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We investigate the dynamics of the two-dimensional periodic Kolmogorov flow of a viscoelastic fluid,
described by the Oldroyd-B model, by means of direct numerical simulations. Above a critical Weissenberg
number the flow displays a transition from stationary to randomly fluctuating states, via periodic ones. The
increasing complexity of the flow in both time and space at progressively higher values of elasticity accom-
panies the establishment of mixing features. The peculiar dynamical behavior observed in the simulations is
found to be related to the appearance of filamental propagating patterns, which develop even in the limit of
very small inertial nonlinearities, thanks to the feedback of elastic forces on the flow.
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I. INTRODUCTION

It is well known that the addition of small amounts of
long chain polymers can have a strong impact on flowing
fluids’ properties. One of the most remarkable effects of
highly viscous polymer solutions which has been recently
observed in experiments is the development of an “elastic
turbulence” regime in the limit of small Reynolds number
and strong elasticity [1]. The flow in this regime displays a
rich dynamics, of the type usually encountered in high Rey-
nolds number turbulent flow in Newtonian fluids. Typical
features of turbulent flows (e.g., broad range of active scales,
growth of flow resistance) are observed in the experiments
by Steinberg and collaborators [1,2], even at low velocity
and high viscosity, i.e., in the limit of vanishing Reynolds
number. As a consequence of turbulentlike motion, elastic
turbulence has been proposed as an efficient technique for
mixing in very low Reynolds flows, such as in microchannel
flows [3-5]. Despite its great technological interest, elastic
turbulence is still only partially understood from a theoretical
point of view. Presently available theoretical predictions are
based on simplified versions of viscoelastic models and on
the analogy with magnetohydrodynamics (MHD) equations
[6,7]. In a previous work [8] we showed, by means of nu-
merical simulations, that the basic phenomenology of elastic
turbulence is reproduced by a simple model of polymeric
fluid and in an idealized geometry, namely a two-
dimensional periodic shear flow without boundaries. Not-
withstanding quantitative differences, most observed features
have a strong qualitative resemblance with experimental re-
sults.

The mechanism through which polymer molecules can
influence properties of a flow is their extreme extensibility.
Polymers, typically composed by a large number of mono-
mers, at equilibrium are coiled in a ball of radius R,. In
presence of a nonhomogeneous flow, the molecule is de-
formed in an elongated structure characterized by its end-to-
end distance R which can be much larger than Rj. The de-
formation of molecules is the result of the competition
between the stretching induced by velocity gradients and the
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entropic relaxation of polymers to their equilibrium configu-
ration. Experiments with DNA molecules [9,10] show that
this relaxation is linear, provided that the elongation is small
compared with the maximal extension R<R,,,,, and there-
fore can be characterized by a typical relaxation time 7 [11].
Besides the Reynolds number Re, commonly used in hydro-
dynamics, in the study of flowing polymer solutions, it is
useful to introduce the Weissenberg number Wi. This is de-
fined as the product of 7 and the characteristic deformation
rate, and it measures the relative importance between poly-
mer relaxation and stretching. When Wi<< 1 relaxation is fast
compared to the stretching time and polymers remain in the
coiled state. For Wi> 1, on the contrary, polymers are sub-
stantially elongated. The transition point is called the coil-
stretch transition and occurs at Wi=O(1). For Weissenberg
numbers much larger than unity, polymers can provide a sig-
nificant feedback effect on the dynamical behavior of the
fluid they are suspended into, so that they behave as active
objects capable of modifying the properties of the flow.
Because of the feedback effect, above the coil-stretch
transition, a laminar flow can become unstable even in the
small Re limit of vanishing inertial nonlinearities. Purely
elastic instabilities have been studied in different flow con-
figurations. In a curvilinear shear flow as, e.g., Couette flow
between rotating cylinders, the driving force of the elastic
instability is the “hoop stress” (see, for instance [12], page
62), a volume force in the direction of curvature due to the
first normal stress difference. The mechanism for this insta-
bility was first proposed in [13] and experimentally verified
in [14]. In the framework of flows with curvilinear stream-
lines, a dimensionless criterion for the critical onset condi-
tions, which applies to various flow geometries, was estab-
lished in [15,16]. The role of flow-microstructure coupling in
pattern formation in the Taylor-Couette configuration was
also examined in numerical simulations of the three-
dimensional (3D) FENE-P (finitely extensible nonlinear
elastic-Peterlin) model [17]. On the other hand, purely elastic
instabilities in a parallel flow with rectilinear streamlines
were obtained for the first time in a two-dimensional (2D)
Kolmogorov flow of a viscoelastic fluid described by the
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linear Oldroyd-B model [18]. Also for a more realistic shear
flow of a viscoelastic fluid in a straight channel, there exist
theoretical results exhibiting the elastic instability [19], al-
though they are still not experimentally verified. Elastically
induced pattern formation and production of fluid mixing
were also studied in extensional flows, in experiments [20],
and numerical simulations of a Stokesian linear viscoelastic
model [21].

In this paper, we study the dynamics of dilute polymer
solutions by means of direct numerical simulations of a gen-
eral linear viscoelastic model, in a flow configuration corre-
sponding to the two-dimensional Kolmogorov shear flow.
Our simulations for values of the stability parameters (Re
and Wi) close to the elastic instability threshold, exhibit a
transition to new intriguing flow states, in the form of “elas-
tic waves,” driving the establishment of mixing features. In
particular, at growing the elasticity of the solution, after a
first transition to steady uniformly traveling patterns with
different symmetry with respect to the reference laminar
fixed point, we detect the appearance of temporal oscillations
and, eventually, the onset of a strongly nonlinear multiscale
state disordered in both space and time.

The article is organized as follows: in the next section we
introduce the viscoelastic model. In Sec. IIl A we present
numerical results concerning the transition to mixing states
in terms of an analysis of the behavior of global observables.
In Sec. III B we show the results of numerical measurements
concerning the spatiotemporal structure of the patterns
emerging above the onset of the instability. Finally, Sec. IV
summarizes our conclusions.

II. MODEL

To describe the dynamics of a dilute polymer solution we
adopt the well known linear Oldroyd-B model [12]

2
O’W+(u.V)u=—Vp+VAu+ﬂV'0'+f, (1)
T

do+w-Vio=(Vu)' o+ 0"(Vu)—2(0-_1)’ (2)
;

where u is the incompressible velocity field, o the symmet-
ric positive definite matrix representing the normalized con-
formation tensor of polymer molecules and 1 is the unit ten-
sor. The trace fro is a measure of local polymer elongation.
The solvent viscosity is denoted by v and 7 is the zero-shear
contribution of polymers to the total solution viscosity v,
=v(1+7) and is proportional to the polymer concentration.
In absence of flow, #=0, polymers relax to the equilibrium
configuration and o=1. The extra stress term Z—’TEV <o in Eq.
(1) takes into account the elastic forces of polymers and pro-
vides a feedback mechanism on the flow.

In order to concentrate on the intrinsic dynamics of the
viscoelastic solution we use the simple geometrical setup of
the periodic Kolmogorov flow in two dimensions [22]. With
the forcing f=[F cos(y/L),0], the system of Egs. (1) and (2)
has a laminar Kolmogorov fixed point given by

uy=[Uj cos(y/L),0]
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Ug U,
1+ 722—L025in2(y/L) - Tﬁsin(y/L)
oy = (3)
Uy .
~Ty sin(y/L) 1
with F=[vU,(1+7)]/L?* [18]. The laminar flow fixes a char-

acteristic scale L, velocity U, and time T=L/U,. In terms of
these variables, one can define the Reynolds number as Re
=UTOIL and the Weissenberg number as Wi:TTUO. The ratio of
these numbers defines the elasticity of the flow ElI=Wi/Re.
Notice these are a priori estimates of the nondimensional
parameters; in the following we will refer to them as Re, and
Wi,. In the presence of velocity fluctuations superimposed to
a nonzero mean flow U, it is also possible to compute a

. . . UL .
posteriori nondimensional parameters as Re=-" and Wi
1

:%, once the average velocity U has been computed; of

course, in general U # U,

It is well known that the Kolmogorov flow displays insta-
bility with respect to large-scale perturbations, i.e., with
wavelength much larger than L. In the Newtonian case, the
instability arises at Re.= 2 [23]. The presence of polymers
changes the stability diagram of laminar flows [24,25] and
can induce elastic instabilities which are not present in the
Newtonian limit [13,14,18,26], even in the case of periodic
flows [27]. In this respect, the Kolmogorov flow is no excep-
tion, and recent analytical and numerical investigations have
offered the complete instability diagram in the (Wi,Re)
plane [18]. For the purpose of the present work, we just have
to recall that linear stability analysis shows that for suffi-
ciently large values of elasticity, the Kolmogorov flow dis-
plays purely elastic instabilities, even at vanishing Reynolds
number (see Fig. 1 of [18]). Note that in this case the direc-
tion of the most unstable mode is at a small angle with re-
spect to the basic flow, at variance with the purely hydrody-
namic transverse instabilities. In the Newtonian case,
nontransverse instabilities are observed for less symmetric
basic flows only [28]. We also remark that the fact that the
basic flow has rectilinear streamlines does not exclude the
onset of the elastic instability [19]. Above the elastic insta-
bility the flow can develop a disordered secondary flow
which persists in the limit of vanishing Reynolds number and
eventually leads to the elastic turbulence regime [29].

III. ANALYSIS AND RESULTS

The equations of motion (1) and (2) are integrated by
means of a pseudospectral method implemented on a two-
dimensional grid of size Ly=2m with periodic boundary con-
ditions at resolution 5122 It is well known that the integra-
tion of viscoelastic models is limited by numerical
instabilities associated with the loss of positiveness of the
conformation tensor [30]. These instabilities are particularly
important at high elasticity and limit the possibility to inves-
tigate the elastic turbulent regime by direct implementation
of Egs. (1) and (2). To overcome this problem, we have
implemented an algorithm based on a Cholesky decomposi-
tion of the conformation matrix that ensures symmetry and
positive definiteness [31]. While this allows us to safely
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FIG. 1. (Color online) Mean Kinetic energy (K) (a) and mean
square polymer elongation (X) (b) in statistically stationary states as
a function of Wi for Re=1. Dashed lines are the laminar predic-
tions from Eq. (3) and error bars represent the amplitude of
fluctuations.

reach high elasticity it has a price to pay in terms of limited
resolution and large computing time. In the following, we
will present the numerical results obtained using this ap-
proach.

A. Transition to mixing states

In order to investigate the transition to mixing states, we
chose to work in a region of parameters close to the onset of
the purely elastic instability. Here we fix Re=1 and increase
the Weissenberg number from Wi=6 to Wi=20. The initial
condition is obtained by adding a small random perturbation
to the fixed point solution [Eq. (3)] and the system is evolved
in time until a (statistically) steady state is reached.

We start the analysis by considering the behavior of glo-
bal quantities, such as the kinetic energy K=|u|*)/2 and the
average square polymer elongation 2 = (tro). The total en-
ergy of the system E;=K+ 2—7'/2722 is the sum of kinetic and
elastic contributions, and its balance equation, from Egs. (1)
and (2) is

dE;

dt

=e-e- 55 -2), @)

where €=(f-u) is the energy input, €,=1{(d,ug)?) is the vis-
cous dissipation, and the last term represents elastic dissipa-
tion. The balance of forcing and dissipation produces a

5 10

20

Wi

FIG. 2. (Color online) Average values of (o;)—(02,), propor-
tional to the first normal stress difference N;, and of (o,,) as a
function of Wi. The line corresponds to the Wi? behavior of the
laminar fixed point. Inset: ratio {o;)/{02,) and |{7,)| as a function
of Wi.

dE . . .
steady state, d—lT:O in which the total energy is constant, at

least in a statistical sense (i.e., on time scales larger than the
typical duration of fluctuations).

The mean values of K and X as a function of the Weis-
senberg number are presented in Fig. 1. Here and in the
following the Weissenberg number Wi=U7/L and the Rey-
nolds number Re=UL/ v, are defined in terms of the ampli-
tude U of the mean velocity, which is measured from veloc-
ity profiles. Indeed, a remarkable feature of the Kolmogorov
flow is that even in the turbulent regime the mean velocity
and conformation tensor are accurately described by sinu-
soidal profiles [32], though with different amplitudes with
respect to the laminar fixed point.

As it is shown in Fig. 1, the system does not depart from
the laminar fixed point up to Wi=10 which is approximately
the critical Wi obtained in [18]. For higher values of the
Weissenberg number, a depletion in the kinetic energy is ob-
served, accompanied by a growth in the trace of the confor-
mation tensor, larger than its laminar prediction (tro)=2
+Wi?/4. Therefore, polymers drain energy from the mean
flow in order to elongate and, once sufficiently stretched they
appreciably start to back-react on the flow itself, through the
coupling term 2—77’—”V -0 in Eq. (2). The increase with respect
to the laminar growth indicates this coupling is very efficient
in sustaining the stretching of polymers.

We observe here that, due to the present flow geometry,
one of the diagonal elements of the conformation tensor is
much larger than the other, namely o;> 0. This implies
that the trace of the tensor is almost entirely given by oy,
and the same is true for the first normal stress difference
N, (0= 02) = 0y, so that {(tro)=(N,). Together with the
growth of the trace of the conformation tensor, the growth of
the first normal stress difference is a clear signature of the
elasticity of the flow. An inspection at the behavior of the
components of the conformation tensor, Fig. 2, indeed re-
veals that (o;)>(0,,) and, in turn, {o,)>|(0y,)|. In par-
ticular we find {oy,)=10{05,) independently of Wi, and
(02 = 10|{o5)| for Wi=10. Although (o,) and {(o,) al-
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FIG. 3. (Color online) Time behavior of kinetic energy K (a) and
average square polymer elongation % (b) in statistically stationary
states, for Re=1 at Wi=11.1 (continuous red lines), Wi=14
(dashed green lines), Wi=16.25 (dot-dashed blue lines) and Wi
=22.4 (dotted pink lines). In (a) Wi increases from top to bottom,
while in (b) from bottom to top, in agreement with the mean values
shown in Fig. 1.

ways remain small compared to (o), their behavior with
Weissenberg number clearly shows a transition around Wi
~ 10, indicating the establishment of a nonzero transversal
force, growing with Wi, potentially capable of sustaining a
secondary flow with nonzero component in the direction per-
pendicular to that of the base flow.

Let us now discuss the behavior of temporal fluctuations
of the global quantities K (kinetic energy) and 3, (trace of the
conformation tensor), when the Weissenberg number is in-
creased, which provides further information on the change of
dynamical regime. In Fig. 3 we report K and 3 versus time,
for several values of Wi, above the elastic instability thresh-
old Wi, = 10. The picture emerging from this figure is that of
a transition from constant to randomly fluctuating states, via
periodic ones.

Below Wi=14, K and 3, are constant, although at different
values with respect to the laminar fixed point. We remark
that the constant behavior does not necessarily mean the flow
is time independent, as it is also compatible with the pres-
ence of steady, uniformly traveling patterns of the form
A(x—uvt) propagating with velocity v.

When Wi= 14 the kinetic energy and the squared polymer
elongation oscillate around their average values. To assess
the frequency content of the above fluctuating temporal sig-
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FIG. 4. (Color online) Frequency spectra Sg(w) of K(r) at Re
=0.875, Wi=14 (a); Re=0.8125, Wi=16.25 (b); Re=0.7925, Wi
=19.02 (c). The inset in (c) is the frequency spectrum plotted with
lin-log axes to show the exponential decay (black line).

nals, we performed a Fourier analysis, computing the power
spectrum

2

, )

1 Tinax .
Sk(w) = | 7— J K(1)el®
max v 0

where [0,7T,,,.] is an interval of time in the statistically
steady state; the results are shown in Fig. 4 (similar results
are obtained for X). This procedure allowed to identify two
transitions: at Wi= 14 an explicit time dependency appears,
signaled by a single frequency peak in the spectra of K and
3. In this range of parameters the system is in a periodic
state, characterized by global oscillations in time. The peak
frequency w. is found to be slightly larger than the frequency
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FIG. 5. (Color online) Snapshot of the vorticity field {(x,y)
=V Xu(x,y) for Re=0.7 and Wi=22.4. Black (white) corresponds
to minimum (maximum) vorticity.

w,=2m/T, associated to the advective time scale, T,
=L,/ U, and smaller than that associated to the polymer re-
laxation time w,=27r/7 (which is in turn much smaller than
the frequency wr=2m/ Ty related to the inverse velocity gra-
dient Tr=L/U of the mean flow): w4 <w,<w,<wp. The
time dependency of the kinetic energy implies that of the
velocity field u=u(x,z). It is known from the theory of dy-
namical systems that this is a sufficient condition for the
appearance of Lagrangian chaos in a 2D incompressible flow
and the chaoticity of Lagrangian trajectories implies the es-
tablishment of mixing features [33]. In previous numerical
simulations [8], we measured the Lagrangian Lyapunov ex-
ponent A, defined as the mean rate of separation of two in-
finitesimally close particles transported by the flow. This
quantity, which gives an estimation of the inverse mixing
time, was indeed found to be positive in a corresponding
range of Wi= 10 values, implying the onset of chaotic (La-
grangian) dynamics.

The present picture persists at increasing Weissenberg
numbers, until at Wi=16.25 a second frequency, associated
to a slower time scale, shows up. For Wi=19.02 several
frequencies are present, indicating more disordered oscilla-
tions. In this regime, the spectral amplitudes seem to ap-
proximately follow an exponential decay.

In this latter case, the random fluctuations in time of the
global quantities point at the onset of irregular dynamics
associated to a chaotic, mixing, multiscale state. A fixed time
snapshot of the vorticity field {(x,y)=du,—dyu, at Wi
=22.4 is shown in Fig. 5 where an irregular, disordered pat-
tern is clearly observable superimposed to the basic periodic
flow.

The statistical characterization of this turbulentlike state is
given by the spectrum of velocity fluctuations in the wave
number k domain. As shown in Fig. 6, the spectrum displays
a power-law behavior E(k)~ k™, with exponent a>3, re-
flecting the activity of a whole interval of spatial modes. The
fast decay of the spectrum, tells us that the velocity and
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FIG. 6. (Color online) Spectrum of velocity fluctuations E(k), in
the wave number domain for Re=0.7 and Wi=22.4; the line cor-
responds to the best fit k=38, The spectrum is computed by averag-
ing over several realizations of the velocity field.

velocity gradients are primarily determined by the integral
scale, i.e., on the system size. This implies that elastic turbu-
lence corresponds to a temporally random, spatially smooth
flow, dominated by strongly nonlinear interactions between
few large scale modes.

B. Wavy patterns

As discussed in the previous section, for values of the
Weissenberg number larger than Wi, = 10, we observe a tran-
sition to non stationary states. We now focus on features of
such states in space and in time.

For Wi=11 a typical filamental pattern emerges in both
velocity (or vorticity) and o fields. Snapshots of these fields
in the (x,y) plane are shown in Fig. 7. These filamental
structures are found to perform a wavy motion along the
horizontal direction of the mean flow. The possibility of ob-
serving “elastic waves” in polymer solutions was theoreti-
cally predicted within a simplified uniaxial elastic model [7]
which has strong formal analogies with MHD equations, but
their experimental observation is still lacking.

In a narrow range of Wi the patterns are found to simply
translate without changing their form. Already at Wi=14
temporal oscillations of pattern shapes are manifest, particu-
larly on filament tails and in regions between them. Never-
theless, wavy motion is still clearly detectable. At larger
Weissenberg number, filamental patterns are significantly
less stable. Indeed they are observed to form and disrupt in
the course of time, as they travel in both positive and nega-
tive horizontal directions.

Since patterns described so far travel along the longitudi-
nal direction, it is natural to wonder what their typical speed
is, how this possibly varies with the transversal coordinate,
and how these quantities change when the elasticity of the
solution is increased. We measured the speed of these elastic
waves by tracking peaks of intensity in the fields ¢, oy; (i.j
=1,2), and following their motion along the x direction (Fig.
8).

The results relative to the cases where coherent motion of
structures was detected are reported in Table I and Fig. 9. In
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FIG. 7. (Color online) Snapshots of different fields at a given
time: (a) {(x,y), (b) oy;(x,y), (¢) opx,y), (d) oxnlx,y); Re
=0.925, Wi=11.1. In all cases black means minimum and white
maximum intensity.

all the considered cases we found an average wave speed
intensity close to half the peak fluid velocity: {|v|)=U/2.
Concerning spatial variations of |v|, these show little disper-
sion 8lv| around the mean at Wi=11.1, as it can be seen also
in the plot (Fig. 9) of the profiles along the transversal coor-
dinate y, which are essentially constant. The speed of differ-
ent parts of a wave, for instance its tip and its tail, tracked by
cross sections at different y coordinates, move at approxi-
mately the same speed, pointing to rigid motion of the struc-
ture, which travels substantially undeformed. We remark
these dynamics are compatible with the constancy of the glo-
bal quantities shown in Fig. 3, due to the fact that K and 2,
are integrals over the space domain by definition, and to the
presence of periodic boundary conditions. When the Weis-
senberg number is increased [Wi=14 in Fig. 9(a)], wave
speed profiles become less constant, indicating more com-
plex motion. The larger scatter of v values reflects the larger
uncertainty &lv| in the measure of the propagation speed of
patterns, which are now found to swing at y locations corre-
sponding to their tails, and the presence of secondary less
steady filamental structures in regions between the better de-
fined primary waves. At even larger values of the Weissen-
berg number (Wi=16.3), waves interact considerably more,
starting to move in both directions and to break and reform
after they “collide;” the distribution of wave speeds now ex-
hibits significantly more variability along the y direction. In
fact, at the present Reynolds number (Re=1), this is the
largest Wi at which we succeeded in tracking waves. Above
this value, patterns form more easily in various parts of the
spatial domain, but interactions among them dominate the
dynamics, producing a disordered flow in both space and
time.
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(b)

t
L.
FIG. 8. (Color online) (a) Component o, of the conformation
tensor. (b) Space-time plot obtained by following the evolution in
time of a horizontal cross section [corresponding to the dotted line
in (a)] of o;(x,y,?). Time is plotted versus position; lines of con-
stant slope mean the pattern moves at constant velocity. Due to
periodic boundary conditions, waves leaving the box on the left
re-enter on the right. Here Re=0.875, Wi=14.

At the smallest value of Wi=11.1 we find that the depen-
dence of the mean velocity on Re is very weak [see Fig.
9(b)], confirming the elastic nature of these instabilities.

In order to get some insight into the physical mechanism
producing filamental patterns, we now consider the spatial
structure of the components u,, u, of the velocity field, for
Re=1 and Wi=Wi,. The velocity field can be thought as
the sum of the base flow and a secondary flow: u,=ug +u,,
Uy=ug,+ u;,; at the laminar fixed point, of course u,=u,
=Uj cos(y/L), u,=uy,=0. Here we are especially concerned
with the establishment of a nonzero transversal velocity
component and the breaking of translational invariance along
the longitudinal direction, above the elastic instability thresh-
old. Snapshots at fixed time of the fields u(x,y,?) and
u,(x,y,), computed from the vorticity field { shown in Fig.
7(a), are presented in Figs. 10(a) and 10(b).

In the horizontal component of velocity u,, the periodicity
of the base flow is clearly visible. The transversal component
u,, on the other hand, displays localized quadrupolar patterns
of positive and negative values, on a background of zero
velocity. Just to fix the ideas, consider, for instance, the pat-
tern centered around y=L,/2, Ly=2 being the height of the
computational domain, on the right part of Fig. 10(a). Notice
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TABLE I. Measure of the typical speed of waves for various values of the Reynolds and Weissenberg
numbers. Here Re, and Wi, are computed from the laminar fixed point velocity amplitude Uy=4; U is the
measured intensity of the mean velocity profile, from which Re and Wi are estimated.

Re, Wi, Re Wi U (o)) = dlv| {vyru
1 12 0.925 11.1 3.7 1.938+0.016 0.52
1 16 0.875 14.0 35 1.90+0.12 0.54
1 20 0.813 16.3 3.25 1.70+0.27 0.52
0.1 12 0.093 11.1 3.7 1.704+0.022 0.46
0.05 12 0.049 11.7 3.9 1.722+0.032 0.44

that the position of this pattern matches exactly that of the tip
of the most clearly visible wave in the vorticity field [Fig.
7(a)]. Indeed, this structure is found to be stable and to travel
along the horizontal direction, following the propagation of
the vorticity filament. The lobes of these quadrupolar pat-
terns (with white, black indicating positive, negative values,
respectively), appear in correspondence to locations of
strong primary strain, where gradients of the base flow attain
maximal values in magnitude. In these regions polymers are
significantly stretched, by the terms (Vu)”- o and o (Vu) in
Eq. (2). In Fig. 10(c), a snapshot, at the same time, of the
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FIG. 9. (Color online) Transversal profiles of wave speed: (a)
measurements at fixed Re=1 and varying Weissenberg number
Wi=11.1 (red), Wi=14 (green), Wi=16.3 (blue); (b) measurements
at fixed Wi=11.1 and varying Reynolds number Re=0.925 (red),
Re=0.093 (green), Re=0.049 (blue). In both plots wave speeds
measured in different fields ({,0,,07,,0,,) are presented. Wave
speeds are made nondimensional dividing by the intensity of the
mean velocity profile U, the vertical coordinate is normalized to the
box size L.

trace of the conformation tensor, which measures the square
elongation of polymers, is reported. Strong elongations ap-
pear in thin filamental structures localized around y coordi-
nates where u, changes sign or, equivalently, where du, is
maximum. As a consequence, it is in this regions that they
can exert a relevant feedback on the flow, through the elastic
stress term Z—ZL’V -0

In other words, the transverse flow develops where the
feedback of polymers on the velocity dynamics is strongest.
Finally, the establishment of the transversal component of
the flow is accompanied by a reduction of the longitudinal
one, due to incompressibility [Fig. 10(b)]. The result of this
whole process is the formation of recirculation zones, which
are evident in a plot of the corresponding stream function ¢
(such that u,=—d,4, u,=0,1) (Fig. 11). These in turn result
to be organized in an array of counter-rotating vortices of
equal strength, with a basic periodicity of 2 in the longitudi-
nal direction, which propagates horizontally.

Concerning the feedback of polymers on the flow field,
the transversal velocity is found to be sustained by a persis-
tent correlation between the transversal components of the
velocity field u, and the elastic body force f(vel)
=(2nv/7)(V-a),, confirming what anticipated in the preced-
ing discussion. The y profiles of these quantities are shown
in Fig. 12, at x=4.7, that is immediately on the left of the
center of the quadrupolar pattern discussed above. Though
this figure refers to a single realization at fixed time, this
positive correlation is a feature persisting over time. In Fig.
12 it is also shown the profile of W=f<vel)uy/(|f§,d)|~|uy ),
which is the sign of the elastic force’s power. Though this
fluctuates wildly, it is clearly positive in finite size regions
located around y ==, corresponding to the extension of the
quadrupolar pattern on the right in Fig. 10(a). This observa-
tion further supports the role of elastic contributions in the
establishment of the transversal flow, and hence in the ap-
pearance of filamental structures.

To conclude, the picture emerging from this description is
that filamental patterns are associated to the formation of
arrays of counter-rotating vortices, sustained by the dynami-
cal coupling between velocity and localized structures where
polymers are strongly elongated. Indeed this is probably the
simplest way to break the translational symmetry of the ve-
locity field along the horizontal direction. The heuristic ar-
gument developed here is summarized in the scheme in Fig.
13. As a final remark, it may be interesting to observe that
this allows to understand the direction of wave propagation.
This results from the direction of the base velocity field,
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FIG. 10. (Color online) Snapshots in the (x,y) plane of different fields at Re=0.925, Wi=11.1. (a) Secondary transverse flow u,= u); (b)
longitudinal flow u,=ug,+u_; (c) square polymer elongation fre. In all cases black means minimum and white maximum intensity. Due to
the positive definiteness of the conformation tensor, in (c) black corresponds to zero average square elongation.

from which vortices of intensity of order U/2 form. Due to
the periodicity of the base flow, both positive and negative
horizontal directions of propagation are possible. The se-
lected direction then only depends on where the positive cor-
relation between a random perturbation of u, and the elastic
body force ff,el) happens to be established. As shown in Fig.
14, at increasing the elasticity of the solution, the probability
to find positive correlations gets larger, which implies the
possibility of forming filaments in a larger fraction of the
domain. This reflects the experimental observation that when
Wi is sufficiently large, filaments’ propagation may happen
in both directions.

IV. SUMMARY AND CONCLUSIONS

In this work we have studied the dynamics of a two-
dimensional parallel flow, namely the Kolmogorov shear
flow, of a viscoelastic fluid, close to the elastic instability
threshold predicted in [18] within the framework of linear
stability analysis. By means of direct numerical simulations
of the Oldroyd-B model, we investigated the destabilization
of this flow induced by the elastic forces associated to the

FIG. 11. (Color online) Stream function {(x,y) for Re=0.925,
Wi=11.1; black corresponds to minimum, white to maximum.

dynamics of polymer molecules in the solution. Above a
critical Weissenberg number Wi.~ 10 a transition to new
dynamical states was observed. In this regime of large elas-
ticity, the system was found to be characterized by the pres-
ence of filamental structures propagating in the direction of
the mean flow and global oscillations introducing temporal
dependencies in the observables. This phenomenon allows
the establishment of mixing features. Close to the critical
Weissenberg number the structures can be described as trav-
eling waves associated to steady patterns of counter-rotating
vortices sustained by the coupling between elastic forces and
velocity field. The onset of wavy motion of filaments was
found to occur even in the limit of very small Reynolds
numbers, typically for Re=0.05, at Wi=Wi,.

Increasing the Weissenberg number, the system evolves
toward more complex dynamics, where filaments are ob-
served to continuously form and break as a consequence of
interactions among them. As a consequence, several time
scales and finer spatial scales result to be involved in the
dynamical behavior, which displays strongly nonlinear fea-

300

200

100

-100

FIG. 12. (Color online) Transverse polymer body force fﬁ,d) and
transverse velocity u, (multiplied by a factor 150 for reasons of
visualization) versus the vertical coordinate y. Inset: elastic force’s
power as a function of the vertical coordinate. Here Re=0.925,
Wi=11.1 and the horizontal coordinate is x=4.7. This corresponds
to a vertical line immediately on the left of the center of the qua-
drupolar pattern in Fig. 10.
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ELASTIC WAVES AND TRANSITION TO ELASTIC...
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FIG. 13. (Color online) Schematic illustration of the formation
of vortices. Yellow star points indicate locations of maximum ve-
locity gradient in absolute value, where polymers are significantly
stretched and the transverse flow is more likely to occur; small
black arrows correspond to the secondary transversal flow; big
black arrows give the direction of propagation of waves. The left
column contains the sign of u,, and the right one that of {.

tures resembling those of a turbulent flow. For instance,
when Wi=20 (and Re=<1) the power spectrum of velocity
fluctuations E(k) is given by a power-law k™% of exponent «
larger than 3, in close agreement with experimental findings
[1].

The present results refer to a simplified viscoelastic model
in an idealized geometrical configuration. Nevertheless, this

PHYSICAL REVIEW E 82, 036314 (2010)
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FIG. 14. (Color online) Probability density function of the sign
of transverse flow’s power. At growing Wi positive values are more
likely to occur. Here the Reynolds number is always Re=1.

simple setup proved useful to detect the appearance of co-
herent structures in the form of “elastic waves,” driving the
transition toward mixing states, and to reproduce the basic
phenomenology observed in experiments. We hope these
findings may help in the understanding of the phenomenon
of elastic turbulence in more realistic configurations and in
the comprehension of the elastic instability mechanism in
parallel flows.
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