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A Green’s function for a generalized two-dimensional �2D� fluid in an unbounded domain �the so-called �
turbulence system� is discussed. The generalized 2D fluid is characterized by a relationship between an
advected quantity q and the stream function �: namely, q=−�−���/2�. Here, � is a real number and q is
referred to as the vorticity. In this study, the Green’s function refers to the stream function produced by a
delta-functional distribution of q, i.e., a point vortex with unit strength. The Green’s function has the form
G����r��r�−2, except when � is an even number, where r is the distance from the point vortex. This functional
form is known as the Riesz potential. When � is a positive even number, the logarithmic correction to the Riesz
potential has the form G�r�����r�−2 ln r. In contrast, when � is a negative even number, G��� is given by the
higher-order Laplacian of the delta function. The transition of the small-scale behavior of q at �=2, a well-
known property of forced and dissipative � turbulence, is explained in terms of the Green’s function. More-
over, the azimuthal velocity around the point vortex is derived from the Green’s function. The functional form
of the azimuthal velocity indicates that physically realizable systems for the generalized 2D fluid exist only
when ��3. The Green’s function and physically realizable systems for an anisotropic generalized 2D fluid are
presented as an application of the present study.
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I. INTRODUCTION

It is known that the governing equations for some geo-
physical two-dimensional �2D� fluids can be expressed by a
unified form of the nonlinear advection equation,

�q

�t
+ J��,q� = D + F , �1a�

�̂�k,t� = − �k�−�q̂�k,t� , �1b�

where ��r , t� is the stream function, q�r , t� is a scalar field
advected by the velocity field v=ez���, ez is a unit vector
normal to the plane of motion, J is the 2D Jacobian, k
= �kx ,ky� is a 2D wave vector, � is a real number, and D and
F represent dissipation and forcing terms, respectively.

q̂�k , t� and �̂�k , t� are the Fourier transforms of q and �,
respectively �1�. This system is referred to as a generalized
2D fluid system or � turbulence system. The governing
equation �1� reduces to the vorticity equation for a 2D in-
compressible barotropic fluid �the so-called 2D Navier-
Stokes �NS� system� for �=2, and to the governing equation
for the surface quasigeostrophic �SQG� system �describing
the advection of temperature along a surface bounding a con-
stant quasigeostrophic potential vorticity interior �2�� for �
=1. The Charney-Hasegawa-Mima �CHM� equation in the
asymptotic model �AM� regime �3� and the shallow water
quasigeostrophic potential vorticity equation at scales that

are large compared with the radius of deformation �4� corre-
spond to Eq. �1� in the case �=−2.

In a manner similar to the 2D NS system, Eq. �1� has two
quadratic inviscid invariants,

E� � −
1

2
��q� , �2�

Q� �
1

2
�q2� , �3�

where the angle brackets denote a spatial average. We will
simply refer to q, E�, and Q� as vorticity, energy, and enstro-
phy, respectively, although they have units �q�=L2−�T−1,
�E��=L4−�T−2, and �Q��=L4−2�T−2, where L and T are units
of length and time, respectively.

Because the two inviscid invariants exist, one can infer
that cascade phenomena of both invariants in wave number
space are possible in turbulence governed by Eq. �1�, for any
value of �. Hence, the turbulent properties of a generalized
2D fluid have already been actively investigated by a number
of researchers �1,5–12�. It is known that the enstrophy spec-
trum Q��k�, defined by Q��	0

�Q��k�dk, exhibits some fas-
cinating features in the enstrophy inertial range of forced and
dissipative turbulence, governed by Eq. �1�. For 0���2,
the enstrophy spectrum in the enstrophy inertial range obeys
the scaling form

Q��k� 
 k−�7−2��/3, �4�

but takes the form
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Q��k� 
 k−1 �5�

for �	2 �1,5,7,9�. It is also known that the functional form
of the spectrum �5� is characteristic for a passive scalar.
These facts indicate that �=2 is a transition point in the
behavior of the advected quantity q, in terms of it being
active or passive on a small scale. Furthermore, such a tran-
sition of the spectral slope is responsible for the dominance
of enstrophy transfer by nonlocal triads, compared with the
transfer by local triads that occurs in wave number space
�1,7,9,12�.

The relationship between the vorticity q and the stream
function �, Eq. �1b�, characterizes a generalized 2D fluid.
When �	0, for example, the stream function �or, equiva-
lently, the velocity� is a smoothed form of q. As � grows
larger, the smoothing effect is enhanced, the velocity be-
comes more decoupled from the small-scale structure of the
vorticity, and the problem becomes more spectrally nonlocal.

To discuss the coupling between the vorticity and velocity
fields quantitatively, a study of the Green’s function for Eq.
�1b� �hereafter referred to as the Green’s function for a gen-
eralized 2D fluid� will be quite helpful, because the Green’s
function includes fundamental properties of the flow field
generated by a velocity source �the vorticity q�. However, to
date, the Green’s function for a generalized 2D fluid has only
been investigated for the cases �=1 and 2. In the present
research, we therefore undertake a more comprehensive ex-
amination of the Green’s function for a generalized 2D fluid.

Because Eq. �1b� can be rewritten as

�− ���/2� = − q , �6�

the Green’s function for a generalized 2D fluid is the Green’s
function for the fractional Laplacian �−���/2 in 2D space.
The Green’s function for the fractional Laplacian of any or-
der has been already known mathematically. However, math-
ematically rigorous derivation of the Green’s function for the
fractional Laplacian of any order requires knowledge of both
the functional analysis and the generalized functions. Ac-
cordingly, for the purposes of keeping the present paper rea-
sonably self-contained and the readers’ convenience, we
present a pedagogical derivation of the Green’s function of
the fractional Laplacian in 2D space for all values of �.

Another objective of the present study is to determine
whether physically realizable 2D fluids exist for all values of
�. Although Eq. �1� was originally proposed as a generaliza-
tion of the 2D NS system, physically realizable fluid systems
are known to exist for �=1 and −2. This naturally raises the
question of whether there are 2D fluid systems the governing
equations of which can be expressed by Eq. �1� for values
other than �=2, 1, and −2, or whether physically realizable
2D fluid systems exist for all values of �. Because this prob-
lem has not yet been examined, we attempt a solution using
the Green’s function obtained in the present research.

This paper is organized as follows. In Sec. II, we present
a formulation of the problem. The Green’s function for a
generalized 2D fluid is derived in Sec. III. The velocity field
calculated from the Green’s function is described in Sec. IV.
We discuss the transition of the small-scale behavior of q
from active to passive in terms of the Green’s function, and

the existence of physically realizable 2D fluids is investi-
gated in Sec. V. The transition of the small-scale behavior of
q at �=2 has been explained in terms of the coupling coef-
ficients of the triad interactions in the spectral form of the
governing equation �12�. However, we present another expla-
nation of such transition using the Green’s function. A sys-
tem similar to that of Eq. �1�, but anisotropic in nature, exists
in geophysical contexts �13,14�. We shall refer to such a
system as an anisotropic generalized 2D fluid. As an appli-
cation of the present study, the Green’s function and the ex-
istence of a physically realizable system for an anisotropic
generalized 2D fluid are also considered in Sec. V. We sum-
marize our results in Sec. VI.

II. FORMULATION

In this study, we consider fluid motion in an unbounded
domain. Hereafter, the time argument is omitted for the sake
of brevity. We define the 2D Fourier transform of a quantity
A�r� as

Â�k� �
1

2

�

−�

�

dx�
−�

�

dyA�r�e−ik·r. �7�

Likewise, the inverse Fourier transform of Â is defined by

A�r� �
1

2

�

−�

�

dkx�
−�

�

dkyÂ�k�eik·r. �8�

The Green’s function is the stream function produced by a
point vortex with unit strength. Without loss of generality,
we place the point vortex at the origin of coordinates,

q�r� = ��r� = ��x���y� . �9�

That is, we calculate the Green’s function G����r ;0� in stan-
dard notation. Hereafter, we simply write G����r ;0� as
G����r�. Thus the formal expression of the Green’s function is

G����r� = − �− ��−�/2��r� . �10�

The Green’s function for the point vortex located at r0,
G����r ;r0�, is obtained from G����r� by substituting the argu-
ment r−r0 in place of r. Because the Fourier transform of
Eq. �9� is q̂�k�= 1

2
 , the Fourier transform of Eq. �10� is

Ĝ����k� = −
1

2


1

�k��
. �11�

Thus, from Eqs. �8� and �11�, the Green’s function for the
present problem is expressed by

G����r� = −
1

4
2�
−�

�

dkx�
−�

�

dky
eik·r

�k��
. �12�

Because Ĝ����k� satisfies the relationship Ĝ����k��= Ĝ����−k�,
where the asterisk denotes the complex conjugate, G����r� is
a real function. Introducing polar coordinates in the physical
and Fourier spaces, Eq. �12� yields
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G����r� = −
1

8
2�
0

2


d��
−�

�

dk
eikr cos��−
�

�k��−1 , �13�

where r��r�, k��k�, and 
 and � denote the azimuthal
angles in the physical and Fourier spaces, respectively. The
Green’s function for the present version of the problem is
isotropic in the physical space, because the point vortex is
placed at the origin of coordinates. Therefore, without loss of
generality, we can set 
=0 in Eq. �13�. Moreover, letting z
=cos �, and using the fact that the integrand is an even func-
tion with respect to z, Eq. �13� becomes

G����r� = −
1

2
2�
0

1

dz
1

�1 − z2
�
−�

�

dk
eikrz

�k��−1� . �14�

In the next section, we explicitly carry out the integrations in
Eq. �14�.

Once the Green’s function has been obtained, the stream
function and velocity field are calculated from

��r� =� G����r;r0�q�r0�dr0, �15�

v�r� =� ez � �G����r;r0�q�r0�dr0

= −� ez � �0G����r;r0�q�r0�dr0, �16�

respectively. Here, �0 indicates the gradient with respect to
the variable r0. The last expression of Eq. �16� is obtained
from the fact that the Green’s function G����r ;r0� is a func-
tion of �r−r0�. The azimuthal velocity around the point vor-
tex can be calculated from

v

����r� =

�G����r�
�r

. �17�

III. GREEN’S FUNCTIONS

In this section, the derivation of the Green’s function for a
generalized 2D fluid is outlined. In Eq. �14�, the integral with
respect to k is the Fourier transform of an algebraic function,
while the integral with respect to z can be expressed in terms
of the gamma function. Gamma function formulas necessary
for the present study are listed in the Appendix A. The Fou-
rier transform of an algebraic function can be classified ac-
cording to three types, depending on the value of the expo-
nent of the algebraic function, as summarized in Appendix B.
In what follows, let n be a non-negative integer, and let m be
a natural number. The results of integrating Eq. �14� are then
classified into the following three cases: excluding the values
�= �2n,

G����r� = ����r�−2, �18�

for �=2m,

G�2m��r� = �L�2m�r2m−2�ln r + C� , �19�

where C is an arbitrary constant, and for �=−2n,

G�−2n��r� = − �− ��n��r� . �20�

The coefficients ���� and �L�2m� can be written in terms of
the gamma function, as follows:

���� = −
1

2�


��2 − �

2
�

���

2
� , �21�

�L�2m� =
�− 1�m+1

22m−1
���m��2 . �22�

Detailed derivations of Eqs. �18� and �19� are presented in
Appendixes C and D, respectively. The functional form of
Eq. �18� was originally derived by Riesz �15�, and is fre-
quently referred to as the Riesz potential �16,17�.

In practical calculations involving Eq. �21�, it is advanta-
geous to rewrite the expression in terms of the gamma func-
tion with a positive argument. Negative arguments occur in
Eq. �21� when ��0 or �	2. Using the formula �A2� and
�21� can be rewritten as

���� = −
1

2�
2
��2 − �

2
��2

sin
�


2
�23�

or

���� = −
1

2�
���

2
��2

sin
�


2

. �24�

Equations �23� and �24� are useful expressions for ����
when ��0 and �	2, respectively.

We confirm the validity of the above results by calculating
existing Green’s functions. For �=2, Eq. �19� coupled with
Eq. �22� reduces to

G�2��r� =
1

2

ln r + C . �25�

This is the well-known Green’s function for the 2D Laplace-
Poisson equation �the 2D NS system�. On the other hand,
when �=1, Eqs. �18� and �21� give

G�1��r� = −
1

2
r
. �26�

This is consistent with the Green’s function for the SQG
system discussed in �2�.

We note in passing that for �=0, the stream function is
proportional to the vorticity. In this case, the nonlinear term
in the governing Eq. �1a� vanishes. Thus, this case is mean-
ingless.

Let us explicitly examine the dependence of ���� and
�L��� on �. Figure 1 is a plot of ���� over the interval
−3���7. Numerical values of the gamma function are
computed using the gammln subroutine in �18�. As this fig-
ure shows, ��1�=− 1

2
 , while ��−1�=��3�= 1
2
 . Moreover,

���� diverges as �→2m, as Eq. �24� indicates. For �	4,
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except in the vicinity of �=2m+2, ���� is quite small �for
example, ��5�= 1

18
 , ��7�= 1
450
 �. In contrast, ���� con-

verges to zero as �→−2n. At the values of � where ����
diverges, both algebraic and logarithmic dependence on r
appear in the Green’s function. On the other hand, at the
values of � where ���� converges to zero, the Green’s func-
tion is given by the higher-order Laplacian of the delta func-
tion. In this sense, the functional form of the Green’s func-
tion is discontinuous at �= �2n. Figure 2 is a plot of �L���,
given by Eq. �22�. �L��� has a maximum value at �=2, and
its magnitude decreases uniformly toward zero as � in-
creases.

IV. AZIMUTHAL VELOCITY AROUND A POINT VORTEX

In this section, we calculate the azimuthal velocity v

���

around a point vortex located at the origin of coordinates r
=0. For �� �2n, Eqs. �17� and �18� give

v

��� = �� − 2�����r�−3. �27�

For �=1 and 3, the coefficient ��−2����� takes the value
1

2
 . Note that one can write

�� − 2����� =
1

2�−1


��2 − �

2
+ 1�

���

2
� �28�

for 0���2, with the aid of Eqs. �21� and �A1�.
On the other hand, for �=2m, Eqs. �17� and �19� give

v

�2m� = �L�2m�r2m−3 + �2m − 2��L�2m�r2m−3�ln r + C� .

�29�

For �=2, Eq. �29� reduces to v

�2�= 1

2
r . Although Eq. �27�
coupled with Eq. �28� cannot be applied when �=2, the case
reduces to v


�2�= 1
2
r , which is consistent with Eq. �29� with

�=2. Thus, the velocity given by Eq. �27� with Eq. �28� is
valid even for �=2.

Figure 3 is a plot of the coefficient ��−2����� over the
interval −3���7. As stated above, ��−2����� is exactly
equal to 1

2
 for �=1,2 ,3, while it is approximately equal to
1

2
 for 1���3. As �→2m+2, ��−2����� tends to di-
verge. In contrast, as �→−2n, ��−2����� converges to
zero.

V. DISCUSSION

First, we discuss the transition of the small-scale behavior
of the vorticity q at �=2 in terms of the Green’s function
obtained in this study. As stated in Sec. I, the slope of the
enstrophy spectrum in the enstrophy inertial range of forced
and dissipated generalized 2D turbulence is discontinuous at
�=2. For ��2, the slope of the enstrophy spectrum depends
on �, whereas it remains constant for �	2. For �	2, the
enstrophy spectrum in the enstrophy inertial range has char-
acteristic of the variance spectrum of a passive scalar. This

FIG. 1. Coefficient ���� as a function of �. The dash-dot lines
indicate the reference lines with the values of �

1
2
 .

FIG. 2. Coefficient �L��� as a function of �. The dash-dot line
indicates the reference line with the value of 1

2
 .

FIG. 3. Dependence of ��−2����� on �. The dash-dot line
indicates the reference line with the value of 1

2
 .
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indicates that for �	2, the advected quantity q behaves as if
it were a passive quantity, on the small scale. The transition
of small-scale behavior of q at �=2 was explained in terms
of the magnitude of the coupling coefficients in the spectral
form of the governing equation by Tran et al. �12�. Their
explanation is independent of the amplitude of the three
modal members. Moreover, the coupling coefficients of the
triad interaction have the same dimension with the Green’s
function in the present study. These facts imply that the tran-
sition of small-scale behavior of q at �=2 can be explained
in terms of the Green’s function. We introduce a decomposi-
tion of the velocity field by separating the domain of integra-
tion in Eq. �16� into a local region of radius �r0−r��R and a
nonlocal region that accounts for the remainder of the do-
main �19–21�. That is, we divide the velocity field as fol-
lows:

v = vR + vB, �30�

vR�r� � − �
�r0−r��R

ez � �0G����r;r0�q�r0�dr0, �31�

vB�r� � − �
�r0−r�	R

ez � �0G����r;r0�q�r0�dr0. �32�

Here, R is set according to the maximum scale of the enstro-
phy inertial range �if the smallest wave number of the enstro-
phy inertial range is kmin, we let R
kmin

−1 �. Then, vR�r� is the
velocity induced by q within a scale less than or equal to the
enstrophy inertial range, centered at r, while vB�r� is pro-
duced by q at values of r far beyond the enstrophy inertial
range. If vB is dominant over vR, the behavior of the advec-
tion of q in the enstrophy inertial range can be considered
passive. We present a qualitative explanation of the � depen-
dence of the predominance of vR over vB �or vice versa� in
terms of the Green’s function. We can assume that the vor-
ticity q is statistically homogeneous and isotropic in the en-
strophy inertial range, �r−r0��R. Thus, in a statistical sense,
the integrand of Eq. �16� is a function of r0��r0�. We can
then make use of the estimate

vR 
 �
r0�R

ez � �0G����r0�q�r0�r0dr0. �33�

Equation �33� indicates that the velocity vR is given by a
weighted integral of the vorticity q, with the weight function
r0ez��0G����r0�. Moreover, the weight function can be es-
timated by

�r0ez � �0G����r0�� 
 r0
�−2, �34�

except when �= �2n. Equation �33�, coupled with Eq. �34�,
states that the weighted integral of q gives more weight to
small scales when ��2, and to large scales when �	2. This
indicates that vR is the dominant part of v when ��2, and
vB is the dominant part of v when �	2. Thus, we conclude
that the small-scale behavior of q is active for ��2 and
passive for �	2, and the transition of such behavior occurs
at �=2.

We next discuss the existence of physically realizable 2D
fluid systems, using the azimuthal velocity around a point
vortex that was derived from the Green’s function. As stated
in the Sec. I, it is known that the governing equations of
three systems �the 2D NS, SQG, and CHM-AM systems� can
be expressed by Eq. �1�. This raises the question of whether
there are other 2D fluid systems the governing equations of
which can be expressed by Eq. �1�. Equation �27� indicates
that the azimuthal velocity around a point vortex v


��� is a
monotonically increasing function of r for �	3; i.e., when
�	3, the azimuthal velocity around a velocity source in-
creases with the distance from the source. This is physically
incongruous because it is natural to expect that the velocity
will decrease �or remain constant at the worst� as the distance
from the source increases. Thus, we conclude that physically
realizable 2D fluid systems exist only for ��3.

Finally, as an application of the present results, we discuss
the Green’s function and the existence of a physically real-
izable system for the following:

�q

�t
+ J� ��

�x
,q� = D + F , �35a�

q̂�k,t� = − �k���̂�k,t� , �35b�

The above system is regarded as an anisotropic extension of
Eq. �1�. It is known that the governing equations for 2D
thermal convection of a Boussinesq fluid at an infinite
Prandtl number and 2D low-frequency plasma dynamics of
the E and F regions of the terrestrial ionosphere can be re-
duced to Eq. �35�. For example, the systems studied by
Gruzinov et al. �14� and Weinstein et al. �13� correspond to
Eq. �35� with �=2 and 4, respectively. We note, in passing,
that the system studied by Weinstein et al. �13� has some-
times been misread as Eq. �1� with �=3 �5,8�. Because an-
isotropy is crucial for the system studied by Weinstein et al.
�13�, one cannot interpret it as a special case of Eq. �1�,
which represents an isotropic system. The y direction in Eq.
�35� is the direction of the temperature gradients or the elec-
tron density of the basic state. Although boundaries should
exist in the y direction, we now consider Eq. �35� in an
unbounded domain. Using the results of the present study,
we can then calculate the Green’s function for Eq. �35�. The
quantity � corresponding to the delta-functional distribution
of q is just the Green’s function derived in Sec. III. Thus, the
Green’s function for Eq. �35�, GAI

���, is given by the partial
derivative with respect to x of the Green’s function for Eq.
�1�; i.e., GAI

���= �G���

�x . Except when �= �2n, the Green’s func-
tion for Eq. �35� is then given by

GAI
����r� = �� − 2�����xr�−4. �36�

Moreover, we obtain the x and y components of the velocity
associated with Eq. �36� from

vx = −
�GAI

���

�y
= − �� − 2��� − 4�����xyr�−6, �37a�
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vy =
�GAI

���

�x
= �� − 2�����r�−4
1 + �� − 4�

x2

r2� , �37b�

respectively. Equation �37b� shows that vy is an increasing
function of r for �	4. Thus, we conclude that a physically
realizable system for Eq. �35� should have ��4, because the
velocity vy should not be a monotonically increasing func-
tion of the distance from the velocity source.

We interpret the above result in terms of the governing
equations for 2D thermal convection of a Boussinesq fluid,
consisting of the thermodynamical equation governing the
temperature �which has the same form as Eq. �1a�, where q is
interpreted as the temperature� and the vorticity equation

�

�t
�� + J��,��� = �̃g

�q

�x
− �p�− ��p���� , �38�

where �� is the vorticity in the ordinary sense, �̃ is the
thermal expansion rate, g is the acceleration due to gravity, p
is the degree of hyperviscosity, and �p is the viscosity coef-
ficient. When the inertial term of Eq. �38� is negligible �i.e.,
the Reynolds number is low�, if we introduce the function �,
defined by ��

�x =�, together with suitable nondimensionaliza-
tion, Eqs. �1a� and �38� reduce to Eq. �35� with �=2�p+1�.
Therefore, we can interpret Eq. �35� as the governing equa-
tion for 2D thermal convection at a low Reynolds number.
As stated above, the degree of hyperviscosity p relates to the
parameter �; normal viscosity �p=1� corresponds to �=4,
and hyperviscosity �p	1� to �	4. It is well known that
hyperviscosity is often adopted in numerical calculations to
realize a high Reynolds number state at low numerical reso-
lutions. Moreover, hyperviscosity is suitable for the physical
modeling of viscosity at high Reynolds numbers. Thus, Eq.
�35a� for �	4, which describes the dynamics of 2D thermal
convection at a low Reynolds number by using hyperviscos-
ity, is physically unreasonable.

VI. SUMMARY

We have discussed the Green’s functions and the associ-
ated velocity fields for both isotropic and anisotropic gener-
alized 2D fluids in an unbounded domain. The functional
form of the Green’s function for an isotropic generalized 2D
fluid depends on the value of �. As long as �� �2n, where
n is non-negative integer, the Green’s function is given by
the Riesz potential, which is an algebraic function of the
distance from the point vortex, with an exponent depending
on �. For �=2m, where m is a natural number, the loga-
rithmic correction to the Riesz potential appears. When
�=−2n, the Green’s function is given by the nth Laplacian
of the delta function. As a function of �, the Green’s function
is discontinuous at �= �2n. In contrast, the azimuthal ve-
locity around the point vortex is a continuous function of �
at �=2, corresponding to the 2D NS system. Using the func-
tional form of the Green’s function, we presented a qualita-
tive discussion of the transition of the small-scale behavior
of q at �=2, which is a well-known property of isotropic
generalized 2D turbulence in the enstrophy inertial range. We
also discussed the existence of physically realizable systems
for isotropic and anisotropic generalized 2D fluids.

In this study, we have discussed the Green’s function for
an isotropic generalized 2D fluid in an unbounded domain.
In numerical simulations of an isotropic generalized 2D
fluid, doubly periodic boundary conditions are commonly
adopted �1,5,7,9,11�. Under such boundary conditions, the
Green’s function remains to be derived. Therefore, the deri-
vation of the Green’s function for a generalized 2D fluid in
doubly periodic boundary conditions is one of the subjects of
future studies. Once the Green’s function has been deter-
mined, it should be possible to construct a numerical point
vortex model of a generalized 2D fluid and to examine the
motion of point vortices. These topics also await further re-
search.
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APPENDIX A: GAMMA FUNCTION FORMULAS

�i� The difference equation satisfied by the gamma func-
tion,

��x + 1� = x��x� . �A1�

�ii� Relationship between the gamma function and a trigo-
nometric function,

��x���1 − x� =



sin x

. �A2�

�iii� Duplication formula for the gamma function,

22x−1��x���x +
1

2
� = �
��2x� . �A3�

�iv� Formula for the integral of an algebraic function,

�
0

1 xp−1

�1 − xq
dx =

�


q

�� p

q
�

�� p

q
+

1

2
� , �A4�

where p and q are real numbers satisfying p
q 	0.

APPENDIX B: FOURIER TRANSFORM
OF AN ALGEBRAIC FUNCTION

In this study, we define the inverse Fourier transform of
the algebraic function �k�−p by
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F−1��k−p�� �
1

�2

�

−�

�

�k�−peikxdk �B1�

where p is a real number. The integral in Eq. �B1� converges
for 0� p�1. However, if one introduces generalized func-
tions, Eq. �B1� can be evaluated for all values of p �22�, and
the results are summarized as follows:

F−1��k�−p� =� 2



sin� p


2
���1 − p�

�x�1−p , �p � − 2n,2m − 1�

�B2a�

F−1��k�2n� = �− 1�n�2

d2n

dx2n��x� , �B2b�

F−1��k�−2m+1� = �− 1�m� 2




�x�2m−2

��2m − 1�
�ln�x� + C� .

�B2c�

Here, C is an arbitrary constant, originating from the fact that
�k�−1 contains an arbitrary multiple of ��k�.

APPENDIX C: DERIVATION OF EQ. (18)

Using Eq. �A2�, the right hand side of Eq. �B2a� can be
rewritten as

sin� p


2
���1 − p�

�x�1−p =

��1 + p

2
���1 − p

2
�

2��p��x�1−p . �C1�

Thus, Eq. �14� reduces to

G����r� = −
1

2
2

���

2
���2 − �

2
�

��� − 1� 
�
0

1

dz
z�−2

�1 − z2�r�−2

= −
1

4
3/2

��� − 1

2
���2 − �

2
�

��� − 1�
r�−2

= −
1

2�


��2 − �

2
�

���

2
� r�−2. �C2�

for �	
1
2 and ��2m. Integration with respect to k is per-

formed using Eqs. �B2a� and �C1�, and integration with re-
spect to z is accomplished using Eq. �A4�. The derivation of
the last expression from the second one is carried out with
the aid of Eq. �A3�. This is just Eq. �18� combined with Eq.
�21�.

Note that because the integral with respect to z in the first
expression is convergent for �	

1
2 , and the first expression of

Eq. �C2� is derived using Eq. �B2a�, the result Eq. �C2� is
valid only for �	

1
2 and ��2m. We derive the Green’s func-

tion for ��
1
2 from the Green’s function for �	

1
2 , using the

following relationship:

− �− ���/2G����r� = − �− ����−2m�/2��− ��mG����r�� = ��r� ,

�C3�

where �	
1
2 . Applying the 2D Laplacian to Eq. �C2� and

using Eq. �A1�, one obtains

− �G����r� = − �� − 2�2����r�−4 = ��� − 2�r�−4. �C4�

The last expression in the above equation is just Eq. �18�
with �−2 in place of � �that is, −�G���=G��−2��. This indi-
cates that by repeatedly applying �−�� to Eq. �C2�, one ob-
tains the Green’s function for ��

1
2 , except when �=−2n,

and the formula �C2� is valid for all real values of � except
�= �2n. The desired result follows.

In the case �=−2n+1, the validity of the result Eq. �C2�
is proved in the following way. For �=−2n+1, an applica-
tion of Eq. �B2b� to Eq. �18� yields

G�−2n+1��r� =
�− 1�n+1



�

0

1 1
�1 − z2

d2n

d�rz�2n��rz�dz

=
�− 1�n+1


 
�
0

1 � d2n

dz2n

1
�1 − z2���rz�dz�r−2n

=
�− 1�n+1

2

� d2n

dz2n

1
�1 − z2�

z=0

r−2n−1

=
�− 1�n+122n−1


2 
��2n + 1

2 ��2

r−2n−1, �C5�

where integration by parts is used in the derivation of the
second expression, and Eq. �E1� in the derivation of the last
expression. Note that by inserting �=−2n+1 into Eq. �C2�,
and making use of Eq. �A2�, one obtains Eq. �C5�. Thus, the
validity of Eq. �C2� is proved in the case �=−2n+1.

APPENDIX D: DERIVATION OF EQ. (19)

For �=2m, applying Eq. �B2c� to Eq. �14�, one obtains

G�2m��r� =
�− 1�m+1


2��2m − 1��0

1 �rz�2m−2

�1 − z2
�ln�rz� + C�dz

=
�− 1�m+1


2��2m − 1�
��0

1 z2m−2

�1 − z2
dz��ln r + C�

+ �
0

1 z2m−2 ln z
�1 − z2

dz�r2m−2. �D1�

The first integral with respect to z in Eq. �D1� can be evalu-
ated with the aid of Eq. �A4�. In contrast, one readily finds
that the second integral in Eq. �D1� has a negative value,
because the integrand is negative definite over the interval of
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integration. �See Appendix F.� However, the definite value of
this integral is unimportant, because it can be combined with
the arbitrary constant C. Thus, one obtains

G�2m��r� =
�− 1�m+1r2m−2


2��2m − 1�
�

�
��2m − 1

2
�

2��m�
�ln r + C�

=
�− 1�m+1

22m−1
���m��2r2m−2�ln r + C� . �D2�

Here, the duplication formula for the gamma function �Eq.
�A3�� is used.

APPENDIX E: nTH DERIVATIVE OF 1
�1−x2

One can derive the following formula:

� d2n

dx2n

1
�1 − x2�

x=0

=

22n��2n + 1

2
�2



. �E1�

Let y�x�= 1
�1−x2 , and denote the nth derivative of y�x� by

y�n��x�. Then, y�n��x� satisfies the following equation:

�1 − x2�y�n+2��x� − �2n + 3�xy�n+1��x� − �n + 1�y�n��x� = 0.

�E2�

Equation �E2� can be proved by mathematical induction.
From Eq. �E2�, one obtains the recurrence formula

y�2n��0� = �2n − 1�2y�2n−2��0� . �E3�

Applying Eq. �E3� successively, one can derive Eq. �E1�.

y�2n��0� = ��2n − 1��2n − 3��2y�2n−4��0� = ¯ ¯

= ��2n − 1��2n − 3� ¯ �3��1��2y�0��0�

= 
2n2n − 1

2

2n − 3

2
¯

3

2

1

2
�2

=

22n��2n + 1

2
�2



.

�E4�

APPENDIX F: ON THE INTEGRAL I(m)=	0
1 x2m−2 ln x

�1−x2 dx

It is known that for m=1,

I�1� = �
0

1 ln x
�1 − x2

dx = −



2
ln 2. �F1�

For other values of m, we evaluate I�m� numerically via the
trapezoidal rule for numerical integration, dividing the inter-
val 0�x�1 into 106 bins. The results are shown in Fig. 4.
I�m� attains a minimum value at m=1, and approaches zero
asymptotically as m increases.
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