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Optimal harmonic response in a confined Bodewadt boundary layer flow
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The Bodewadt boundary layer flow on the stationary bottom end wall of a finite rotating cylinder is very
sensitive to perturbations and noise. Axisymmetric radial waves propagating inward have been observed
experimentally and numerically before the appearance of spiral three-dimensional instabilities. In this study,
the sensitivity and response of the finite Bodewadt flow to a harmonic modulation of the rotation rate are
analyzed. A comprehensive exploration of response to variations in the amplitude and frequency of the forcing
has been carried out. There are sharply delineated linear- and nonlinear-response regimes, with a sharp tran-
sition between them at moderate amplitudes. The periodic forcing leads to a steady-streaming flow, even in the
linear-response regime, and to a period-doubling bifurcation in the nonlinear regime. Frequency response
curves at different forcing amplitudes over a wide range of frequencies have been computed and used to
identify the frequency band that excites the axisymmetric radial waves and the forcing frequency that elicits the
strongest response. Finally, we have shown that the axisymmetric waves always decay to the steady basic state
when the harmonic modulation is suppressed, and conclude that the experimentally observed persistent circular

waves are not self-sustained.
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I. INTRODUCTION

The Bodewadt boundary layer is the boundary layer that
forms on a stationary flat surface when the flow aloft rotates.
Bodewadt [1] found an analytical description for an idealized
situation of unbounded rotating flow above a horizontally
infinite plane by implementing techniques used earlier by
von Kdrmdn [2] for the self-similar flow above a rotating
disk of infinite radius. These flows are of fundamental inter-
est, and variants of them appear in many diverse contexts,
such as geophysical boundary layer flows, turbomachinery,
and also as prototypical cross flows in aerodynamic applica-
tions; they have been the subject of numerous reviews [3-9].
Yet the Bodewadt boundary layer remains an enigma.

Experiments designed to investigate its stability and the
transition to turbulence in such flows are by physical neces-
sity conducted using flows of finite extent, and in order to
reduce the effects of extraneous noise, they are typically con-
ducted using enclosed flows. When the flow aloft the station-
ary bottom boundary is in slow rotation, the vertical profiles
of the boundary layer up to about 80% of the radial distance
from the rotation axis to the enclosure wall are very well
described by the similarity solution of Bodewadt [1]. As the
rotation rate is increased, experiments typically report the
appearance of a train of axisymmetric waves at roughly 50%
radius that propagate radially inward with nonuniform speed
[10-17]. These axisymmetric waves also appear as transients
at slower rotation rates when the rotation rate is changed
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even only slightly, both when the change is impulsive and
when it is smooth. In spite of these observations, linear sta-
bility analysis and nonlinear simulations at rotation rates cor-
responding to those of the experiments show that these axi-
symmetric waves are transients, and that the flow only
becomes unstable at yet higher rotation rates to multiarmed
spirals [18], which are also observed in many of the above
cited experiments at the higher rotation rates.

States that are linearly stable to perturbations but manifest
instability in experiments in the same neighborhood of pa-
rameter space are well known: plane Couette flow, Poiseuille
flow, the wake of a backward facing step, etc. These are all
open flows, and so the concepts of convective and absolute
instability are often applied to explain the observed unstable
flow [19,20]. In contrast, the finite Bodewadt flow and other
rotor-stator flows are completely enclosed flows. It has been
suggested that even in enclosed flows, a local variant of the
concept of convective instability may be applicable [9]. Also,
for all these flows, the perturbation eigenmodes are not or-
thogonal and so the concepts of transient growth have also
been suggested as playing a role in the growth of instabilities
[21-23]. Both the local convective instability and the tran-
sient growth due to non-normality are linear processes that
are formulated using a linearization about the basic state
where no account is taken of mean-flow distortions.

The axisymmetric waves observed experimentally in the
finite Bodewadt flow are either a response to impulsive or
harmonic perturbations to the basic state that are on the order
of a few percent of the magnitude of the base flow; at first
glance, these levels of perturbation may seem to be small
enough to be considered within the linear regime. The con-
tinuous presence of extraneous noise above a threshold level
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in experiments has also been reported to sustain these axi-
symmetric waves (experiments conducted with a noisy motor
leads to waves, but when the motor is replaced with a quieter
one the waves are not present in the same parameter regime
[16]). The noise levels involved in the experiments are also
only on the order of a few percent of the magnitude of the
base flow.

In this paper, we explore numerically the finite Bodewadt
flow by subjecting it to harmonic forcing with amplitudes
down to very low levels, of order 1073% of the base flow,
and have found a sharp cutoff between an essentially linear-
response regime and a nonlinear-response regime which is
manifest at forcing levels of about 0.5%. In the linear-
response regime, the amplitude of the response axisymmetric
wave modes is proportional to the forcing amplitude,
whereas in the nonlinear regime the magnitude of the re-
sponse waves, relative to the magnitude of the forcing, di-
minishes with forcing amplitude (but the overall response
amplitude still grows with forcing amplitude). In the nonlin-
ear regime, there are strong nonlinear interactions between
the response flow and the base flow, and this is manifest in
nontrivial time averages, the so-called nonlinear steady-
streaming flow [24,25]. Furthermore, the linear regime is
well characterized by an optimal forcing frequency that is
independent of the forcing amplitude, whereas in the nonlin-
ear regime, the optimal frequency shifts considerably for in-
creasing forcing amplitudes, very likely due to mean-flow
modifications. It is only by subtracting the base state from
the response flow in our simulations that we have been able
to detect the response waves at the low forcing amplitudes of
the linear regime. Very likely, if the experiments are able to
do same they will also observe the linear-response waves.
However, harmonically forced experiments have typically
been conducted in what we find to be the nonlinear-response
regime; for example, Gauthier et al. [16] use a forcing am-
plitude of 6.5%

We also show that stopping the harmonic forcing after the
synchronized state with circular waves has been fully estab-
lished results in the flow quickly reverting back to the basic
steady state. This happens within about ten forcing periods
after the forcing has ceased. For these problems, the transient
time for the establishment of the wave-train synchronized
state, even from another synchronized state at a slightly dif-
ferent forcing amplitude and frequency, is about 300 forcing
periods. This reversion to the basic state is true even for the
synchronized states with the largest forcing amplitudes at the
optimal forcing frequencies. This clearly demonstrates that
the circular wave state is not self-sustained.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

Consider the flow in a circular cylinder of height-to-radius
aspect ratio y=H/R, completely filled with a fluid of kine-
matic viscosity v. The cylinder and the top end wall rotate
with angular speed Q(f)=Q(1+ a sin wr) while the bottom
end wall is stationary; the nondimensional parameters « and
o are the amplitude and frequency of the modulated rotation.
A schematic of the flow system is shown in Fig. 1. The
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FIG. 1. (Color online) Schematic of the finite Boédewadt flow.
The inset shows the vortex lines (contours of rv) of the flow for
Re=5X10* and y=0.2, with a=0, at steady state.

Navier-Stokes equations, nondimensionalized using the ra-
dius R as the length scale and the mean rotation rate to set
the time scale 1/}, are

1
((9,+u-V)u=—Vp+R—V2u, V. u=0, (1)
e

where u=(u,v,w) is the velocity field in polar coordinates
(r,0,z) €[0,11X[0,27]X[0,y] and p is the kinematic
pressure. The problem has four independent nondimensional
parameters: the Reynolds number Re=Q,R?/ v, the radius-
to-height aspect ratio 7y, and the amplitude and frequency of
the modulated rotation a and w. In the earlier study [18], the
modulated problem was only considered at fixed modulation
amplitude @=0.05 (which as we shall see is quite large and
leads to significant mean-flow modifications) and fixed
modulation frequency w=1.0, which is too small to capture
the most aggressively driven circular waves at the smaller
amplitudes considered here. We consider a e (107°,0.05)
and a wide range of frequencies w e (0.5,5.0), covering the
region where the response to the forcing is significant.

The boundary conditions are no slip: on the rotating cyl-
inder sidewall (u,v,w)=(0,1+a sin wr,0), on the rotating
top end wall (u«,v,w)=(0,r[1+a sin wt],0), and on the bot-
tom stationary end wall (u,v,w)=(0,0,0). The idealized
boundary conditions are discontinuous at the junctions where
the rotating cylinder meets the stationary bottom end wall at
(r=1, z=0). In a physical experiment there is a small but
finite gap at this junction where the azimuthal velocity ad-
justs rapidly to zero. For an accurate use of spectral tech-
niques, a regularization of this discontinuity is implemented
of the form

v(r,0,0,1) = (1 + a sin wt)exp(rel), (2)
where € is a small parameter that mimics the small physical
gaps (we have used €=0.003). The use of €# 0 regularizes
the otherwise discontinuous boundary condition; see Ref.
[26] for further details on the use of this technique in spectral
codes.

The governing equations (1) have been solved using a
second-order time-splitting method, with space discretized
via a Galerkin-Fourier expansion in # and Chebyshev collo-
cation in r and z. The spectral solver is based on that de-
scribed in Ref. [27], and it has recently been tested and used
on this problem [18]. For the solutions presented here, with
v=0.2, we have used n,Xn,=96X48 Chebyshev modes in
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FIG. 2. (Color online) Contours of azimuthal vorticity 7 for the
steady basic state at Re=5 X 10* and y=0.2 using n, X n,=96 X 48
and 6t=5X1073; the contours are in the range 7 [-5,5].

the radial and axial directions; since we are concerned with
the circular waves in this paper, all the simulations have been
restricted to the axisymmetric subspace. Time steps of the
order &t=1073 have been required for numerical stability and
accuracy of the second-order temporal scheme. Typically, we
have used 1000 time steps per forcing period; however, for
very low forcing frequencies, more time steps per period are
required in order to maintain &= 1073,

III. BASIC STATE AND ITS STABILITY

The basic state has been extensively described and dis-
cussed previously [12,13,28], and its linear stability to gen-
eral three-dimensional perturbations has recently been deter-
mined [18], and so only a brief overview is presented here.
For any aspect ratio 7, if Re is large enough the boundary
layers on the disks are separated by an interior region which
is nominally rotating with a near solid-body rotation distri-
bution of angular momentum, except close to the cylinder
sidewall. However, it is never exactly solid-body rotation as
the flow in the top disk boundary layer is centrifuged radially
outward while that in the bottom disk boundary layer is
drawn radially inward. Over a considerable radial extent
(about 80%), the radial velocity in the interior is very small
and the angular momentum distribution is almost z indepen-
dent, but does not correspond to solid-body rotation. Figure 2
shows the azimuthal component of vorticity n=du/dz
—ow/dr for the steady axisymmetric basic state at Re=5
X 10* and y=0.2. The figure clearly shows the boundary
layers on the top, bottom, and sidewall. While the boundary
layer thickness along the top rotating disk is quite uniform,
the boundary layer thickness on the bottom stationary disk
varies considerably with r, thickening as r is reduced. The
sidewall layer also shows considerable variation with z. It
has been well established that the boundary layer on the bot-
tom has the characteristic oscillatory vertical structure of the
Bodewadt solution with the expected Re™!/? scaling of its
thickness over a wide range of Re’s [13,18,28]. The thicken-
ing of the Bodewadt layer with decreasing r and the Re™"?
scaling of the thickness have also been observed in experi-
ments in a much shallower rotor-stator system with y=0.05
[16], where the nonparallel nature of the boundary layer on
the stationary disk was also noted.

The linear stability of the basic state to general three-
dimensional perturbations was determined using global lin-
ear stability analysis via time evolution of the Navier-Stokes
equations [18]. First, a steady axisymmetric basic state was
computed at some point in parameter space. Its stability was
determined by introducing small random perturbations into
all azimuthal Fourier modes. For sufficiently small perturba-
tions, the nonlinear couplings between Fourier modes are
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FIG. 3. Marginal stability curve for y=0.2 showing the critical
Re at which the axisymmetric basic state loses stability via super-
critical Hopf bifurcations to spiral rotating waves with azimuthal
wave number m. The lines connecting the symbols are a guide for
the eye as the wave numbers m are integers.

negligible (below round-off numerical noise) and the growth
rates (real parts of the eigenvalues) and structure of the
eigenfunctions corresponding to the fastest growing pertur-
bation at each Fourier mode emerge from time evolution.
This is tantamount to a matrix-free generalized power
method in which the actions of the Jacobian matrices for the
perturbations are given by time integration of the Navier-
Stokes equations with the aforementioned initial conditions.

For y=0.2, the critical Re’s for the most dangerous Fou-
rier modes are plotted in Fig. 3. The basic state first loses
stability at Re.=51 743 to an m=32 spiral rotating wave.
The extensive stability analysis conducted by Lopez et al
[18] established that the steady basic state is linearly stable
with respect to axisymmetric perturbations (m=0), at least
up to the highest Re considered, Re=10°. However, for Re
>10° transient circular waves exist in the stationary disk
boundary layer.

IV. RESPONSE TO HARMONIC MODULATION

We now consider the response of the basic state to har-
monic modulation of the rotation of the cylinder top and
sidewall, for a mean Reynolds number Re=5 X 10*, below
but close to the critical value Re.. We consider a wide range
of amplitudes, @ e [107°,0.05]. The largest amplitude means
that the instantaneous Re reaches 5.25 X 10*, which is a little
above critical for the onset of the m=32 spiral mode. How-
ever, it is at this level for only a very short time during part
of the forcing period, too short for the spirals to saturate
nonlinearly, and during most of the forcing period, the non-
axisymmetric perturbations are damped. For a<<0.035, non-
axisymmetric perturbations are damped during the whole
forcing period, and the vast majority of the results presented
in this paper are in this regime. We have considered frequen-
cies in the range w €[0.5,5.0]; the largest responses to har-
monic forcing are for w e[1.5,3.0]. The earlier study [18]
only considered w=1.0, and so missed much of the phenom-
ena associated with the optimal response regime.

Figure 4 shows snapshots of the azimuthal vorticity # that
results from subjecting the basic state at Re=5.0X 10%,
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FIG. 4. (Color online) Snapshots of the azimuthal vorticity 7 at
Re=5 X 10%, v=0.2, w=2.2, and « as indicated. The color-map lev-
els are such that 7 € [-5.0,5.0] with blue (light) being negative and
red (dark) being positive (see associated movies [41]).

shown in Fig. 2, to harmonic forcing at a=1073, 1072, and
107!, all with forcing frequency w=2.2. These are taken after
about 300 forcing periods, the time needed for transients to
decay and the system to settle into a periodic state synchro-
nous with the forcing. In the @=107" case, there is hardly
any evidence of the harmonic forcing, and the state is almost
indistinguishable from the basic state; however, viewing the
associated online movie [41] shows that there are some very
slight variations in the bottom boundary layer for r
€(0.4,0.5). Increasing the amplitude to a=1072 results in a
periodic wave train that first becomes evident at about r
=0.5 in the bottom boundary and propagates toward r=0. As
they propagate radially inward, they slow down and fade out
by about r=0.25. Apart from the bottom boundary layer re-
gion for r e (0.25,0.40), the rest of the flow appears station-
ary and virtually identical to the basic state. Increasing the
amplitude further to @=10"" leads to a significant response
throughout the entire cylinder. The largest response is still
concentrated in the bottom boundary layer region for r
€ (0.25,0.40) where a periodic train of waves propagating
radially inward is present. These are more intense than at the
lower «, but still slow down and fade out as they approach
r=0.25. Now, there is also a strong response in the corner
region, (r,z)=(1,0.2), as well as in the sidewall boundary
layer, which show large pulses of 7 with alternating sign
propagating down the sidewall as they emanate from the
corner. These pulses appear to be absorbed into the bottom
corner region, (r,z)=(1,0).

Clearly, for the larger «, the forcing is not only triggering
a wave train in the bottom boundary, but it is also modifying
the base flow, whereas for the low «, the response is so weak
compared to the base flow that it is difficult to appreciate any
response. However, subtracting the base flow from the re-
sponse flow, denoted as 7(t)— 7,, gives us a very good indi-
cation of the nature of the response flow. Figure 5 shows
contours of 7(t)— 7, for the three cases shown in Fig. 4, and
the accompanying movies with the online version of the pa-
per shows their evolution over one forcing period [41]. For
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FIG. 5. (Color online) Snapshots of 7(f)—7,, at Re=5 X 10%,
v=0.2, w=2.2, and « as indicated. The color-map levels are such
that 5(r)— 7, € [-0.2,0.2] for a=1073, 5(r)- 7, [-1.0,1.0] for «
=102, and 7(t)- 7, € [-2.0,2.0] for a=10"", with blue (light) be-
ing negative and red (dark) being positive (see associated movies

[41]).

the smaller forcing amplitudes, we see that there is in fact a
wave-train response in the bottom boundary layer, but that its
magnitude is swamped by the mean flow. We also see that
there is a response in the top corner, but that this is very
much weaker than the circular waves. As the forcing ampli-
tude is increased, the strength of the response in the top and
sidewall boundary layers, and the top corner where they
meet, becomes stronger relative to the wave-train response in
the bottom boundary layer. The top boundary layer response
shows the expected sheets of oppositely signed vorticity
traveling normal to the boundary layer and quickly fading
away. This behavior is of the form considered by Yih’s [29]
analysis of the boundary layer on a rotating infinite disk
subjected to harmonic modulation of the rotation. We have
previously simulated the flow in a rotating cylinder where
the whole cylinder is modulated [30] and have found very
good agreement between the computed boundary layer struc-
ture and Yih’s theory.

In order to quantify the response of the Bodewadt layer to
harmonic forcing, we consider the maximum of #7(¢)— 7,
over the region (r,z) €[0,0.8]X[0,0.1] and over one forc-
ing period; this excludes the top and sidewall boundary lay-
ers, which can dominate for some combinations of a and w
[see Fig. 5(c)]. We determined the maximum over two forc-
ing periods, for as is discussed later, for larger a values the
response is not synchronous with the forcing but instead has
a period twice that of the forcing. The results are summa-
rized in Fig. 6. The response max[ 7(¢)—7,] corresponds to
the most intense contribution from the circular waves in the
bottom boundary, as seen in the movies associated with Fig.
5 [41]. We have considered many values of «; the plots show
only a few cases for the sake of clarity of presentation. For
a=<4x1073, max[5(t)—»,] scales linearly with & across all
w. This linear scaling is borne out by the excellent collapse
of max[ 7() - 7,] for these small « of the curves in Fig. 6(a).
For larger « the linear scaling is lost and the response at a
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FIG. 6. (Color online) Frequency response curves for several
forcing amplitudes « as indicated; (a) shows the response magni-
tude as measured by max[ 7(z)— 7,], where the maximum is deter-
mined over re€[0,0.8]Xze[0,y] and te[2nm/ w,2(n+1)7/ 0],
with n sufficiently large for transients to have died out, and (b)
shows the radial location of the maxima in (a).

given « varies with w. The strongest response for small « is
at w=2.2. For small @=0.5 and for large w=5.0, there are
no circular waves evident in the bottom boundary, even for
the larger a values considered. The radial location of where
the circular waves attain maximum strength is summarized
in Fig. 6(b); again for =<4 X 10~ we find self-similar be-
havior, and for all « the radial location where the waves are
most intense shifts from r=0.32 to r=0.56 as w is in-
creased.

For forcing frequency w=2.2, which for a=<0.004 is op-
timal in generating the circular wave train, we present in Fig.
7 the maximum of 7(r)— 7, over two forcing periods in the
bottom boundary layer. The results are shown in two plots. In
Fig. 7(a), we use a log-log plot and fit a straight line to the
small-« data, given by max[7(t)—7,]=779«. This plot fur-
ther quantifies the a extent over which the wave-train mag-
nitude scales linearly with « (up to a=0.004). For larger «,
Fig. 7(b) shows a power-law scaling of the form max[ 7(z)
—1,]=-28.7+42.3a%%%, This scaling provides a very good
fit to the data for @ € (0.008,0.1). These plots clearly show
the two response regimes and the sharp transition between
them occurring for a € (0.004,0.008). For a> 0.1, the mean-
flow modifications, particularly near the sidewall, are very
large and the problem becomes very different from the one
we wish to study.

A. Steady-streaming flow

The mean-flow modifications that result due to the larger
amplitude harmonic modulations are typical in periodically
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FIG. 7. (Color online) Maximal responses max[ (1) — 7,] versus
a for @=2.2. The red (light) lines are curve fits for low and high «
values: (a) max[7(t)-7,]=779a and (b) max[7(t)-7,]=-28.7
+42.3a005,

forced flows. In these oscillating flows, Reynolds stress
terms appear in the time-averaged Navier-Stokes equations
that lead to a steady secondary motion known as steady
streaming, first discovered by Schlichting [31]. The strength
of the steady-streaming flow depends on the amplitude and
frequency of the oscillations as well as the nature of the base
flow in the absence of oscillations. While there have been
numerous studies of steady-streaming flows due to oscilla-
tions about a static base, there are relatively few studies with
strong base flows [30,32-35]. Figure 8 shows the steady-
streaming flow for the cases shown in Fig. 5, computed by
taking the time average over two forcing periods (7(t)—7,)
=(w/477)f3”/“'7](t)dt— 7,- We see that even though the in-
stantaneous response is primarily in the form of the wave
train in the bottom boundary layer, the time average extends
considerably into the interior and also has a considerable
presence in the top boundary layer, even for the low-« cases.
Large time-averaged flows imply significant mean-flow
modification as a result of the imposed modulation. Note that
all linear theories (transient growth and local stability analy-
sis) assume no mean-flow modification, and so these non-
trivial steady-streaming flows call into question the limita-
tions of the applicability of the linear analyses.

To provide a quantitative measure of the strength of the
steady-streaming flow, we plot in Fig. 9 the maximum of the
time-averaged relative vorticity, max{n(f)—7,), in the
Bodewadt layer versus a for w=2.2. The plot shows two
distinct regimes, as did the instantaneous measure in Fig. 7.
In the low-a regime, the magnitude of the steady-streaming
flow scales like o while the instantaneous flow scaled lin-
early with a. This means that while the magnitude of the
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FIG. 8. (Color online) Time-averaged perturbation azimuthal
vorticity, {5(f)—7,), at Re=5Xx10%, y=0.2, ®=2.2, and « as indi-
cated. For the a=1073 case, the color map has min/max{7(f)—7)
=3%0.001, for a=10"% the color map has min/max{z(t)-7)
=3%0.05, and for @=0.1 the color map has min/max{#(r)—7)
=70.2; red (dark) is positive and blue (light) is negative.

circular waves decreases linearly to zero with «, their time
average and hence their impact on the background flow di-
minish to zero quadratically with «, i.e., it is a nonlinear
effect. In the high-a regime, however, the growth of the
magnitude of the circular waves with increasing « is very
slow, scaling like a®%® whereas the steady-streaming flow
in this regime grows considerably faster, scaling like a®*%.
This rapidly results in the steady-streaming flow causing
considerable modifications to the base state being modulated.
The transition to this highly nonlinear regime occurs for
what one would regard as quite small forcing amplitudes of
around 0.5%, and this is about an order of magnitude smaller
than the forcing amplitudes typically used in experiments

[16].
B. Period-doubled regime

In the nonlinear regime, with a=0.004, we have found
that the synchronous state loses stability via a period-

max<n(z)-n,>

FIG. 9. (Color online) Maximum of the time-averaged relative
vorticity, max(n(t)—7,), in the Bodewadt layer versus a for w
=2.2. The two curve fits are max{z(r)—7,)=2.2X 10*a? in the
low-a regime and max{z(t)—7,)=6.2a"%>-0.224 in the high-a
regime.
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FIG. 10. Period-doubling bifurcation curve in (w, a)-parameter
space for Re=5 X 10* and y=0.2; below the curve the synchronous
state is stable.

doubling bifurcation. Figure 10 shows the period-doubling
bifurcation curve in the (w,a)-parameter space for Re=5
X 10* and y=0.2. The bifurcation point emerges very
broadly in @ from a point at about (w,@)=(2.8,0.005). Fig-
ure 11 shows space-time plots of two typical states in the
nonlinear regime. Figure 11(a) is for a synchronous state at
a=0.01 and w=2.2 and Fig. 11(b) is for a period-doubled
state at =0.01 and w=2.7. They both show color-map con-
tours of #7(rf)—7, at a height z=0.01, which is in the
Bodewadt layer; the vertical direction is r, from the sidewall
at r=1 at the bottom to the axis at r=0 at the top. The
horizontal direction is time; both show a time interval of
about 86 time units, which for the w=2.2 case corresponds to
30 forcing cycles and for w=2.7 it corresponds to 37 forcing
cycles. In the synchronous case, we see a weak disturbance
that propagates radially inward from the sidewall at a fairly
uniform speed until it reaches r=0.5 where it suddenly
slows down and is amplified [this is where the circular waves
become visible, for example, in the movie associated with
Fig. 4(b)]. The waves continue propagating radially inward,
slowing down slightly, and fading away by the time they
reach r=0.2. Increasing w to 2.7, we cross the period-
doubling bifurcation curve. The resulting period-doubled

(a) a =0.01 and w = 2.2

FIG. 11. (Color online) Space-time plots of 7(t)— 7, at z=0.01
(in the Bodewadt boundary layer) at Re=5 X 10* and y=0.2 for (a)
the synchronous state at «=0.01 and w=2.2, and (b) the period-
doubled state at @=0.01 and w=2.7. The color maps are in the
range 7(1)—n, €[-1,1] with blue (light) being negative and red
(dark) being positive. The vertical axis is the radial direction from
r=1 (bottom) to the axis r=0 (top), and the horizontal axis is time
showing 30 forcing periods for the w=2.2 case and 37 forcing
periods for the w=2.7 case.
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(a) o =0.001
(b) & = 0.01
=
(¢c)a=0.1

FIG. 12. (Color online) Space-time plots of 7(f)— 7, in the
Bodewadt layer at height z=0.01 (vertical axis r from the sidewall
r=1 at the bottom to r=0 at the top, and the horizontal axis is time,
with =0 at the left when the harmonic forcing is instantaneously
set to zero, to 1=386), all for Re=5 X 10, y=0.2, ®=2.2, and « of
the initial oscillatory state as indicated.

state behaves much like the synchronous state, except that
the waves are a little more intense and the initial disturbance
at large r slows down at a larger r. The resulting circular
waves now propagate with a more nonuniform speed than in
the synchronous case, decelerating more. The combination of
more intense (and hence larger) waves and a greater decel-
eration results in the collision and merger between a decel-
erating wave and a faster moving wave behind it. The wave
coming from behind merges into the leading wave, and so
the next wave does not catch the merged wave, but the next
wave to follow catches and merges with it, and so the whole
process repeats itself, once every two forcing periods.

These types of collision and merger events of circular
waves in Bodewadt boundary layers were first observed and
described by Lopez and Weidman [12] who found them in
both physical experiments and numerical simulations of the
impulsive spin down to the rest of the flow in a rotating
circular cylinder. They have subsequently also been observed
in rotor-stator experiments with a stationary cylindrical
shroud [14,15,17].

C. Switching off the forcing

After obtaining a synchronous (or period-doubled) state
with circular waves, if we turn off the harmonic forcing the
flow continues to stay close to the ghost of the synchronous
state for several wave cycles, but always decays to the steady
basic state. Figure 12 shows some typical examples; these
are space-time plot like those in Fig. 11. The initial condi-
tions in these are the synchronous states at w=2.2 with «
=0.1, 0.01, and 0.001. So what does this mean? These simu-
lations suggest that there is no wave state disconnected from
the basic state that is reached due to transient growth (i.e.,
non-normal growth of an optimal perturbation applied in-
stantaneously at some point in time and allowed to grow).
We only have sustained waves when the systems are continu-
ously subjected to external forcing.

PHYSICAL REVIEW E 82, 036301 (2010)

Nonmodal instability theories, e.g., [36], suggest that even
small external perturbations may undergo a strong transient
amplification and trigger nonlinear dynamics. When external
perturbations are switched off, such an externally forced per-
turbed state would decay in the long term according to linear
theory, but can survive forever due to nonlinear interactions
if finite amplitudes are reached. Such theories lead to the
concept of an “elephant mode” [37], a naturally selected
finite-amplitude self-sustained mode. Recent direct numeri-
cal simulations of the flow between two corotating disks with
radial throughflow [38] have reported the existence of such a
mode.

In the simulations presented here, regardless of whether
we drive the system in the linear («<<0.004) or nonlinear
(a>0.004) regime, if we turn off the harmonic forcing after
the nonlinear synchronous state with circular waves is fully
developed, the flow always reverts to the steady basic state
after a short transient (the equivalent of about a dozen forc-
ing cycles). This implies that the experimentally observed
persistent circular wave trains are not a self-sustained el-
ephant mode, but rather are noise sustained, and the bound-
ary layer selectively amplifies wave trains with a limited
band of frequencies (so-called amplifier dynamics [39]).

V. CONCLUSIONS

Subjecting the finite Bodewadt boundary layer to har-
monic forcing has revealed several interesting insights. The
boundary layer on the stationary bottom end wall is driven
by the rotation of the enclosing top and sidewall of a finite
cylinder, and the harmonic forcing consists of a small ampli-
tude modulation of the rotation. In parameter regimes where
the unforced system is steady and axisymmetric, the har-
monic forcing produces periodic axisymmetric wave trains in
the Bodewadt boundary layer. By considering a wide range
of forcing frequencies and forcing amplitudes ranging from
about 10% of the background rotation to amplitudes many
orders of magnitude smaller, we have identified two distinct
regimes. One is the linear-response regime where the mag-
nitude of the circular waves is linearly proportional to the
forcing amplitude. The other is the nonlinear-response re-
gime, where the circular wave amplitudes have a power-law
scaling with forcing amplitude and, instead of being synchro-
nized with the forcing, undergo a period-doubling bifurcation
over a large range of parameter space in this regime.

There is a well-defined forcing frequency at which the
circular wave train is of maximal strength, and in the linear-
response regime this optimal forcing frequency is indepen-
dent of the forcing amplitude. At first sight, this may suggest
a resonance-type behavior: a possible explanation of the fre-
quency response curve and the optimal forcing frequency at
which the response reaches the maximum value could be a
1:1 resonance with a Hopf eigenvalue of the base state before
it bifurcates, and therefore the Hopf mode is still unstable.
However, since it is close to the bifurcation point, the Hopf
mode becomes excited when forced precisely at its Hopf
frequency [40]. However, in the present problem we have
tested up to Re=10 and have not found any axisymmetric
Hopf eigenmode that bifurcates. Moreover, the resonantly
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excited Hopf mechanism just described typically results in
response curves with very narrow spikes, while in the present
problem the response curve is very broad. Therefore, we
must conclude that the circular waves are not related to a
global Hopf eigenmode, but rather they are closely associ-
ated with the extreme sensitivity of the inflectional
Bodewadt boundary layer profile, and this sensitivity is pre-
cisely localized in a limited region inside the boundary layer.
When the circular waves leave this region, they just fade
away, and can only be sustained by the continuous excitation
induced by periodic forcing, as in this study, or more gener-
ally by noise. The circular waves are thus seen to be a re-
sponse to mean-flow modifications. The steady-streaming

PHYSICAL REVIEW E 82, 036301 (2010)

flow driven by the modulations is not negligible even in the
linear-response regime, although it scales quadratically with
the forcing amplitude and so its influence diminishes rapidly
with decreasing forcing amplitude.
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