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This paper is devoted to an experimental and theoretical investigation of the crater formed by the impact of
a single drop onto a semi-infinite target of the same liquid. The shape of the crater at various time instances
after impact has been observed using a high-speed video system and then accurately characterized. A theoret-
ical model for the crater expansion has been developed, which is able to predict the temporal variation of the
crater depth for sufficiently high Weber, Froude, and Reynolds numbers. The flow around the crater is approxi-
mated by an irrotational velocity field past a moving and expanding sphere. The equations describing the
propagation of the surface of the crater have been obtained from the balance of stresses at the crater interface,
accounting for inertia, gravity, and surface tension. The temporal evolution of the crater depth has been
calculated by numerical solution of the equations of motion. The agreement between the theoretical predictions
and experimental data are rather good.
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I. INTRODUCTION

Worthington �1� is the pioneer in the field of experimental
observations of drop impact, who spent on this study about
20 years at the turn of the 19th century. He used powerful
sparks from Leyden jars to create the necessary brief expo-
sure time for the first high-speed drop images. High-
resolution, high-speed video systems which have appeared
over the last years now allow us to easily observe the small-
est details of such flows �2�.

Crater formation by drop impact has been studied, as re-
viewed by Prosperetti and Oğuz �3�, because of its relation to
underwater noise of rain, which in turn permits the detection
and characterization of rain over the oceans by remote acous-
tic sensors. Phenomena of drop impacts on liquid layers are
also related to various engineering applications in which sec-
ondary spray atomization by collision with a wall, spray
deposition and coating, and spray cooling play an important
role. The wall flow generated by spray impact is rather com-
plicated and is still not completely understood �4–6�. In or-
der to model and predict the outcome of spray/wall interac-
tion an accurate prediction of the typical sizes of the crater
formed by single drop impact and the characteristic time of
its formation and collapse is necessary. Moreover, a simpli-
fied description of the liquid flow generated by drop impact
is required in order to reliably model the heat transfer asso-
ciated with spray cooling �7�.

A. Existing experimental data for the penetration depth:
do we need more?

The Weber, Froude, and Reynolds numbers are usually
applied to describe the phenomena of drop impact: We
=�V2D /�, Fr=V2 / �gD�, and Re=�VD /�, where �, �, � are
the density, the viscosity and the surface tension of the target
liquid, D and V are the diameter and velocity of the impact-
ing drop. However, a consensus exists that in most cases the

effect of viscosity is negligibly small and the problem is
completely described using We and Fr.

In order to examine the existing data about maximum
depth of crater penetration we collected numerous existing
experimental data sets from several relatively narrow ranges
of Froude number. We could expect that the corresponding
values for the maximum penetration depth will be constant
�for very high Weber numbers� or will monotonically in-
crease with We, since the Reynolds number is high in all the
cases. The results are shown in Fig. 1. Each symbol in Fig. 1
corresponds to a different source among �8–14�. The scatter
of the data from these different sources is rather significant,
which could indicate that either the expected monotonic in-
crease of �max with We is not valid or that some of the
existing experimental data are not reliable. An analogous
correlation is shown in Fig. 2. In this figure the data from
relatively narrow ranges of the Weber number are shown as
function of the Froude number.

Experimental results can be potentially influenced by the
refraction of the light beams in the water, the measured val-
ues of length depend on the camera orientation and distance
from the cavity and from the wall of the container, liquid
meniscus can obscure the exact position of the impact point,
etc. The uncertainty of the existing experimental data on the
geometry of the crater has been questioned before �12,15�.

The difficulty remains that we currently cannot precisely
know which data from the many existing sources are reli-
able, and which can be used for model validation. In the
present study the potential sources of experimental error
have been quantified with care with care and the results are
therefore considered rather reliable.

B. Do we need a new model?

When a single drop impacts onto a deep pool with high
velocity it creates an expanding, nearly spherical cavity. The
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cavity first penetrates into the liquid pool and then recedes
under the action of surface tension and gravity. Most of the
existing models of drop impact presented in the literature
deal with predictions of the maximum crater depth. All the
models, which are usually based on the consideration of the
energy balance, are formulated with the assumption of a
hemispherical shape for the crater, centered on the impact
point �3,11–14,16,17�. Engel �18� found an analytic expres-
sion for the crater evolution in time, using the energy balance
equation and assuming a kinematically admissible irrota-
tional flow around the expanding crater. The assumption of
irrotational flow around the crater was confirmed later by
�19�, who pointed out that when the drop hits the pool sur-
face, very little vorticity is generated by the impact. During
the subsequent development of the crater, vorticity produc-
tion at the free surface is minimal in view of the fact that
Reynolds number is of order of thousands.

The simple flow generated by the point source is in fact
widely used in impact cratering studies �12,20,21�. Such a
flow has been used in �22� for the description of the pressure
field around the crater. The equations of the crater expansion
are obtained from the kinematic and dynamic boundary con-
ditions at the free surface of the spherical crater. An analyti-
cal expression for the crater radius and depth is then ob-

tained, which agrees well with the experimental data for the
relatively early stages of crater penetration. This model does
not predict crater maximum penetration depth and receding
since the surface tension and the gravity are not taken into
account.

There are two main disadvantages of almost all existing
theoretical models for cavity expansion. The first problem
relates to the use of an energy balance. It is well-known that
such an approach is among the lowest level theoretical tools
and can provide only appropriate scales of the problem. It
has been demonstrated in �23� that the energy balance cannot
correctly describe even the simplest flows, for example the
flow generated by formation of a rim at the edge of a free
sheet �compare the results of Dupré �24� obtained using the
energy balance and the correct predictions of Taylor �25� for
the rim velocity� or axisymmetric spreading of a liquid disk.
In the case of drop collision with a deep pool, an energy
balance cannot easily capture the energy lost due to genera-
tion of the spreading waves or the energy spent on splash and
secondary atomization.

The second disadvantage is in the approximation of the
cavity shape by an expanding sphere with a center fixed at
the impact point. Our experiments show that such an ap-
proximation is not precise. It is well known that in many
cases gravity effects significantly influence the cavity propa-
gation. The flow generated by an expanding sphere is sym-
metric, it leads to a uniform distribution of the stresses on the
surface of the cavity and thus it is not able to correctly de-
scribe the pressure gradient associated with gravity.

On the other hand, simplified hydrodynamic models have
been successfully applied in penetration mechanics �26–30�
for description of analogous problems of relatively high-
velocity penetration and deformation of jets, rods, and pro-
jectiles into metal targets.

C. Subject of this study

The main aim of the present study is to develop a model
which describes the flow generated by a cavity and predicts
the temporal evolution of its geometry. In the experimental
part of this study the evolution of the crater is observed using
high-speed video and analyzed by image processing. Many
efforts have been made in order to avoid large measurements

FIG. 1. Existing �8–14� experimental data for the dimensionless maximum crater depth �max �scaled by the initial drop diameter� from
several narrow ranges of the Froude number plotted as function of the Weber number.

FIG. 2. Existing �8–14� experimental data for the dimensionless
maximum crater depth �max �scaled by the initial drop diameter�
from several thin ranges of the Weber number plotted as function of
the Froude number.
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errors and to obtain a reliable and reproducible data for the
time evolution of the main geometrical parameters of the
crater.

A theoretical model of the type considered in �27–29� is
developed which is aimed at predicting the dynamics of the
crater penetration. It is based on the assumption of an irro-
tational velocity field around the crater, associated with a
moving and expanding sphere in an inviscid liquid. The pres-
sure field in the target liquid is then obtained from the non-
stationary Bernoulli equation, which accounts for the liquid
velocity and acceleration, and gravity. The equations of mo-
tion of the crater are obtained from a balance of stresses at
the crater surface, accounting for surface tension and viscos-
ity. The resulting system of ordinary differential equations is
then solved numerically, using initial conditions obtained
from experimental data and theoretical predictions. The
model is validated by comparison with the experimental data
for a wide range of impact parameters. The agreement is
rather good.

The resulting velocity field generated by crater penetra-
tion can then be applied to the description of the convective
heat transfer in the case of nonisothermal drop impact, an
important step for the modeling of spray cooling.

II. EXPERIMENTAL INVESTIGATION

A. Experimental method

The impact of drops on a pool of the same liquid has been
observed using a high-speed video system. Distilled water
and acetic acid were used as working liquids for both drops
and pools.

A sketch of the experimental setup is shown in Fig. 3. The
target pool �1� is placed on a level platform and it is con-
nected to a level pool �2� mounted on a vertical micrometric

stage. Drops generated with a dripper �3�, fed by a reservoir
�4�, are detected by a light sensor �5�. The light emitted by a
lamp �6� is diffused by a etched glass �7�. The components
are controlled and synchronized with electronic cards 9, a
wave generator 10 and a graphical user interface 11. The
impact velocity was varied by changing the fall height. All
the experiments were performed under atmospheric condi-
tions. The camera �8� was mounted on a tilting, rotating and
movable platform which allows adjustment of the liquid sur-
face normal to the field of view.

The target fluid has been heated due to the high intensity
illumination. Its constant temperature was about 30 °C. The
physical properties of the liquids at this temperature are re-
ported in Table I.

When liquid interfacial phenomena are observed through
a container, the liquid meniscus, formed at the interface be-
tween the liquid surface and the transparent wall obscures
the area close to the interface. To avoid this effect the con-
tainer was filled to the rim in order to use it as a pinned
contact line �8,12,31�. In order to accurately regulate the
level of the water in the container it was connected by a
flexible tube to a liquid reservoir placed on a micrometric
vertical stage.

To correct the image distortion due to the light refraction
in the liquid the images have been calibrated separately in
the regions corresponding to the liquid and air. Recorded
images have a spatial resolution of about 14.50 px/mm in air
and 14.33 px/mm in water. Further image analysis included
automatic image background removal and edge detection us-
ing a Laplacian of Gaussian filter, estimation of the average
drop velocity and collision instant, and evaluation of the
main geometrical parameters of the crater. Analysis was run
together with a graphical interface showing frame-by-frame
the edges of the detected features superimposed onto the
original image and allowing visual control by the user. For
each impact condition several acquisitions were performed to
check repeatability.

TABLE II. List of impact parameters and the results for the dimensionless maximum crater depth �max

and the corresponding time instant �max. Case d is shown in Fig. 4.

Case Fluid
D

�mm�
V

�m/s� We Fr Re �max �max

a Water 2.2 2.4 170 262 6391 2.44 14.83

b Water 1.8 3.0 226 489 6774 2.55 17.48

c Water 2.3 3.6 406 569 10128 2.82 20.54

d Water 2.8 4.2 683 620 14638 2.93 22.01

e Acetic acid 2.9 4.4 2190 694 12687 3.11 27.08

FIG. 3. Scheme of the experimental setup.

TABLE I. Values of density �, viscosity � and surface tension �
for the fluids at the reference temperature 30 °C.

�
�kg /m3�

�
�kg/ms�

�
�N/m�

Water 996 0.80�10−3 71.22�10−3

Acetic acid 1040 1.04�10−3 26.63�10−3
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Five selected cases are presented in Table II. Some vari-
ables and parameters in this study will be presented in the
dimensionless form. They are scaled using D as the length
scale, V as the velocity scale, and D /V as the time scale.

B. Experimental results

A typical time sequence of drop impact is shown in Fig. 4.
It is interesting that in this case that the crater and the crown
reach their maximum size at about the same time. Then the
crown begins to fall down, generating capillary waves which
travel to the bottom of the receding crater �22�, after which a
central jet is ejected. At higher velocities the thin liquid sheet
forming the crown may rise up further and possibly neck in,
forming a dome above the crater, as shown in Fig. 5. A
downward jet is then formed, which falls toward the raising
crater and may or may not intersect it and encapsulate one or
more air bubbles in the target liquid. Successively the crater
and the liquid sheet reach an equilibrium configuration with
a shape similar to a toroidal bubble, which is maintained
briefly until it is broken by instabilities. In this case capillary
waves have not been observed on the crater.

In this study, the crater depth was measured detecting the
impact point O and the lower point C on the symmetry axis
�see Fig. 6�. Crater width was measured detecting the top left
and right points A and B, a little below the water level to
avoid capillary waves from perturbing the horizontal projec-
tion. Figure 7 show the evolution in time of the dimension-
less crater depth � scaled by the initial drop diameter D. The

curves corresponding to the relatively high Weber numbers,
see cases c−e, are rather smooth which indicates that the
amplitude of the capillary waves on the crater surface is mi-
nor. At smaller Weber numbers, corresponding to the cases a
and b, the effect of surface tension is significant and the
evolution of the crater depth is influenced by the propagation
of the waves. The corresponding graphs for the crater width
� are shown in Fig. 8. It is interesting that even after the
penetration depth reaches the maximum the crater depth con-
tinues the tendency to grow. Also the effect of the capillary
waves on the cavity interface is more pronounced on this
graph.

Due to a different behavior of depth and width evolution,
the shape factor �=� /� of the crater is not constant, but
varies in time, as shown in Fig. 9. It is also obvious that the
crater is not a perfect hemisphere with its center at the im-
pact point �which would correspond to �=1 /2�, as consid-
ered in all of the previous analytical models.

III. THEORETICAL MODEL FOR CRATER EVOLUTION

In order to develop a simplified model for crater forma-
tion we subdivided it into two main phases, illustrated in Fig.
10. During the first phase, �	�� �� being the dimensionless
time�, the drop deforms, generating a thin, radially expand-
ing liquid layer. The material interface between the drop liq-
uid and the target liquid is not visible during this stage. The
motion of this interface is governed by the balance of the

(b)(a) (c) (d)

FIG. 4. Drop impact onto a semi-infinite liquid target in the splashing region �water, D=2.8 mm, V=4.2 m /s, We=683, Fr=620, Re
=14 638.

t = 60 8 ms.(b)(a) (c) (d)

FIG. 5. Drop impact onto a semi-infinite liquid pool with formation of a toroidal bubble above the target surface and the entrapment of
a bubble in the pool �acetic acid, D=2.9 mm, V=4.4 m /s, We=2177, Fr=691, Re=12 642, Bo=1.25�.
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stresses generated by the flow of the drop and pool liquids.
The velocity of penetration of the drop/target interface at the
time period �	��, is approximately half of the impact veloc-
ity. This result is well known from penetration mechanics
�26,30� and was previously used for the description of drop
impact �11,22�. The approximate dimensionless rate of drop
erosion is therefore approximately 1/2. The typical dimen-
sionless time of drop deformation is thus ���2.

At times �
�� on the crater surface a thin residual liquid
layer of the drop material is formed. During this phase the
cavity shape can be well approximated by the shape of the
drop/target interface. The inertial effects associated with the
flow in this layer are negligibly small and the dynamics of
cavity expansion can be analyzed considering conventional
boundary conditions of a free surface. Crater expansion is
governed by the inertia of the flow in the liquid pool and
decelerated by capillary forces and gravity.

At some time instant the cavity reaches a maximum pen-
etration depth and starts to recede. The receding phase is
influenced significantly by the capillary waves generated by
the falling crown �22�. Moreover, the interaction of these
waves leads to the creation of the central jet. These phenom-
ena affect significantly the dynamics of cavity collapsing.
Their analysis is out of scope of the present study.

A. Flow field in the liquid pool

In the absence of gravity a spherically symmetric flow
and stress fields can be found which satisfy the boundary

conditions at the crater surface �22�. The pressure gradients
associated with gravity destroy the spherical symmetry of the
pressure field. Therefore, gravity effects cannot be precisely
accounted for using the simple flow associated with the ex-
pansion of a spherical cavity with fixed center. In this study
the cavity expansion is approximated by combination of the
sphere expansion and its translation along the impact axis.

Consider a reference frame fixed at the impact point O
with the x axis lying on the unperturbed liquid surface and
the z axis �impact axis� directed normal to it, as in Fig. 11.
Consider also a moving spherical coordinate system �r ,� ,��
with the origin at the center O� of the spherical cavity, where
r is the radial coordinate and � is the zenith angle. The radius
of the crater in the relative spherical reference system is de-
noted by a�t� and the position of its center on the symmetry
axis by zc�t�.

The potential  of a relative irrotational flow around the
cavity in the moving coordinate system satisfying the
Laplace equation �=0 can be easily obtained as a super-
position of a flow past a sphere and the radially expanding
flow generated by sphere expansion,

 = − żcr�1 −
a3

2r3	cos � − ȧ
a2

r
. �1�

The velocity components of the relative velocity field u
=� are obtained in the following form:

ur = ȧ
a2

r2 − �1 −
a3

r3 	U cos � , �2a�
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FIG. 8. Measurements of the dimensionless width depth � as a
function of dimensionless time �.
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FIG. 9. Measurements of the crater shape factor �=� /� as a
function of dimensionless time �.

FIG. 6. Detection of the crater and of its characteristics points.
O is the impact point, A, B, and C are the top left, right and bottom
points, which may be fitted by a circle having center in O�.
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FIG. 7. Measurements of the dimensionless crater depth � as a
function of dimensionless time �.
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u� = �1 +
a3

2r3	U sin � . �2b�

where U
 żc is the velocity of the sphere translation. This
velocity field satisfies the kinematic boundary conditions at
the crater surface r=a and far from the cavity at r→�.

Pressure can now be determined using the nonstationary
Bernoulli equation, which has to include an additional term
accounting for the acceleration of the moving coordinate sys-
tem,

�

�t
+

1

2
���2 +

p

�
= f + g�zc + r cos �� − z̈cr cos � , �3�

where f�t� is a function of time determined from the bound-
ary conditions. Since the pressure field far from the cavity,
r→�, is determined by the hydrostatic pressure, p→�g�zc
+r cos ��, Eq. �3� yields f�t�=U2 /2.

The pressure distribution pcr�� , t� in the liquid at the crater
surface, r=a, can now be obtained from the pressure field
�Eq. �3�� with the help of Eq. �1�,

pcr

�
=

U2

2
�1 −

9

4
sin2 �	 + g�zc + a cos �� +

aU̇

2
cos � +

3ȧ2

2

+ aä +
3

2
ȧU cos � . �4�

It contains two unknown functions, a�t� and zc�t�, which
have to be determined from the dynamic boundary condi-
tions at the crater surface accounting for the capillary forces
and gravity.

B. Crater evolution at times t
2D ÕV

1. Inviscid flow

At large times the pressure gradient in the thin drop
spreading on the expanding crater is negligibly small. The
Young-Laplace equation applied to the crater surface, pcr
+2� /a=0, cannot be satisfied exactly over the entire cavity
surface. On the other hand expression �4� can be linearized
near the cavity bottom, ��0. The dynamic boundary condi-
tion can then be written in the form,

0 = −
7U2

4
+ gzc +

3ȧ2

2
+ aä +

2�

�a

+ �9U2

4
+ ga +

aU̇

2
+

3ȧU

2
cos � + O�U2�4� . �5�

It should be noted that at large times U� ȧ since in all the
considered cases the Froude number is small, therefore the
last term in Eq. �5� is negligibly small in comparison with
other terms.

Denote the dimensionless crater radius and axial coordi-
nate of the center of the sphere as � and �. The dimension-
less penetration depth is expressed as �=�+�. Condition �5�
yields a system of ordinary differential equations for ����
and ���� which can be written in dimensionless form,

�̈ = −
3

2

�̇2

�
−

2

�2We
−

1

Fr

�

�
+

7

4

�̇2

�
, �6�

�̈ = − 3
�̇�̇

�
−

9

2

�̇2

�
−

2

Fr
. �7�

The evolution of the crater can be now evaluated by numeri-
cal integration of the system of ordinary differential Eqs. �6�
and �7�, subject to the initial conditions which will be con-
sidered later.

It can be shown that in the limiting case We→�, Fr
→� the system �Eq. �6�� can be reduced to

�̈ = −
3

2

�̇2

�
, �̈ = − 3

�̇�̇

�
−

9

2

�̇2

�
, �8�

one partial solution of which is

� = C1�5� − C2�2/5, �9�

where C1 and C2 are constants determined from the initial
conditions. The relation �5/2� t has been previously pro-

Drop/target
interface

Deforming drop

Pool level

Apparent cavity
bottom

Drop/target
interface

Residual drop
layer

τ < τ∗

τ > τ∗
Cavity

FIG. 10. �Color online� Phases of drop deformation and cavity
formation.
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FIG. 11. Sketch of the cavity and definition of the fixed and
moving reference frames.
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posed in �12� from the considerations of energy balance. In
�22� the constants in Eq. �9� has been estimated as C1
=2−4/5 and C2=6 and the corresponding solution is validated
by comparison with the experimental data associated with
very high impact velocities.

2. Evaluation of the effect of viscosity

At high Reynolds number flows the viscosity effects lead
to the appearance of the viscous boundary layer near the
crater free surface. This thin viscous flow ensures a shear
stress at the free surface of the crater. On the other hand,
since the layer is thin, the jump of the normal stresses
through this layer is negligibly small. The Young-Laplace
equation, which accounts for the viscous stresses, can be
rewritten as

pcr − 2�
�ur

�r
+

2�

a
= 0 at r = a , �10�

where the radial velocity of the outer flow ur is defined in
Eq. �1�. The modified equation for the crater expansion is

�̈ = −
3

2

�̇2

�
−

2

�2We
−

1

Fr

�

�
+

7

4

�̇2

�
−

4�̇

�2 Re
, �11�

�̈ = − 3
�̇�̇

�
−

9

2

�̇2

�
−

2

Fr
−

12�̇

�2 Re
. �12�

It should be noted that results of computations of the cra-
ter depth using the systems �Eqs. �6�, �7�, �11�, and �12�� in
the considered range of impact parameters are practically
undistinguishable, which indicates the fact that the effect of
viscosity in the considered cases is negligibly small.

Since the order of the magnitude of �̇ is comparable with
unity, the importance of the viscous terms in Eq. �11� in
comparison with the capillary forces can be estimated by the
capillary number Ca=Re /We. The present analysis is there-
fore valid for the cases when the effect of viscous forces is
small at Ca�1.

C. Initial stage of drop deformation, t›2D ÕV:
engineering approximation

In this study the well-known quasistationary model of ini-
tial drop penetration is modified to account for the flow as-

sociated with the cavity expansion. The boundary conditions
�Eq. �10�� are not valid at this phase since they do not ac-
count for the pressure generated by the flow inside the de-
forming drop. At the initial stage the pressure distribution at
the drop/outer liquid interface is roughly estimated neglect-
ing the terms associated with gravity and cavity acceleration,

pinit

�
�

U2

2
�1 −

9

4
sin2 �	 +

3ȧ2

2
+

3

2
ȧU cos � . �13�

Cavity expansion at this stage is determined by the pres-
sure distribution in the deforming drop. The pressure in the
deforming drop at the impact axis, �=0, can be roughly es-
timated from the Bernoulli equation for steady flows,
whereas the pressure in the outer liquid can be evaluated
using Eq. �13�. The condition of the continuity of the pres-
sure at the impact axis yields

pinit�� = 0�
�

=
U2

2
+

3ȧ�ȧ + U�
2

=
�V − U − ȧ�2

2
, �14�

where �U+ ȧ� is the velocity of propagation of the cavity tip,
and �V−U− ȧ� is the velocity of drop deformation.
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FIG. 12. Experimental and predicted dimensionless crater depth
� at the initial stage for various impact parameters.
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FIG. 13. Experimental and predicted dimensionless crater width
� at the initial stage for various impact parameters. �0=0.77 has
been found with a least mean square method.

FIG. 14. �Color online� Penetration depth: comparison between
the theoretical predictions and the experimental data from
�18� �water, D=4.5 mm, V=17.6 m /s, We=19 354, Fr=6949,
Re=79 541�. The Eqs. �6� and �7� are calculated using the initial
conditions at ��=2 and ��=3. The theoretical results for these two
values of �� are undistinguished from one another.
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The second equation is obtained from the condition of
vanishing pressure pcr at the free cavity surface �z=0�. If the
center of the sphere is located near to the liquid pool surface
then this conditions yields

pcr�� = �/2�
�

= −
5U2

8
+

3ȧ2

2
= 0. �15�

The roots of the system of Eqs. �14� and �15� are

U =
− 6 − �15 + 3�9 + 2�15

5 + �15
V � 0.27V , �16�

ȧ =
1

2
�5

3
U � 0.17V . �17�

The penetration velocity is therefore U+ ȧ�0.44V which is
very close to the experimental data, presented in Fig. 12 in
dimensionless form and also very close to the earlier estima-
tions U+ ȧ�0.5V based on the constant velocity of an invis-

FIG. 15. �Color online� The dimensionless depth of crater pen-
etration as a function of dimensionless time. Experimental data
from �12,32� in comparison with the theoretical predictions.
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FIG. 16. The dimensionless depth of crater penetration as a
function of dimensionless time. Comparison between experimental
data �symbols� and theoretical predictions �curves� for various im-
pact parameters listed in Table II.

(b)(a) (c)

(d) (f)(e)

FIG. 17. Superposition of the theoretical model and the recorded images. The open circle symbol represents the center of the circle fitting
the points A, B, C sketched in Fig. 6. The square symbol represents the center of the modeled crater.
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cid jet of the same material as the target �26,27�. The straight
continuous line �=0.44� shown in Fig. 12 only slightly
overpredicts the experimental data. This overprediction can
be explained by the fact illustrated in Fig. 10, that at �	2 we
are not able to observe the drop/pool interface.

Noting that �=0 at �=0 the values for ���� and ���� at
the time period �	2 can be estimated in the following form:

�̇ � 0.17, � � �0 + 0.17�, �̇ � 0.27, � � − �0 + 0.27� ,

�18�

where �0 is a constant associated with the initial cavity ra-
dius. It is obvious that these quantities do not depend on the
impact parameters of the drop if the Reynolds, Weber, and
Froude numbers are high. This fact has been clearly demon-
strated in �23� for the analogous cases of drop impact onto a
rigid dry substrate or onto a symmetry plane �the case asso-
ciated with binary drop collisions�.

The dimensionless width of the crater, �, can be esti-
mated from the geometrical conditions,

� = 2��2 − �2 � 2���0 + 0.17��2 − �0.27� − �0�2. �19�

In Fig. 13 the experimental data for � are compared with
the estimation �Eq. �19��, showing rather good agreement in
the range 1	�	6. The constant �0=0.77 is obtained by
fitting.

Finally, taking ��=2 the initial conditions for the calcula-
tions of the system �Eqs. �6� and �7�� are obtained from Eq.

�18� as ��2�=1.11, �̇�2�=0.17, ��2�=−0.23, �̇�2�=0.27.

IV. RESULTS AND DISCUSSION

In Fig. 14, the theoretical predictions are compared with
the experimental data from �18� with rather high values of
We, Re, and Fr. In order to investigate the sensitivity of the
theory to the initial conditions the predictions based on two
typical times of drop deformations are shown: for ��=2 and
��=3. The results are apparently undistinguished. Similar
agreement is obtained for the cases with smaller values of the
impact parameters. In all the further calculations Eqs. �6� and
�7� are integrated subject to the initial conditions correspond-
ing to ��=2.

Further comparisons between the model prediction and
experiments for evolution of the penetration depth are shown
in Fig. 15 �for existing experimental data from �12,32�� and
Fig. 16. The agreement is good. As expected, the difference
between experimental data and predicted values increases at
the last part of the receding phase. Some discrepancy be-
tween the predictions and the experiments can be explained
by the influence on the flow of the propagating capillary
waves �not considered in the theory� and by the crater defor-
mation at the bottom part, leading to the formation of the
central jet. For instance cases a and b in Fig. 16 correspond
to low impact velocity at which capillary waves significantly
deform the crater shape.

Figure 17 shows a superposition of the crater predicted by
the theoretical model onto the recorded images for the case d
of Table II. The agreement between the theoretical predic-
tions and the experimental shape of the cavity is particularly
good at the bottom region of the crater ���1� where the
model is valid. Some discrepancy appears when the shape of
the crater is deformed by the capillary waves.

In Figs. 18 and 19, the predicted values for the maximum
penetration depth and the corresponding time instant are rep-
resented as contour plots of Weber and Froude numbers. Ad-
ditionally, in Fig. 18 a typical range of experimental param-
eters is marked by symbols. It can be clearly seen that in this

FIG. 18. �Color online� Contour plots of predicted dimensionless maximum crater depth for two different ranges of Weber and Froude
numbers. Symbols correspond to the parameters used in the present study and in the experiments available in the literature.

FIG. 19. Contour plots of predicted time instant corresponding
to dimensionless maximum crater depth as a function of the Weber
and Froude numbers.
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field the maximum penetration diameter can be best repre-
sented almost exclusively by the Froude number while the
effect of the Weber is minor. It explains why most of the
existing empirical correlations are represented in the form
�max�Fr�. It is obvious that such correlations are not appli-
cable for the cases associated with spray impact �with D
usually is in the range from 5 to 500 �m�, corresponding to
much higher values of the Froude number.

A time scale for crater penetration can be roughly esti-
mated for very high Weber numbers. Assume an asymptotic
crater expansion �� t2/5 obtained in Eq. �9�. Equation �7� for
the sphere center can be reduced to the following form:

�̈ = −
2

Fr
−

6�̇

5t
−

9�̇2

4t2/5 . �20�

A solution of this equation is

�̇ = −
2�2t1/5

3Fr1/2
�CJ−11/8�y� − J11/8�y��
�CJ−3/8�y� − J3/8�y��

, y =
15

4�2
t4/5 Re−1/2.

�21�

where C is a constant, J is a Bessel function.
The effect of the motion of the sphere center becomes

significant at the times t� when �̇ is comparable with �̇
� t−3/5. It can be easily shown that this condition is satisfied
at t��Fr5/8.

This time can be used as a scale for the value of tmax
�corresponding to the maximum penetration depth� at very
high Weber numbers. In Fig. 20 the dimensionless data for
tmax is shown for We=2000. This data can be best fitted as
tmax�Fr0.56, which is in agreement with the estimations for
t�.

In Fig. 21, the results of the theoretical predictions of the
dimensionless maximum crater depth are shown as a func-
tion of its experimental value for a wide range of Weber and
Froude numbers. Also the existing experimental data from
�8–14,16,32� are plotted in Fig. 21. A straight line corre-
sponds to perfect agreement. The agreement of the theoreti-

cal predictions with our data is very good. It is not perfect for
some data from different sources, but the tendency is pre-
dicted rather well. There is no systematic deviation of the
predicted values from the experiments. It is interesting that
the experimental data from the same sources lie on juxta-
posed lines almost parallel to the theoretical curve. One pos-
sible explanation is the experimental errors, which is often
not well documented. This fact is clearly illustrated in Figs. 1
and 2 and discussed in the “Introduction” section.

V. CONCLUSIONS

An experimental and analytical investigation of the crater
formed by the impact of a drop on a deep liquid pool at
sufficiently high Weber, Froude, and Reynolds numbers has
been presented. Image processing has shown the shape of the
crater to be very similar to a portion of a sphere in the region
far from the unperturbed water level, where the edge be-
comes almost vertical. Potential flow theory has been used to
model the flow around the crater. The equations of cavity
expansion have been obtained from the balance of stresses at
the crater interface. The model accounts for the effects of
inertia, gravity, surface tension, and viscosity. The agreement
between the theoretical predictions and the experimental data
for the evolution of the penetration depth of the cavity is
good. The proposed approach can be used for the description
of submillimeter drop impacts, typical for spray/wall interac-
tion, in which the effect of capillary forces is significant.

ACKNOWLEDGMENTS

A.B. acknowledges financial support of Cariplo, DAAD,
and COST P21. G.E.C. acknowledges the partial funding
from the National Project PRIN07. C.T. and I.V.R. would
like to thank German Science Foundation �DFG� for finan-
cial support by the research Grant No. Tr 194/34 and the
research grant in the framework of the Collaborative Re-
search Center 568 �TP A1�.

FIG. 20. Theoretically predicted dimensionless time tmax at
We=2000 as a function of the Froude number.

FIG. 21. �Color online� Maximum crater depth. Comparison of
the theoretical predictions with the present experiments and with
the experimental data from the literature.
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