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Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime
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We have calculated viscosity and mutual diffusion of deuterium-tritium (DT) in the warm, dense matter
regime for densities from 5 to 20 g/cm® and temperatures from 2 to 10 eV, using both finite-temperature
Kohn-Sham density-functional theory molecular dynamics (QMD) and orbital-free molecular dynamics
(OFMD). The OFMD simulations are in generally good agreement with the benchmark QMD results, and we
conclude that the simpler OFMD method can be used with confidence in this regime. For low temperatures
(3 eV and below), one-component plasma (OCP) model simulations for diffusion agree with the QMD and
OFMD calculations, but deviate by 30% at 10 eV. In comparison with the QMD and OFMD results, the OCP
viscosities are not as good as for diffusion, especially for 5 g/cm?® where the temperature dependence is
significantly different. The QMD and OFMD reduced diffusion and viscosity coefficients are found to depend
largely, though not completely, only on the Coulomb coupling parameter I', with a minimum in the reduced
viscosity at I'=~25, approximately the same position found in the OCP simulations. The QMD and OFMD

equations of state (pressure) are also compared with the hydrogen two-component plasma model.

DOLI: 10.1103/PhysRevE.82.036404

I. INTRODUCTION

The deuterium-tritium (DT) reaction is the most
accessible for terrestrial fusion reactors. Magnetic confine-
ment operates at relatively high temperatures and low densi-
ties, but inertial confinement proceeds through the warm
dense matter (WDM) regime, which encompasses tempera-
tures from a few thousand Kelvin (~1 eV) to a few million
Kelvin (~100 eV) and densities from a few hundredths
solid (~10*' atoms/cm?®) to hundreds of times solid
(~10% atoms/cm?). In the compression of the inertial-
confinement-fusion capsules, heavy elements are used to
drive enclosed shells and the light fuel. In the course of the
compression, impurities such as plastics, beryllium, or cop-
per, as well as heavy metals such as gold are inadvertently or
deliberately (as diagnostics) mixed into the fuel and can have
a considerable impact on the burn efficiency. The outcomes
may be strongly altered by the nature of the mixing and
plasma instabilities. The viscosity and mutual diffusion in the
mixture are important input properties for hydrodynamic
modeling treating the stability of initial interfaces and the
degree of fuel contamination [1-3]. Modeling such environ-
ments requires an integrated approach in order to follow the
many interaction paths and constituents that arise in these
complicated concoctions. The development of methods that
treat electrons quantum mechanically coupled with molecu-
lar dynamics for the nuclear motion of large samples of at-
oms has enabled for considerable progress in the detailed
understanding of these regimes. Since these types of calcu-
lations are computationally demanding, it is important to
thoroughly explore and benchmark the methods on simple
mixtures before launching into generating large amounts of
data for complicated mixtures as described above. One of the
simplest in this regard involves mixtures of hydrogen
isotopes.

To this end, transport properties of deuterium-tritium
(D-T) mixtures are determined in the present work by quan-
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tum molecular-dynamics (QMD) simulations, which treat the
electrons quantum mechanically through finite-temperature
density-functional theory (FTDFT), as well as in orbital-free
molecular-dynamics (OFMD) simulations, which treat the
kinetic energy of the electrons semiclassically and thereby
are able to reach higher temperatures. Both treat the nuclear
motions classically. Previous QMD simulations include the
determination of self-diffusion coefficients in the pure H sys-
tem [4-7] and mutual diffusion for isotopic mixtures [6,3]
for temperatures 7=1 to 5 eV and equivalent H mass densi-
ties of p=0.1 to 1.0 g/ cm’.! Both self-diffusion and viscos-
ity were determined using QMD for the isotope D for tem-
peratures up to 4.3 eV and equivalent H mass densities 0.17
to 0.37 g/cm?® [9]. Previous OFMD simulations include the
pioneering work of Zérah et al. [10] in determining self-
diffusion coefficients for pure H. More recently, OFMD
simulations of self-diffusion have been performed on much
heavier elements (Fe, Au) [11,12] and on mixtures of Li and
H [13]. The present work extends the previous QMD studies
on transport properties to higher temperatures (up to T
=10 eV) and to higher densities (equivalent H mass density
between 2 and 8 g/cm’) and provides a comprehensive
comparison with OFMD simulations as well as with kinetic
theory and one- and two-component plasma (OCP and TCP)
theories and simulations.

The paper is organized as follows. First the formalism for
quantum and orbital-free MD and for determining the static
and transport properties are described. Then, viscosities, dif-
fusion coefficients, and equations of state (pressures) for
deuterium-tritium mixtures are presented, and the QMD and
OFMD results are compared with the results from simpler,
reduced models. Finally, a few concluding remarks are
given.

'Note: 1 mol/cm? particle density=1 g/cm® hydrogen mass

equivalent.
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II. FORMALISM
A. Quantum molecular dynamics

Our QMD simulations for D-T employed the Vienna ab-
initio Simulation Package (VASP) [14-16], in which the
electrons are treated fully quantum mechanically using a
plane-wave FTDFT description. The electron-ion interaction
is represented by a projector augmented wave (PAW)
pseudopotential. The ions are evolved classically according
to the forces from the electron density and the ion-ion repul-
sion. The system is assumed to be in local thermodynamic
equilibrium with the electron and ion temperatures equal
(T,=T;=T). In our simulations, the electron temperature is
fixed, and the ion temperature is kept at this value through
simple velocity rescaling (Woodcock thermostat) or Nosé-
Hoover thermostat [17].

At each time step ¢ for a periodically replicated cell of
volume V containing N, active electrons and N, ions in fixed
spatial positions R(z), we first perform a FTDFT calculation
within the Kohn-Sham (KS) construction [18] to determine a
set of electronic state functions [W;(r,7)|i=1,N,] and
eigenenergies € at each k-point K,

HysWVik(r,1) = €W, i (r,1) (1)

where in atomic units

HKS - V + Vext(r) + f | d + ch(r) (2)

with

n,(r) =22 [W;(r.)f. (3)

These terms represent the kinetic energy, the external or
electron-ion interaction, the Hartree contribution to the elec-
tronic energy, and the exchange-correlation potential, respec-
tively.

The ions are then advanced with a velocity Verlet algo-
rithm, based on the forces due to the other ions and elec-
tronic density, to obtain a new set of positions and velocities.
Repetition of these two steps propagates the system in time
yielding a trajectory consisting of the positions and velocities
[R(7),V(r)] of the ions and a collection of state functions
[V, x(r,1)] for the electrons.

All our simulations employed only I' point (k=0) sam-
pling of the Brillouin zone and 216 atoms—108 atoms each
of D and T (of mass 2 and 3 amu, respectively) in a cubic
cell of length L (volume V=L?). We solve the KS equations
within the generalized gradient approximation [19] and de-
scribe the hydrogen-electron interaction with a PAW with a
maximum energy cutoff of 700 eV. An examination of the
pair correlation functions and nearest-neighbor lists for typi-
cal simulations indicate that few encounters occur within the
PAW core even for the densest case. A sufficient number N,
of bands was included such that the occupation of the highest
band was less than 1073. Trajectories were evolved with a
time step of 0.1 fs.
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B. Orbital free molecular dynamics

We also investigated the D-T mixture under the same
physical conditions using OFMD simulations [11,20-22]. In
this scheme, the kinetic energy of the electrons is treated in a
semiclassical approximation, up to first order in the partition
function of the electrons. The orbital-free electronic free en-
ergy at ion positions R is given by

1 2\2
Fe[RJle] = [__;f dr(ne(r)CD[ne(r)] 377_2[_33/213/2((1)[” (l‘)]))

f drV, (t)n,(r) + — f f drdr' 2 |(r)_”r(r|

+Fyln,] 4)

where B=1/kgT and I, is the Fermi integral [23] of order v.
The screened potential ®[n,(r)] is related to the electronic
density n,(r) by [22]

I

V2
77233/2

charge conservation requires that [drn,(r) equals the total
electronic charge.

The first integral in Eq. (4), which depends only on the
local electronic density 7, in the true spirit of the Hohenberg-
Kohn theorem [24], is the well-known finite-temperature
Thomas-Fermi expression [25]. The exchange-correlation
term F,[n,] is expressed in the local density approximation
of Perdew and Zunger [26,27]. For this study, we omit the
von Weiszicker correction and work in a Thomas-Fermi-
Dirac form using the formula proposed by Perrot [28] to deal
with the kinetic-entropic part. The divergence of the
electron-nucleus potential is regularized at each thermody-
namic condition through a procedure that closely follows the
production of the norm-conserving pseudopotential for QMD
[12]. The cutoff radius is chosen to be 30% of the Wigner-
Seitz radius in order to prevent the overlap of regularization
spheres. The number of plane waves describing the local
electronic density is then adjusted to converge the thermody-
namic properties to within less than 1%.

The chain of calculation of the OFMD procedure is simi-
lar to that of QMD. At each time step, the electronic free
energy is minimized in terms the local electronic density and
the nuclei are propagated according to their electrostatic in-
teractions arising from both nuclei and electrons. The mo-
lecular dynamics is performed in the isokinetic ensemble
[29], and the time step is computed from the thermal velocity
of the nuclei and the Wigner-Seitz radius [30]. The orbital-
free procedure treats all electrons on an equal footing, albeit
approximately, with no distinction between bound and ion-
ized electrons.

no(r) = — =51 Pn.(r)]); )

C. Static and transport properties
The total pressure of the system, given by
P=njkgT+P,, (6)

where n; is the ion number density and kg is the Boltzmann
constant, is the sum of the ideal gas pressure of the ions and
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the electronic pressure P, computed via the electronic forces.
The electronic pressure is averaged over the trajectory after
the system has equilibrated.

The self-diffusion coefficient D, for species « can be
computed from the trajectory by the mean-square displace-
ment

1
D = —(Rui() =R (O (7)
or by the velocity autocorrelation function
w_1[
Da = 5 <Vai([) : Vai(0)>d[’ (8)
0

where R,; (V,,) is the position (velocity) of the ith particle
of species a. This quantity is computed for both D and T.

These two formulations of the self-diffusion coefficients
are formally equivalent only in the long-time limit. We have
generated trajectories of sufficient temporal length to reach
times such that the velocity autocorrelation function becomes
zero and contributes no further to the integral, and the mean-
square displacement away from the origin consistently fits to
a straight line. The values obtained from these two ap-
proaches generally lie within one percent of each other, so
we report only one value, designated D,

We also compute the mutual-diffusion coefficient

D= lim Do) 9)

from the autocorrelation function (Green-Kubo relation)

D_aﬁ(z)=ﬁ f AOAW)r’ (10)
BJ0
where
N, Ng
A1) = x50, vil1) = x,. 2 V,(2), (11)
i=1

J=1

x, and N, denote the concentration and particle number of
species «a, respectively, and N=2_N,. The quantity Q repre-
sents the thermodynamic factor related to the second deriva-
tive of the Gibbs free energy with respect to concentrations
[31], which for an ideal binary fluid is unity. For our simu-
lations, we also set Q=1 since studies with Leonard-Jones
and other model potentials have shown that even for dissimi-
lar constituents the Q-factor departs from unity by only about
10% [32]. On the other hand, models of plasmas based on
point ionic charges in a neutralizing background have in-
dicted that the Q-factor can depart from unity for compo-
nents with different charges and concentrations [33]. How-
ever, for the case treated here of DT (Z,=Z,=1) at equal
concentrations, the estimate of the Q-factor for this plasma
model also yields unity. We apply the ideal binary liquid
convention only to the determination of Q and include all
cross-correlation terms in the evaluation of the integrand of
Eq. (10).
The viscosity
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7= lim 7(1), (12)

t—o

is computed from the autocorrelation function of the off-
diagonal component of the stress tensor [34]

(1) = QVT fo (Pir(0)P (i) (13)

We averaged the results for the five independent off-diagonal
components of the stress tensor Py, Py, P, (P,~P,,)/2,
and (Py,—P,)/2.

Unlike the self-diffusion coefficient, which involves
single-particle correlations and attains significant statistical
improvement from averaging over the particles, the viscosity
and mutual diffusion depend on the entire system and there-
fore require very long trajectories in order to gain statistical
accuracy. We have previously found [13] that empirical fits
to the integrals of the autocorrelation functions can substan-
tially shorten the length of the trajectory required. In turn,
extrapolation of the fits to 7— % can more effectively deter-
mine the basic dynamical properties. Both the partial inte-
grals of the velocity autocorrelation function, Eq. (10), and
the off-diagonal stress-tensor autocorrelation function 7(z),
Eq. (13), have been fit to the functional form A[l
—exp(t/ 7)], where A and 7 are free parameters with A giving
the resulting property, Egs. (9) or (12), in the t— 0 limit.
Fitting to this form at short-time integrations produces rea-
sonable approximations to 7 and D,z This fitting procedure
also aids in damping the long-time variation.

The fractional statistical error in computing a correlation
function C for molecular-dynamics trajectories [35] is given

by
AC 2
=\ (14)
C T,

traj

where T, is the length of the trajectory and 7 is the corre-
lation, or e-folding, time of the function, calculated from the
fit or from interrogations of the function itself. In the previ-
ous work [13], we generally fitted over a time interval of
[0,47=57]. In the present work, we generally fit over the
interval [0,0.87—1.27]. This shorter interval emphasizes the
fit in the region where the function varies most quickly. Fur-
thermore, as t increases the statistics become poorer since
there are fewer time origins to sum over when constructing
the autocorrelation function [34]. In Fig. 1, the molecular-
dynamics results for viscosity at a density of 5 g/cm® and
temperatures of 3, 5, and 10 eV are displayed with their fits.
These particular examples employed a trajectory of length
20 000 and correlation times between 100 and 200 fs. For the
viscosity and mutual-diffusion coefficients, the computed er-
ror is 10% or less. A total uncertainty of ~20% is estimated
by experience due to the fitting procedure and extrapolation
to infinite time. Finally, the error in the self-diffusion coeffi-
cient remains less than 1% since the particle average gives an
additional 1/VN advantage.

We have also tested the sensitivity of the QMD simula-
tions to the form of the isokinetic thermostat. The results
presented in the figures and tables were determined with ve-
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FIG. 1. (Color online) Viscosity as a function of time at a den-
sity 5 g/cm? and temperatures 3 (squares), 5 (diamonds), and 10
(triangles) eV. The fits (lines) were performed for a sample window
of [0,27] and the data points are displayed out to 57.

locity rescaling. In addition, we performed several represen-
tative simulations with the VASP package using the Nosé-
Hoover option. We have compared self-diffusion, mutual-
diffusion, and viscosity at 5 eV and 5 g/cm?’ and at 10 eV
and 12.5 g/cm? and found very small differences between
the results from these two thermostats. The viscosities and
mutual diffusion differed by 5% or less while the self-
diffusion coefficients remained within 1%. In addition, mi-
crocanonical tests showed only a 7% departure from the ve-
locity rescaling results for viscosity.

III. RESULTS AND DISCUSSION

We first performed ab initio quantum-mechanical simula-
tions with the FTDFT method to benchmark the dynamic
properties of the D-T mixture in the WDM regime. QMD
and OFMD results for the mutual-diffusion coefficient and
viscosity, at densities of 5.0 and 12.5 g/ cm’, are shown in
Figs. 2 and 3, respectively. (The QMD results are also given
in Table I.) The OFMD results are in generally good agree-
ment (10% or better) with the QMD results. The greatest
difference of 13% is seen in the viscosity at the highest den-
sity and temperature in Fig. 3(b). The error bars displayed
are the statistical contribution only, given by Eq. (14). The
results are also compared in Figs. 2 and 3 with some simple
formulas derived from models. These models all depend only
on the dimensionless coupling constant

2262
- akBT,

(15)

where Z is the ion charge2 and

’In the binary ionic mixture model [39], the effective charge Z is
given by Z2=(Z)}3(Z57),, (where (q)o =2x1¢, +X,¢; for any quan-
tity ¢ and number concentrations x; and x, such that x;+x,=1),

which makes no change in the present case since Z;=2,.
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FIG. 2. (Color online) Mutual-diffusion coefficient for the D-T
mixture as a function of temperature at densities of 5.0 g/cm? (top
panel) and 12.5 g/cm?® (bottom panel). Solid circles are QMD cal-
culations; open squares are OFMD calculations; dashed curve is the
OCP calculation of Daligault [36]. The error bars on the QMD and
OFMD calculations are statistical only [Eq. (14)].

113
a=< 3 ) (16)

4an;

is the Wigner-Seitz radius of the ions for ion number density
n;. I' for DT is shown in Fig. 4 for the temperatures and
densities considered in Figs. 2 and 3. Dense plasmas are
often characterized by the three dimensionless parameters: I’
the reduced Wigner-Seitz radius

re=alag (17)

(ag=%>/m,e* is the Bohr radius), and the degree of Fermi
degeneracy

®=kBT/EF’ (18)

where
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FIG. 3. (Color online) Viscosity of the D-T mixture as a func-
tion of temperature at densities of (a) 5.0 g/cm® and (b)
12.5 g/cm’. Solid circles are QMD calculations; open squares are
OFMD calculations; short-dashed curve is the OCP calculation of
Bastea [37]; long-dashed curve is the OCP calculation of Daligault
[36]; dotted curve is the fit of Wallenborn and Baus [38] to kinetic
theory. The error bars on the QMD and OFMD calculations are
statistical only [Eq. (14)].

BTz
F=RvT

2m (19)

e
is the (nonrelativistic) Fermi energy of the electrons. Only
two of these three parameters are independent.

It is convenient to express the self-diffusion coefficient D
as a dimensionless quantity

D

wpa

D*=

where
w,= (47mn/M)"V*Ze (21)

is the plasma frequency for ions of mass M. For the 50:50
D-T mixture considered in this work, we use the “hydrody-
namic” mixture [37] approximation M=(2+3)/2=2.5 amu.
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Hansen et al. [40] have used a memory-function analysis
of the velocity autocorrelation function to obtain the diffu-
sion coefficient for the classical OCP, which they fit to

D*=2.950"134, (22)

Unfortunately, this fit is not very accurate for I'<4, corre-
sponding to temperatures greater than 4 eV in Fig. 2. More
recently, Daligault [36] has generated a more accurate fit to
OCP simulations. As shown in Fig. 2, the agreement of the
Daligault fit for DT (using M=2.5) with the QMD and
OFMD simulations is good at low temperatures (2 and 3 eV).
However, as temperature increases, the OCP results disagree
more, e.g., underestimating the QMD and OFMD results by
~30% at T=10 eV. For densities smaller than those consid-
ered in the present work, Clérouin and Dufréche [9] found
that OCP results also lie below the QMD results for the
diffusion coefficient by about a factor of 3 for hydrogen mass
density equivalents of 0.17 and 0.25 g/cm’® and tempera-
tures between 10 000 and 50 000 K.

Using a Yukawa potential to add screening to the OCP,
Murillo [41] has suggested modifying I" in Eq. (15) to

[oa=A(K) + BT + C(x)I2, (23)

where the coefficients are a parametric function of the in-
verse screening length x. When we take k=1/Apg, where

( T )1/3 —
Mp= | — | r, 24
w={1,) Vs (24)

and apply Eq. (23) to the OCP results we find that the
screened results based on the Daligault OCP results are up to
a factor of 2 times larger than the QMD results for p
=5 g/cm?® and 2 to 3 times larger for p=12.5 g/cm?.

Now we turn to the viscosity of the D-T mixture. It is
convenient to express the viscosity 7 as a dimensionless
quantity

o7

= . 25
g niMw,,a2 25)

Bastea [37] has performed classical molecular-dynamics
simulations of the OCP and fits his results to the form

7' =ATl?+ Bl +CT (26)

with $=0.878, A=0.482, B=0.629, and C=0.001 88.
Bastea’s results, which agree with most other simulations
[42-44], are shown in Fig. 3. They are in good agreement
with the QMD viscosity at the higher density but up to a
factor of 2 too small at the lower density. It is reasonable that
the OCP model works better at higher densities since the
degeneracy is higher (® smaller). The viscosities of Dali-
gault [36], also obtained with classical MD simulations of
the OCP, are significantly higher than the other OCP simula-
tions [37,42-44]. The disagreement with the other OCP re-
sults is greater than the expected uncertainties in the calcu-
lations, and the reason for the difference is uncertain. In both
cases the Yukawa screening modification worsens the agree-
ment with the QMD/OFMD results.

Wallenborn and Baus [38] have treated the viscosity of a
strongly coupled (I'>1) OCP using Kinetic theory. The
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TABLE 1. QMD results for the D-T mixture. The given error bars (A) are statistical only [Eq. (14)]. The
total uncertainty due to the fitting procedure and extrapolation to infinite time is estimated by experience to
be ~20%. Numbers in brackets represent powers of ten.

kT D AD 7 An P,
(g/cm?) (eV) (cm?/s) (cm?/s) (mPa s) (mPa s) (GPa)
5.0 2 5.7[-3] 2.9[-4] 1.6 0.05 1300
5.0 3 7.3[-3] 3.7[-4] 2.1 0.06 1370
5.0 5 1.4[-2] 5.6[-4] 4.1 0.12 1520
5.0 7 2.2[-2] 1.1[-3] 59 0.24 1720
5.0 10 3.0[-2] 1.2[-3] 9.8 0.29 2040
12.5 2 2.3[-3] 6.9[-5] 2.6 0.05 8070
12,5 3 3.9[-3] 1.2[-4] 32 0.06 8270
12.5 6.2[-3] 1.9[-4] 4.0 0.08 8570
12.5 9.7[-3] 3.9(-4] 6.4 0.13 8900
12.5 10 1.5[-2] 6.0[—4] 9.7 0.19 9520

theory uses equilibrium properties as input. Their results are
approximated assuming free-particle dynamics by the form

[1+M(0)P

7 =N (\) + VAN

; (27)

where I;, I,, and I3 are parameterized in terms of A
=3m(3T)¥2. The viscosities given by this formula are shown
in Fig. 3. For p=5 g/cm?, the QMD and OFMD results
agree to within statistical uncertainty for all temperatures
considered. For p=12.5 g/cm?, the OFMD results are
~25% greater than the QMD results for the highest tempera-
ture of 10 eV. For p=5 g/cm’, Eq. (26) and the kinetic
theory agree with QMD at T=2 eV while Daligault’s result
is ~40% larger. However, as the temperature increases, Eq.
(26), the results of Daligault, and the kinetic theory all un-
derestimate the QMD results (e.g., by factors of 1.5, 1.7, and
3.2, respectively, at T=10 eV). At the higher density of
12.5 g/cm?®, Eq. (26) and the kinetic theory agree with the
QMD results at 7=2 eV, whereas the Daligault OCP results
are about a factor of two larger. As the temperature increases,
Eq. (26) tracks the QMD results, whereas the Daligault OCP
results are somewhat too large. The kinetic theory underes-
timates the viscosity by a factor of two at 10 eV.

For densities smaller than those considered in the present
work, Clérouin and Dufréche [9] found that QMD viscosities
for hydrogen mass density equivalents of 0.17, 0.25, and
0.37 g/cm?® agree with kinetic theory for temperatures be-
tween 1000 and 10 000 K. However, for temperatures be-
tween 10 000 and 50 000 K, the kinetic theory underesti-
mates the QMD results (for example, by a factor of about 2
at 50 000 K), as we have observed here for higher densities.

Figure 5(a) shows the electronic pressure P calculated
by QMD and OFMD as a function of temperature for two
densities. At density 5 g/cm?, the QMD electronic pressure
is 10—14 % smaller than the OFMD electronic pressure. At
density 12.5 g/cm?® the QMD electronic pressure is 5%
smaller than the OFMD electronic pressure. Figure 5(b)
shows an estimate of the excess pressure P,,, due to electron
exchange and correlation, as a function of density. The ex-
cess pressure is not given directly by the QMD or OFMD
simulation, but was determined by subtracting the Fermi
pressure P, of the free-electron gas from the total electronic
pressure P, found in these simulations, i.e.,

Pex=Pel_PO' (28)

The Fermi pressure P, of the free-electron gas is given by

T T T T T T 0.30 11— T T ]

[ @ DT ] - © DT ]

i ] 0.25F .
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FIG. 5. (Color online) Comparison of the electronic pressures of
the D-T mixture, obtained from QMD (circles), OFMD (squares),
and TCP (diamonds) as a function of temperature at densities of
5.0 g/cm? and 12.5 g/cm?: (a) the total electronic pressure; (b) the
excess pressure after the free-electron gas contribution [23] has
been subtracted.

PO = kBTne®3/213/2(a'), (29)

where « is determined by solving the normalization condi-
tion

2
Ip(a) = 5_3/2, (30)

with @ given by Eq. (18) [23]. At the values of the degen-
eracy parameters shown in Fig. 4 this pressure is fairly close
to the pressure for a completely degenerate gas. The excess
pressure, defined thusly, is generally negative due to ex-
change and correlation effects. Another estimate of the ex-
cess pressure was obtained by differentiating with respect to
volume the fit of Ichimaru et al. [45] of the excess free
energy of the two-component plasma. The corresponding to-
tal electronic pressure was obtained by adding P, to this
value and is shown in Fig. 5(a) for comparison with the
QMD and OFMD values. The QMD values lie approxi-
mately midway between the OFMD and TCP values.
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FIG. 6. (Color online) Fractional differences of the OFMD ex-
cess pressures from the fit of Ichimaru et al. [45] for the hydrogen
two-component plasma as a function of density at temperatures of
2,3,5,and 10 eV.

Additional simulations for higher densities have been car-
ried out using OFMD. These results are shown in Figs. 6-8.
The deviation from the TCP excess pressures, obtained by
differentiating the excess free energy fit of Ichimaru et al.
[45] for the hydrogen two-component plasma, is shown in
Fig. 6. The OFMD excess pressures are 12—22 % smaller (in
magnitude) than those given by the TCP model. The greatest
deviations occur at low densities.

The self-diffusion coefficients shown in Fig. 7(a), calcu-
lated from the results of the mixture simulations, have been
scaled to remove the trivial mass dependence (scale factor
=M /2.5, where M=2 for D and M=3 for T). For a fixed
density, the self-diffusion coefficient rises with temperature
as the atoms become more mobile. On the other hand, for a
given temperature, the diffusion declines with increasing
density, reflecting the greater confinement of the atoms. Even
the scaled diffusion of the lighter deuterium is slightly
greater than that of the heavier tritium though the two are
barely distinguishable at temperatures below about 5 eV. The
mutual-diffusion coefficient, calculated from the autocorrela-
tion function of the full D-T mixture, is shown in Fig. 7(b).
Since self-diffusion coefficients converge much more rapidly
than the mutual-diffusion coefficients with respect to the tra-
jectory length, we calculate the average of the self-diffusion
coefficients (D, and D;) and test whether this is a good
approximation to the mutual-diffusion coefficient. In Fig.
7(b) we see that the average [46] is a good approximation at
all densities and temperatures considered. Note that the D-T
mixture is a special case for obtaining the mutual-diffusion
coefficient in this manner; the average self diffusion need not
be a reasonable approximation to the mutual diffusion in a
mixture of atoms with widely different charges and masses.

The viscosity for the D-T mixture calculated by the
OFMD method is shown in Fig. 8. Viscosity increases with
increasing temperature as well as with increasing density in
this WDM regime.

Finally we address the question as to what extent the re-
duced diffusion coefficient D* and the reduced viscosity 7"
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FIG. 7. (Color online) Diffusion coefficients for DT calculated
by OFMD as a function of density at temperatures of 2, 3, 5, and 10
eV (lowest to highest curve). Top panel shows the mass-scaled self-
diffusion coefficients for pure D (solid curve) and pure T (dashed
curve), scaled by a factor VM /2.5 where M=2 for D and M=3 for
T. Bottom panel shows the mutual-diffusion coefficient for the D-T
mixture; the dashed curve is the average of the D and T results
shown in the top panel.

depend only on I' and not on the density and temperature
separately. Plots of the reduced quantities are shown in Figs.
9 and 10. Both agree reasonably well with the OCP model,
which depends only on I' (the OCP viscosities of Daligault
[36] are higher than those of the other three calculations
[37,43,44]). In the case of the viscosity, the OFMD reduced
viscosity has a minimum at I'=25, in between the values
where the two OCP calculations [36,37] found the minimum
but with a smaller magnitude than both. Other models
[43,47] have predicted that the minimum occurs at somewhat
lower values of T.

IV. CONCLUSIONS

We have calculated the diffusion and viscosity of the D-T
mixture using the OFMD method for temperatures between 2
and 10 eV and densities between 5 and 20 g/cm?®. The
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FIG. 8. (Color online) Viscosity for the D-T mixture calculated
by OFMD as a function of density at temperatures of 2, 3, 5, and 10
eV (lowest to highest curve).

OFMD results were benchmarked against QMD calculations
at 5.0 and 12.5 g/cm’.

The OFMD mutual-diffusion coefficients and viscosities
all agree with the QMD results to within estimated uncertain-
ties. The greatest differences (13% and 25% for mutual dif-
fusion and viscosity, respectively) are seen at the highest
temperature and density (10 eV, 12.5 g/cm?). The OFMD
electronic pressures agree with the QMD results to within
15% or better for p=5 g/cm® and 5% or better for p
=12.5 g/cm’. Thus, we conclude that the simpler OFMD
method can be used with confidence in the warm dense mat-
ter regime considered.

The OCP results [36] for mutual diffusion agree with the
QMD results at low temperatures (2 and 3 eV). However, as
the temperature increases the OCP results underestimate the
QMD results, e.g., by 30% at T=10 eV.

U |
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e
e
2
/
/
Ll
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R |

| [ |
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T

FIG. 9. (Color online) Reduced diffusion coefficient vs I" for the
D-T mixture calculated using OFMD at the indicated temperatures.
The OCP model results of Daligault [36] (dashed curve, discontinu-
ous at I'=2) and Hansen et al. [40] (asterisks) are shown for
comparison.
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FIG. 10. (Color online) Reduced viscosity vs I' for the D-T
mixture calculated using OFMD at the indicated temperatures. The
OCP model results of Bastea [37] (short-dashed curve), Daligault
[36] (long-dashed curve), Bernu and Vieillefosse [43] (black aster-
isks), and Donké et al. [44] (purple (gray) asterisks) are shown for
comparison.

For viscosity the OCP model [36,37] is not as good as for
diffusion, especially at the lower density 5.0 g/cm® where
the model gives a temperature dependence significantly dif-
ferent from that of the QMD and OFMD results. Simple
formulas for the viscosity based on kinetic theory by Wallen-
born and Baus [38] show larger deviations though they dis-
play the qualitatively correct behavior.

PHYSICAL REVIEW E 82, 036404 (2010)

The Yukawa screening modification of the OCP model
proposed by Murillo [41] worsens the agreement of diffusion
and viscosity with the QMD/OFMD results in all cases in the
treated regime. The QMD excess pressures (due to electronic
exchange and correlation) are 4—12 % smaller (in magni-
tude) than derived from the TCP model of Ichimaru et al.
[45]. The deviation of the OFMD pressures from the TCP
model are somewhat larger (15-21 %).

The OFMD mass-scaled self-diffusion coefficients for D
compared with T are equal to within a few percent or better.
The average of the D and T self-diffusion coefficients equals
the mutual-diffusion coefficient to within 10% or better.

The OFMD reduced viscosities agree with all [37,42-44]
OCP results (except one [36]) to within ~15% for I" between
2.5 and 36. For I'>36, the OFMD results increase more
slowly than the OCP results as a function of increasing I', the
deviation reaching a factor of almost 2 at I'=100. The agree-
ment with the Daligault [36] OCP calculation is not nearly as
good.

The reduced diffusion and viscosity coefficients are found
to depend largely, though not completely, only on the Cou-
lomb coupling parameter I', with a minimum in the reduced
viscosity at I'=~ 25, approximately the same position found in
the OCP simulations.
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