plasma region, r�R.

Here, the situation is more complicated since the dielectric
function depends on the radial distance from the trap center.
Writing the radial function as

f̃�x,�� = x�g�x,�� �23�

leads to the following equation for g�x ,��:

x
�

�x
�	�x,��g��x,��� + 2�� + 1�	�x,��g��x,��

− �x − �	��x,���g�x,�� = 0. �24�

We now perform another change of variables from x to z via
x2 /xs

2=z, with xs
2=−2�2	1=2��p

2�0�−�2�, accompanied by
g�x ,��→ g̃�z ,��. Using the explicit result �17� for the di-
electric function, Eq. �24� turns into a hypergeometric differ-
ential equation for g̃�z ,��,

z�1 − z�g̃��z,�� + �� + 3/2 − �� + 5/2�z�g̃��z,��

−
� − �2

2
g̃�z,�� = 0, �25�

which has the general solution

g̃�z,�� = A 2F1	�� − ��

2
,
�� + ��

2
;��;z


+ Bz1−��
2F1	�� − ��

2
,
�� + ��

2
;��;z
 �26�

around z=0. Here, A and B are arbitrary constants, and the
parameters of the hypergeometric function 2F1 are

�� = � +
3

2
, �� =

1

2
− �, �� =���� + 1� +

9

4
+ 2�2.

From Eqs. �23� and �26� we obtain two independent solu-
tions of Eq. �20� inside the plasma:

f̃ �1��x,�� = x�
2F1	�� − ��

2
,
�� + ��

2
;��;

x2

xs
2
 ,

f̃ �2��x,�� = x−��+1�
2F1	�� − ��

2
,
�� + ��

2
;��;

x2

xs
2
 .

Only f̃ �1��x ,�� is finite at the origin and thus constitutes the
correct solution for rR.

Collecting the previous results, the solution inside the
plasma is given by

f in�r,�� = r�
2F1	�� − ��

2
,
�� + ��

2
;��;

�2r2

xs
2 
 . �27�

The hypergeometric function describes how the perturbed
potential is modified for a Yukawa plasma when compared
with the solution for Coulomb interaction, where f in�r�=r�.
Since the normal modes explicitly depend on the eigenfre-
quencies their discussion will be postponed to Sec. III D.

C. Eigenfrequencies

1. Existence of an upper bound for the eigenfrequencies

Before we explicitly discuss the eigenfrequencies we in-
spect Eq. �6� more closely. Following Ref. �28� we multiply
by �̂1

� and integrate over volume. Using Gauss’s theorem we
obtain

�
R3

��2��̂1�2 + 	��r,�����̂1�2�dr = 0. �28�

The first integral is always positive which implies that there
must be a region where 	��r ,���0, i.e., 0��2

�max��p
2�x�� �see Eq. �17��. For the density profile consid-

ered here the maximum plasma frequency is at the center,
max��p

2�x��=�p
2�0�.

Explicit results for the undetermined eigenfrequencies are
now found by requiring Eqs. �19a� and �19b� to yield non-
trivial solutions. Since we used an expansion in spherical
harmonics for �̂1, Eq. �19a� reduces to the continuity of
f�r ,�� and Eq. �19b� requires the continuity of
	��r ,��f��r ,�� across the plasma boundary for any given �.
The necessary condition for a nontrivial solution is the van-
ishing of the determinant,
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��	��� − �
k�����
k�����2F1	�� − ��

2
,
�� + ��

2
;��;

�2

xs
2
 + 	���

�� − �2�
��

�2

xs
2 2F1	�� − ��

2
+ 1,

�� + ��

2
+ 1;�� + 1;

�2

xs
2
 = 0, �29�

where we used the property

d 2F1�a,b;c;z�
dz

=
ab

c 2F1�a + 1,b + 1;c + 1;z� .

Note that Eq. �29� only involves �2 and �. The eigenfre-
quency � can easily be extracted from �2 by solving �2

=���+ i�� /�0
2 for �, which yields the same relation as for

the normal modes in the discrete N-particle system �damped
harmonic oscillator� �29�. In the absence of damping we
have �2=�2 /�0

2, i.e., � reduces to the eigenfrequency
scaled by the trap frequency. Before we proceed to the solu-
tions of Eq. �29� let us discuss some properties of the hyper-
geometric series �27�

2F1�a,b;c;z� = �
k=0

�
�a�k�b�k

�c�k

zk

k!

= 1 +
ab

c

z

1!
+

a�a + 1�b�b + 1�
c�c + 1�

z2

2!
+ ¯ ,

�30�

where �a�k=��a+k� /��a� denotes the Pochhammer symbol.
Its convergence is assured for �z��1 if c is not a negative
integer and for �z�=1 if Re�c−a−b��0. In our case the con-
dition Re�c−a−b��0 is not satisfied as c−a−b=0 �or −1
for the derivative�.

We now apply this to Eqs. �27� and �29�. The convergence
condition �z�= ��2r2 /xs

2� ��2 /xs
2��1 is closely connected to

the plasma frequency at the boundary,

�p
2��� = 3 +

�2

1 + �
, � � 0, �31�

since it is fulfilled for all �2��p
2���.

To better understand the nature of this maximum fre-
quency we recall the Coulomb limit. In this case the density
is r independent and there exists a unique plasma frequency,
�p=�3, defined by Eqs. �8� and �9�, at which the dielectric
function �17� vanishes. This is in contrast to Yukawa inter-
action due to the inhomogeneous density profile. However,
frequency �31� is the plasma frequency at r=R �x=��, i.e., it
is precisely the one for which the dielectric function vanishes
at the plasma boundary, 	(� ,�p���)=0.

For any �2 in the interval �p
2�0���2��p

2��� there exists
a point xs inside the plasma at which �2=�p

2�xs� and conse-
quently 	�xs ,��=0. At this point the local plasma frequency
is in resonance with the mode frequency, and the differential
equation �20� has a singular point. In these cases the solu-
tions of Eq. �20� can be singular and are associated with a
continuous spectrum and, possibly, damped quasimodes �see,
e.g., �28,30��. The appropriate approach for uncovering the

quasimodes is a Laplace transform of Eqs. �4�. Here, we
restrict ourselves to regular normal-mode solutions with �2

��p
2���.

2. Coulomb limit and frequency degeneracy lifting
of bulk modes in a Yukawa plasma

Having obtained these general properties we now explic-
itly determine the eigenfrequencies. Let us first consider the
limit ��1. Performing a series expansion of Eq. �29� for �
�0 �details can be found in Appendix B� we find

��
2��� �

3�

2� + 1
+ 	 4�3 + 6�2 − 10�

8�3 + 12�2 − 2� − 3

�2 + ¯ . �32�

For Coulomb interaction ��=0� we get ��
2=3� / �2�+1�. This

is the well-known result for surface oscillations of a homo-
geneous plasma sphere �31�. Furthermore, it is easily verified
that �1=1 is a solution of Eq. �29� for any �. This mode
describes the center-of-mass oscillation �dipole or sloshing
mode� and is independent of the particle number and the
screening parameter �32�.

Another solution in the Coulomb limit is given by the
Coulomb plasma frequency �p. This can easily be seen from
Eq. �6� with �=0. Since the dielectric function inside the
plasma vanishes for �=�p, Eq. �6� is satisfied for any �̂1

in

that satisfies the boundary conditions �19�. This implies a
high degeneracy since these requirements can be met by an
infinite number of modes with arbitrary � ,m.

For Yukawa interaction with a finite � this degeneracy is
lifted and a series expansion yields �see Appendix B�

��
2��� � 3 + c��2 + ¯ , � � 1, �33�

where c0�0.850 31, c1�0.986 24, and c2�0.999 92. From
this series of expansion coefficients we see that the fre-
quency approaches �p

2����3+�2+¯ as � increases.
For �2=�p

2��� the hypergeometric series does not con-
verge in general at �z�=1. However, a closer inspection of the
series representation �30� reveals that a well-behaved solu-
tion can be obtained if a or b is a negative integer −�n−1�. In
these cases the series is simply a polynomial of order n−1,
where n�N+. Since b= ���+��� /2�0 we require a= ���

−��� /2=−�n−1�. Solving this equation for �2 yields

�n�
2 ��n�

crit� = �2n + 1��n − 1� + �2n − 1�� . �34�

Keeping in mind that at this point �p
2���=3+�2 / �1+��, we

find

�n�
crit = 1

2 ��n� + ��n���n� + 4�� ,

�n� = �2n − 1��n + �� − 4, �35�

where ��3 for n=1. Even though this choice guarantees a
well-behaved solution, it can be shown that Eqs. �34� and

FLUID MODES OF A SPHERICALLY CONFINED YUKAWA … PHYSICAL REVIEW E 82, 036407 �2010�

036407-5



�35� do not solve the eigenvalue equation �29�. Nevertheless,
a numerical evaluation shows that solutions do exist for
���n�

crit which closely approach �p��� as �→�n�
crit. This issue

will be dealt with in more detail in Sec. III D.

3. Macroscopic/strong screening limit: �š1

Let us now discuss the limit �→�. Using �2��p
2��� one

can show that ��2 /xs
2�→1. As before, the convergence prob-

lem at this point can be circumvented by choosing the pa-
rameters of the hypergeometric function such that its series
terminates at a finite order. Requiring a= ���−��� /2=−n �n
�N� and solving the equation for �2 yields the solution for
the eigenfrequencies in the limit �→�,

lim
�→�

�n�
2 ��� � �n�,�

2 = 2n2 + �2� + 3�n + � . �36�

The reason why we chose the same index n as in the previ-
ous case will become clear shortly.

It is shown in Appendix B that Eq. �36� actually solves
Eq. �29�. Further, the lowest-order correction for finite � is
found as

�n�
2 ��� � �n�,�

2 −
dn�

�2 + ¯ , � � 1, �37�

where the coefficients are given by

dn� = �2n + � + 3/2���4n3 + 12n2 + 3n − 9�n

+ 2��4n3 + 8n2 + 2�n�n + 1� + � − 1�� . �38�

4. Eigenfrequencies for arbitrary �

For arbitrary values of � we solved Eq. �29� numerically.
The results are shown in Fig. 2. In the weak screening limit,
��1, the known Coulomb limit is recovered, where ��

2

=3� / �2�+1� �surface modes� or �p
2 =3 �bulk modes� �31�.

Except for the center-of-mass mode all mode frequencies

increase with � and saturate in the limit �→�. We find nu-
merically that the eigenmodes with mode number n�1 ��
�3 for n=1� at �=� approach �p��� as � is decreased and
cease to exist for ��n�

crit. Thus, the chosen indices are the
same and the modes evolve continuously from �n�

crit to �=�.
Let us briefly summarize the findings of this section. The

main result is that screening lifts the degeneracy of the bulk
modes of the Coulomb system and the appearance of a new
mode number n. For a given value of � the number of al-
lowed modes is restricted. Modes with n=0 ���1� and n
=1 with �=0,1 ,2 exist for all ��0, whereas our numerical
solution of Eq. �29� indicates that all other modes exist only
for ���n�

crit. The �n ,��= �1,3� mode is a special case with
�13

crit=0. Having found the eigenfrequencies we can now
come back to the discussion of the shape of the normal
modes.

D. Explicit results for the normal modes

1. Coulomb limit

In the Coulomb limit with �=0 the eigenmodes are those
of a homogeneously charged sphere with a constant dielec-
tric function inside the plasma �see, e.g., �23��. There are two
ways to satisfy Eq. �6� which lead to two different kinds of
solutions: surface modes and bulk modes.

The surface modes are solutions of Laplace’s equation
inside and outside the plasma, i.e., �̂1

out�r−��+1�Y�
m�� ,�� and

�̂1
in�r�Y�

m�� ,�� �cf. Eqs. �22� and �27��. Their eigenfrequen-
cies ��

2=3� / �2�+1� directly follow from the boundary con-
ditions �19�.

In the latter case the potential oscillates at the plasma
frequency �p=�3. Here, the eigenfunctions are undefined
inside the plasma, which can be seen from Eq. �6�. Since the
dielectric function in the Coulomb limit is constant for r
R, Eq. �6� is satisfied for any �̂1

in if �=�p and conse-
quently 	��p�=0. The potential perturbation is only re-
stricted by the boundary conditions �19�. It follows from Eqs.
�19� and ��̂1

out=0 that �̂1
out=0 �31�. There is no potential

perturbation outside the plasma. This further implies that
f in�R�=0 �see Eq. �19a��. In the following we will discuss the
eigenmodes for Yukawa interaction and point out the simi-
larities and differences when compared with the Coulomb
limit.

2. General remarks for ��0

For ��0 the radial eigenfunctions �27� inside the plasma
explicitly depend on �2, which was shown to have several
solutions for a given �. Thus, in addition to the angular mode
numbers m and �, there is a radial mode number n which
determines the structure of the radial eigenfunction. The ra-
dial function is given by Eq. �27� and the corresponding
eigenfrequency is determined by Eq. �29�.

3. Eigenmodes for Yukawa interaction

Let us begin with the limit �→�. It was already shown in
Sec. III C that in this case the hypergeometric function re-
duces to a polynomial of order n in z=r2 /R2. From Eqs. �27�
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FIG. 2. �Color online� Eigenfrequencies and their dependence
on � for various modes �n ,��. Also shown �by the arrows� are the
limits for �=0 and �→�. The crosses denote the parameters at
which new modes appear to the right of �n�

crit.
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and �36� we thus get the radial eigenfunctions

f in�r,�n�
� � = r��

k=0

n
�− n�k

k!

��� + n�k

����k
	 r

R

2k

� r�Pn
��+1/2,0�	1 −

2r2

R2 
 , �39�

where Pn
��+1/2,0��x� are Jacobi polynomials. The n=0 surface

modes are particularly simple. Here, the sum in Eq. �39� is
just a constant, and the eigenmodes inside the plasma are the
same as in the Coulomb limit. There are no radial nodes. For
finite � we find that the solutions differ only slightly from the
results at �=0 or �. These modes are the natural generaliza-
tion of the surface modes to Yukawa interaction, and there
are no qualitative changes compared to a Coulomb system.
In particular, the dipole modes with �n ,��= �0,1� describe
the three center-of-mass oscillations and have eigenfunctions
�̂1

in�rY1
m�� ,��, independent of �.

The origin of the modes with n�0 can be traced back to
the bulk modes of the Coulomb system �see Fig. 2�. While
for �=0 the eigenmodes are not entirely specified, for ��0
their form is determined by Eq. �27�, together with Eq. �29�
for the eigenfrequency. In the limit �→� the potential per-
turbations are given by Eq. �39� �see Fig. 3�. n is the number
of radial nodes. With increasing � the nodes and extrema are
shifted toward the cluster boundary.

The behavior for finite � is shown in Fig. 4. The n=1
modes with �=0,1 ,2 extend up to �=0, while all other
modes with n�1 exist only for ���n�

crit.
Let us discuss the former case first. As we move from the

�=� limit toward �=0, the single node approaches r=R �see
Figs. 4�a� and 4�b��. The radial eigenfunctions at �=0+ read

f in�r,�1�
0 � = r�

2F1	�� − ��

2
,
�� + ��

2
;��;

�r/R�2

3 − 2c̄�

 ,

where �=0,1 ,2 and �� must be evaluated at �p
2 =3. Compare

also with the series expansion performed in Appendix B.
This form is in accordance with f in�R�=0 for �=0 �the coef-
ficients c̄� were chosen to ensure this�. Thus, these modes
also exist in a Coulomb system, where they are among the
bulk modes with �=�p. The main difference between Cou-
lomb and Yukawa interactions at this point is that in the
former case the mode form is not specified by Eq. �6�. For
��0 this equation constitutes an additional restriction on the

mode form and selects the eligible modes for �=0+ from the
large number of modes at �=0.

In the case of all other modes with n�1 the outermost
node comes arbitrarily close to r=R as � decreases, but dis-
appears at �n�

crit �see Figs. 4�c� and 4�d��. This goes along with
a very strong increase in �f in�r� /�r at the boundary, which
makes the numerical solution of Eq. �29� increasingly diffi-
cult. If �=�p��n�

crit� were a proper solution, the boundary
conditions �19� and Eq. �21� would require fout=0, and hence
f in�R�=0, just like for �=0 and �=�p. However, the poten-
tial inside the plasma is not undefined but determined by the
solutions of Eq. �6�. Analogously to the case �=�, Eq. �27�
reduces to a polynomial at �p��n�

crit� but cannot satisfy the
boundary conditions since f in�R��0. Our numerical solu-
tions of Eq. �29� indicate that these modes exist only for
���n�

crit.

4. Breathing mode

The lowest monopole mode has the index �n ,��= �1,0�
and is worth a more detailed discussion. For �→� the fluid
velocity satisfies v̂1

in�rêr since �̂1
in is quadratic in r �see Eq.

�5b��. This corresponds to a uniform breathing oscillation of
the plasma. In the Coulomb limit this mode is among the
bulk modes. It was shown in Ref. �33� that a system of N
harmonically confined particles with Yukawa interaction
does not support a universal uniform breathing mode. We
find a similar behavior in our fluid approach since the uni-
formity condition is only fulfilled for �→�. For finite � the
uniformity condition is not satisfied �see Fig. 5�. Further, it is
surprising that it is not recovered as �→0. However, this is
not contradictory since this solution is just one among many
in the Coulomb limit. Here, the breathing mode is given by
f in�r���r2−R2�, which also satisfies the boundary condition
f in�R�=0 �23�.

The aforementioned breathing mode has been studied by
Sheridan �24� under the assumption of a homogeneous den-
sity and a uniform displacement. We find that his analytical
result for �2��� agrees with our numerical results to within
0.5% for any �. Note, however, that the equation � deter-
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mined in �24� is different from Eq. �10�, since � used in �24�
involves the radius for a homogeneous sphere. This mode
was found to be the dominant excitation during spherical
crystal formation after a rapid temperature quench �16�.

IV. CONCLUSION

Summarizing our results, we have investigated the ground
state and the normal modes of a harmonically confined
Yukawa plasma in a fluid approach. The results of �11� were
extended to a time-dependent theory, and simple formulas
for the plasma radius, total energy, and density moments
were obtained. The density moments could be used to infer
the dimensionless plasma parameter �=�R, the ratio of the
plasma radius to the screening length, from experimental
data. For typical dusty plasma experiments with �a
�0.5, . . . ,1 and N�50, . . . ,1000 we expect ��1.5, . . . ,6
�15�.

Further, the fluid equations were linearized and solved for
the normal modes. Compared with previous results for Cou-
lomb interaction, we found an additional class of modes with
a radial mode number n that determines the number of radial
nodes in the potential eigenfunctions. The eigenfrequencies
were found to depend only on �. The degeneracy of the bulk
modes in the Coulomb limit was shown to be lifted for
Yukawa interaction, and series expansions for the eigenfre-
quencies were derived for limiting cases. For experimentally
relevant parameters they must be determined numerically,
though.

The fluid theory should be applicable for large clusters
with N�100. In �11� it was shown that the agreement be-
tween the continuum theory and the exact N-particle ground
state was good at low screening, but deviations increased for
larger �a. Applying the local-density approximation, the au-
thors were able to reduce the deviations for strong screening
�12�. The same behavior was observed in �16,17�, where the
frequency of the monopole mode excited in a Langevin dy-
namics simulation was compared with the theory of �24�.

Thus, similar behavior is expected for the results presented
here. Additionally, one has to bear in mind that the fluid
equations correspond to a mean-field description and neglect
correlation effects. They are thus not able to describe crys-
tallization and shell structure formation. The same applies to
the local-density approximation used in �12�. This question
was recently analyzed in �34,35� where correlations were
included within a modified hypernetted chain approximation
scheme.

Only a comparison with first-principles simulation data,
on one hand, and with experiments, on the other, will show
the true applicability limits of the fluid approach. This analy-
sis is the subject of ongoing work. Our results could be of
interest to other spatially confined charged particle systems
such as clusters, e.g., �36,37�, if screening of the Coulomb
interaction should be relevant.
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APPENDIX A: CALCULATION OF �0(r)

Carrying out the angle integration in Eq. �14� we obtain
�11�

�0�r� = 2�
q

�r
�

0

R

dr�n0�r��r��e−��r−r�� − e−��r+r��� .

The density involves a constant term and a term �r2. Thus,
we consider the following integrals for n=1,3:

In
� = �

0

R

dr��r��n�e−��r−r�� − e−��r+r��� .

If r�R we have �r−r��=r−r� for the entire integration, and

In
� = e−�r�

0

R

dr��r��n�e�r� − e−�r��

= 2
e−�r

�4 ��� cosh��� − sinh�����2, n = 1

���2 + 6�cosh��� − 3��2 + 2�sinh��� , n = 3.
�

For rR the integrals must be solved independently in re-
gions where r��r and r��r,

In
� = In

��� → �r� + �
r

R

dr��r��n�e−��r�−r� − e−��r+r���

= In
��� → �r� + 2 sinh��r��

r

R

dr��r��ne−�r�.

The remaining integral can easily be solved. Collecting the
results and using the explicit result for n0�r� �Eq. �9�� we
obtain Eq. �14�. Alternatively, the potential inside the plasma
may be directly calculated from Eqs. �7� and �10� of �11�.

APPENDIX B: SERIES EXPANSION FOR Ω2(�)

The difficulty in finding an expansion for �2��� arises
from the hypergeometric function 2F1�a ,b ;c ;z� since a, b,
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and z are all functions of �. In the following we will sepa-
rately discuss two different limits.

1. Coulomb limit: �™1

Expanding the squared eigenfrequency as �2���� ā+ b̄�
+ c̄�2 we find

	��� � 1 −
3

ā
+ 	3b̄

ā2 
� + 	3āc̄ − 3b̄2 − ā2

ā3 
�2.

Further, we obtain xs
2�6−2ā and −�k����� /k�������+1�

+�2 / �2�−1� for ��0 or −�k0���� /k0���=1+�. The series ex-
pansion for the hypergeometric function �Eq. �30�� then
yields, for ā�3,

2F1	�� − ��

2
,
�� + ��

2
;��;

�2

xs
2
 � 1 + 	 ā − �

ā − 3

 �2

6 + 4�
.

It is sufficient to approximate the other hypergeometric func-
tion in Eq. �29� by 1. Comparing terms of order �0 ,�1 ,�2, we

find the coefficients ā , b̄ , c̄ as given in Eq. �32�.
If ā=3 we must keep in mind that �2�����p

2���. The

ansatz �2����3+ b̄� yields �2 /xs
2�−� / �2b̄�. However, this

choice turns out to be inadequate since it leaves a constant
term in Eq. �29�. Next, we use �2����3+ c̄�2, which results
in �2 /xs

2�1 / �3−2c̄�. Then, the lowest-order term in Eq. �29�
vanishes if

2F1�	�� − ��

2
,
�� + ��

2
;��;

1

3 − 2c̄

�

�2=3

= 0.

This equation can be solved numerically for c̄ if �=0,1 ,2
and yields the coefficients given below Eq. �33�. For ��3
we find no solution. The coefficients are in accordance with
the condition �2�����p

2����3+�2 as they satisfy c̄�1.

2. Macroscopic/strong screening limit: �š1

In this limit we seek an expansion in terms of y=�−1�1.

The ansatz �2�y�� ā+ b̄y+ c̄y2 yields

	�y−1� � −
1

āy
+

ā�ā − 2� + b̄

ā2 ,
y−2

xs
2 � 1 − 2y ,

and −k���y
−1� /k��y−1� /y�y−1+1. The expansion for the hy-

pergeometric function is found from �27�

2F1�a,b;a + b − m;z�

=
�m − 1�!��a + b − m�

��a���b�
�1 − z�−m

��
k=0

m−1
�a − m�k�b − m�k�1 − z�k

k!�1 − m�k
+

�− 1�m��a + b − m�
��a − m���b − m�

��
k=0

�
�a�k�b�k

k!�k + m�!
�− ln�1 − z� + ��k + 1� + ��k + m + 1�

− ��a + k� − ��b + k���1 − z�k,

valid for �z−1��1 and m�N+. ��x� denotes the digamma
function. The expansion for m=0 is the same, but without
the first �finite� sum.

The following calculation is based on ā=�n�,�
2 �see Eq.

�36��, and will show that this choice solves Eq. �29�. For the
first hypergeometric function in Eq. �29� we have m=0, a
�−n−q�y�, and b�n+��+q�y�, where q�y��1. The main
contribution in the sum arises from ��a+k����−n+k−q�
�q−1 �for kn�, which yields a constant term when com-
bined with the prefactor �−1�a���−1�−n−q���−1�n+1n !q.
The lowest-order term is then found as

2F1�− n − q,n + �� + q;��;1 − 2y� �
�− 1�n

����n
n!.

Similarly, we obtain for the hypergeometric function with
shifted parameters and n=1,2 , . . .,

2F1�− n + 1 − q,n + 1 + �� + q;�� + 1;1 − 2y�

� ��

�− 1�n

����n
n!� b̄

2�n�n + ���
− 1�, � = 4n + 2��,

where we used the above expansion for m=1 and q�y�
� b̄y /�. In the following the notation 2F1�+1� �2F1�+0��
will be used to denote the �un�shifted hypergeometric func-
tion. Comparing terms O�y−1� we find that Eq. �29� is satis-

fied if b̄=0. For n=0 the previous equation is not valid and

2F1�+1���2y�−1. In this case the leading-order term in Eq.
�29� is O�y−2�. It vanishes due to its prefactor ���− ā� since

ā=� for n=0. The O�y−1� term vanishes for b̄=0.
In order to calculate the lowest-order correction to �2�y�

for n=1,2 , . . . we need to evaluate the hypergeometric func-
tion up to first order in y. We find, using q�y�� c̄y2 /�,

2F1�+ 0� �
�− 1�n

����n
n!�1 − 2n�n + ���y� ,

2F1�+ 1� � ��

�− 1�n

����n
n!�− 1 + 	�n − 1��n + �� + 1�

+
c̄

2�n�n + ���

y� .

The coefficient c̄ can now be determined by choosing it such
that terms O�y0� vanish, yielding Eqs. �37� and �38� for n
�0. If n=0 the same procedure leads to c̄
=−2���−1���+3 /2�, i.e., Eq. �38� also holds for n=0 �here,
��0�.
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