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In this work we perform a detailed study of the scaling properties of Lyapunov vectors �LVs� for two
different one-dimensional Hamiltonian lattices: the Fermi-Pasta-Ulam and �4 models. In this case, character-
istic �also called covariant� LVs exhibit qualitative similarities with those of dissipative lattices but the scaling
exponents are different and seemingly nonuniversal. In contrast, backward LVs �obtained via Gram-Schmidt
orthonormalizations� present approximately the same scaling exponent in all cases, suggesting it is an artificial
exponent produced by the imposed orthogonality of these vectors. We are able to compute characteristic LVs
in large systems thanks to a “bit reversible” algorithm, which completely obviates computer memory
limitations.

DOI: 10.1103/PhysRevE.82.036205 PACS number�s�: 05.45.Jn, 05.45.Pq, 05.40.�a

I. INTRODUCTION

In dynamical systems the sensitive dependence on initial
conditions is readily quantified by the Lyapunov exponents
�LEs�, which measure the average growth rate of infinitesi-
mal perturbations �1�. Spatially extended systems may ex-
hibit spatiotemporal chaos �STC� and the spectrum of LEs is
a good indicator of the extensivity with the system size �2,3�.
The directions in tangent space associated with the LEs are
generically called Lyapunov vectors �LVs�. These vectors
convey important dynamical information. For example, LVs
have been useful to discover and quantify the so-called hy-
drodynamic modes �4–6�, to study extensivity properties
�7,8� and to address predictability questions in weather fore-
casting �9,10�, among other applications.

For many dissipative one-dimensional models �11,12� it is
known that, after a suitable logarithmic transformation, the
infinitesimal perturbation associated with the largest LE, the
main LV, belongs to the universality class of the stochastic
Kardar-Parisi-Zhang �KPZ� equation �13� of surface growth.
The mentioned logarithmic transformation associates a “sur-
face” with the LV, leading to many interesting consequences;
for instance: the scaling of finite-size corrections and self-
averaging properties of the LEs. The “surface picture” has
demonstrated to be very powerful and has been used to ana-
lyze finite perturbations �14–16� and singular vectors �17� in
STC.

The only homogeneous extended systems where the full
correspondence between the main LV and the KPZ scaling is
known to break down are anharmonic Hamiltonian lattices.
In Ref. �18�, it was determined, by numerical simulation of
two different oscillator lattice models, that the main reason

for the lack of KPZ scaling in Hamiltonian systems can be
traced back to the ubiquitous existence of long-range spa-
tiotemporal correlations in the observables that control the
LV dynamics. In Ref. �18� the authors invoke the KPZ equa-
tion with a long-range-correlated noise �instead of white
noise� as a minimal model that accounts for their observa-
tions. Nevertheless, it remains unclear whether the KPZ
equation with spatiotemporal long-range correlated noise is
indeed the correct minimal model for the dynamics of the
leading LV in one-dimensional Hamiltonian lattices. Further
theoretical progress is needed to clarify this issue.

Recent studies �19,20� have extended the analysis to LVs
corresponding to the most unstable directions �not only the
leading one� in several dissipative systems. As reasoned
above, it is clear that Hamiltonian lattices deserve a separate
study due to the peculiar behavior already observed for the
main LV.

We employ the so-called �21� characteristic Lyapunov
vectors �CLVs� proposed many years ago by Ruelle �22� be-
cause they reflect the bona-fide directions in tangent space
�see below�. CLVs have been recently employed to charac-
terize several aspects of STC, such as spatiotemporal corre-
lations and extensivity �19,20,23�, hyperbolicity �24,25�, and
Oseledec splitting �26–28�. In addition CLVs have nice prop-
erties that may support their use also for ensemble forecast-
ing in atmospheric models �10�.

The aim of this paper is to explore universality properties
�if any� of CLVs for Hamiltonian lattices, as these systems
are already peculiar in what concerns the main LV. In addi-
tion, we present an algorithm, specially designed for Hamil-
tonian systems, to compute CLVs in large systems with mod-
est computer resources.

This paper is organized as follows: Sec. II describes the
employed models and the relevant details of their numerical
implementation. Section III gives the relevant details of the
“roughening surface” picture, as well as some results con-
cerning the temporal evolution of the defined surface. In Sec.
IV we investigate the spatial correlations of the CLVs. The
discussion of the obtained results is made in Sec. V.
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II. MODELS AND SIMULATION DETAILS

A. Phase-space dynamics

The reference Hamiltonian for the one-dimensional
coupled anharmonic lattice models we are considering can
be written as

H = �
i=1

N � pi
2

2mi
+ V�qi+1 − qi� + U�qi�� , �1�

where N is the system size, and V�x� and U�x� are the
nearest-neighbor interaction and on-site potentials, respec-
tively. The particles are assumed to be of unit mass mi=1.
The phase-space coordinates �displacement and momentum�
are �qi , pi	i=1

N ; periodic boundary conditions are assumed
�qN+1=q1�. In the following we shall consider two models:
�i� the Fermi-Pasta-Ulam �FPU� � model �29�, characterized
by V�x�=x2 /2+x4 /4 and U�x�=0, and �ii� the �4 model
�30,31�, characterized by harmonic interactions V�x�=x2 /2
and by a double-well on-site potential U�x�=−x2 /2+x4 /4.

In our numerical simulations we have chosen as initial
conditions the equilibrium value of the oscillators displace-
ments, i.e., q�0�
�qi�0�=0	i=1

N , and momenta p�0�

�pi�0�	i=1

N drawn from a Maxwell-Boltzmann distribution at
a temperature consistent with a given value of the energy
density �
E /N. A value of �=10 has been chosen for the
FPU model, since it is known that its dynamics is strongly
chaotic for ��1 �30,31�. For the �4 model we chose �=5, as
in Ref. �18�.

B. Tangent-space dynamics

To study the local dynamical stability of our system we
introduce the infinitesimal perturbations of the trajectory ��t�
along all possible directions �position and momentum axes�
of the phase space as ���t�
��q�t� ,�p�t��, thus defining the
2N-dimensional tangent space. These infinitesimal perturba-
tions are governed by the linear equations

�qi
˙ =

�2H

�qi � pi
�qi +

�2H

�pi
2 �pi, �2a�

�pi
˙ = −

�2H

�qi
2 �qi −

�2H

�qi � pi
�pi. �2b�

This linear evolution of infinitesimal perturbations implies
the existence of a linear operator �resolvent or propagator�
M that links perturbations at different times: ���t�
=M�t , t0� ·���t0�.

According to Oseledec’s multiplicative ergodic theorem
�32� the remote past limit symmetric operator �b�t�
=limt0→−��M�t , t0� ·M��t , t0��1/�2�t−t0�� exists for almost any
initial condition ��t0�. The set of LEs is defined as �	


 ln 
	, where �
		 are the eigenvalues of �b�t�. We label
the LEs in decreasing order: �1��2� ¯ ��2N. The stan-
dard procedure �33,34� to compute the N largest LEs resorts
to periodic Gram-Schmidt-orthonormalizations of a set of N
offset vectors evolved by Eqs. �2�. The time-averaged values
of the logarithms of the normalization factors yield the LEs

��		. The set of vectors right after each reorthonormalization
�b	�t�	 are the eigenvectors of �b�t� �35� and they are called
backward LVs �BLVs�, following the nomenclature by Leg-
ras and Vautard �21�. Note that BLVs, apart from the main
one b1�t�, are not univocally defined because they depend on
the scalar product for the orthogonalization �which also de-
termines the adjoint operator M�; M�=MT in Euclidean
space�.

BLVs have the advantage of a straightforward calculation
as they are simply the byproduct of the standard method to
compute LEs. However, from the point of view of the physi-
cal meaning there is another set of vectors, the already men-
tioned CLVs �also known as covariant LVs�, which univo-
cally determine the direction in tangent space corresponding
to each LE. The CLVs �g	�t�	 were already defined by Ruelle
in 1979 �22,36�. These vectors are independent of the defi-
nition of the scalar product and readily signal the intrinsic
stable and unstable directions. As a result CLVs are covariant
with the linear dynamics, g	�t��M�t , t0�g	�t0�, wherewith it
is automatically guaranteed that the LEs are recovered in
both, past and future, time limits:

lim
�t�→�

�t − t0�−1ln�M�t,t0�g	�t0�� = �	. �3�

C. Important numerical issues

The evolution of the phase-space trajectory ��t�

�q�t� ,p�t�� is obtained integrating the 2N first-order
Hamilton equations of motion. We have used a symmetrical
version of the velocity Verlet integrator specially suited for
long-time simulations �37�, see Eq. �A1� in the Appendix.
The adopted time step value 
t=0.01 assures a faithful rep-
resentation of the Hamiltonian flow and a driftless average
value of the total energy E with a fluctuation level of

E /E
10−3–10−4 depending on the system size.

The computation of CLVs is not straightforward. We have
used the method proposed by Wolfe and Samelson in Ref.
�38�, wherein all relevant details are given. To find the Nth
CLV one needs to compute: �i� the first N BLVs and �ii� a set
of N−1 vectors �forward LVs� integrating backward in time
the perturbations that obey the adjoint operator of the linear
dynamics �proceeding as in the case of BLVs, but using the
transpose of the Jacobian matrix instead�.

The problem of the time-reversed integration is that, al-
though the employed algorithm to integrate the equations of
motion derived from the Hamiltonian is explicitly time re-
versible, the computed trajectories in phase space, obtained
after reversing all momenta, do not coincide with those
traced by the time-forward motion �due to the effect of
round-off errors and chaos sensitivity�. We have solved this
problem by a suitable use of integer arithmetic operations,
which suppresses unwanted numerical effects. Thus the
original phase-space trajectory can be exactly traced back
�see the Appendix for technical details�. Note that our proce-
dure consumes almost no computer memory because it only
requires to store the set �b	�t�		=1

N at the times where the Nth
CLV is going to be computed. If the bit reversible algorithm
were not used the state of the system would have to be re-
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corded periodically to allow a faithful trajectory backtrack-
ing. Furthermore, if instead of the Benettin method the QR
method were used �as in Ref. �24��, the periodical storage of
the R matrices required by the latter would quickly lead to a
computer memory overflow.

III. SURFACE GROWTH PICTURE

For every CLV �likewise for BLVs� g	�t�
= ��q�	��t� ,�p�	��t�� it is convenient to define an associated
“surface”

hi
�	��t� = ln���qi

�	��t��2 + ��pi
�	��t��2, �4�

where, as before, index i=1, . . . ,N plays the role of space.
Hereafter we refer to �hi

�	�	 as surfaces because a relation, for
	=1, between this kind of log-transformed LV and stochas-
tic surface growth equations was discovered in Refs. �11,12�.
�and proposed in Ref. �18� for Hamiltonian lattices�. Since

h̄�	��t�= �1 /N��i=1
N hi

�	��t� is the logarithm of a norm, the 	th
LE corresponds to the average velocity of the corresponding

	th surface, �dh̄�	��t� /dt�=�	. Figure 1 presents a specific
example of the nice properties of CLVs. Perturbations at t
=0 along the first five CLVs are let to evolve freely, i.e.,
obeying Eqs. �2�, and the mean height of the associated sur-
faces are computed versus time. The average velocities are
fairly close to the corresponding LE values.

The main LV g1=b1 in spatiotemporal chaotic systems is
strongly localized in space �39–41�, and transformation �Eq.
�4�� allows to unfold the spatial structure of the vector, which
would be otherwise hidden close to zero. The localization of
the main LV is dynamic, i.e., there is a slow wandering of the
localization region. In Ref. �18� it was demonstrated by
means of numerical simulations that, contrary to dissipative
systems and other systems with STC, the surface associated
with g1 does not fall into the universality class of the KPZ
equation. This fact is attributed to the presence of long-range
correlations in space and time in Hamiltonian lattices �18�.

For the FPU model we depict snapshots of surfaces cor-
responding to the first and second LVs in Figs. 2�a� for the

BLVs and �b� for CLVs. The vectors are strongly localized;
notice that hi

�	�, Eq. �4�, is a logarithmic variable. In Figs.
2�c� and 2�d�, we plot the time evolution of the localization
sites corresponding to BLVs and CLVs, for 	=1, . . . ,10. We
define the localization site as the position i where h�	� takes
its largest value at a given time. It can be readily seen that
the maxima corresponding to the BLV-surfaces are scattered
all over the spatial domain, just as in the case of the coupled-
map-lattice �CML� studied in Ref. �19�, where it was argued
that this behavior is a byproduct of the orthogonalization
procedure and not a physical property of the perturbation
dynamics. On the contrary, CLVs present much more corre-
lated localization sites.

The scaling properties of LVs corresponding to LEs
smaller than the first one have been recently reported for
spatiotemporally chaotic dissipative systems �19,20�. These
works revealed that LV-surfaces are piecewise copies of the
main one. This is readily seen defining the difference-field

�i
�	� 
 hi

�	� − hi
�1�. �5�

We show in Fig. 3, using CLVs, that this qualitative feature
holds for Hamiltonian lattices as well �it is irrelevant that the
first LV does not belong to the KPZ universality class�. As in
dissipative systems �19,20�, the typical plateau size of ��	�

decreases as 	 grows, and beyond some 	max this simple
picture does not hold: Fig. 3�b� shows that for 	=8 the pla-
teaus are smaller than for 	=2, Fig. 3�a�.

IV. SPATIAL STRUCTURE

In this section we perform a quantitative description of
the spatial correlations of the LV-surfaces hi

�	��t�. We com-
pute the stationary structure factor
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FIG. 1. �Color online� Evolution of the mean height of surfaces

�h̄	�t�� associated with small perturbations initialized along charac-
teristic LVs with indices 	=1, . . . ,5 from top to bottom �FPU
model, N=32 and energy density �=10�. The curves are averages
over 100 realizations. The fitting slopes m	 are in good agreement
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S	�k� = limt→��ĥ�	��k,t�ĥ�	��− k,t�� ,

where

ĥ�	��k,t� = N−1/2� jexp�2�ıkj�hj
�	��t� ,

with � . . . � indicating an average over different system trajec-
tories �which correspond to different random initial condi-
tions�.

Figures 4�a�, 4�b�, 5�a�, and 5�b� show the structure fac-
tors of a representative set of LV-surfaces for FPU and �4

models, respectively. For the main LV surface, 	=1, the
short wave number scaling exponent � of the structure factor
�S�k��k�� is clearly different from the one expected for the
KPZ universality class in one dimension ��=−2� and the
obtained values, �=−2.5 �FPU� and �=−2.6 ��4�, are con-
sistent with those reported by Pikovsky and Politi �18�.

As explained in Sec. II B, for 	�1 one must distinguish
between backward and characteristic LVs. Figures 4�a�, 4�b�,
5�a�, and 5�b� evidence that both vector types indeed have
different spatial structures. The structure factors of BLV-
surfaces asymptotically decay with exponents �=−0.9 �FPU�
and �=−1.1 ��4�, which are close to the value �=−1 re-
ported for dissipative systems in Refs. �19,20�. These results
suggest that the value �
−1 for BLVs in our Hamiltonian
systems has a geometric origin and is related to the Gram-
Schmidt orthonormalization. However, CLVs display expo-
nents �=−1.4 �FPU� and �=−1.3 ��4� which, at least for the
FPU model, are different from the values −1.2 or −1.15 re-
ported in dissipative systems �19,20�.

The fact that LVs corresponding to the most expanding
directions are �in the surface representation� piecewise cop-
ies of the main LV translates into the existence of crossover
wave numbers where the structure factors bend. Each struc-
ture factor S	 presents a knee at a certain wave number k	

�

that is related to the typical plateau length of the difference
field ��	�. For both, FPU and �4, models k	

� scales with 	
approximately as k	

����	−1 /2� /N��, with �
1 �as in Ref.
�19� for a dissipative CML�. We choose to use 	−1 /2 in-
stead of 	, as it is customary when plotting the Lyapunov
spectrum �this is actually irrelevant in the thermodynamic
limit N→��. This is verified in Figs. 4�c�, 4�d�, 5�c�, and
5�d� through a data collapse of the structure factors via the
scaling relation

S	�k�k−� = g�k/k	
�� , �6�

where g�u�=const for u�1 and g�u��u� for u�1.

V. DISCUSSION AND CONCLUSIONS

In a recent paper �20� we established �as suggested by
�12�� a minimal stochastic model for LVs w�x , t� in spa-
tiotemporal chaos,
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�tw�x,t� = ��x,t�w�x,t� + �xxw�x,t� , �7�

where ��x , t� is a white noise term that accounts for the cha-
otic fluctuations. The generic asymptotic solution of Eq. �7�
models the main LV, whereas “saddle solutions” �see �20� for
details� correspond to CLVs with 2�	�	max. This corre-
spondence between a �linear� stochastic equation and LVs is
supported by the existence of common scaling exponents
�20�. The generic solution of Eq. �7� has the same sign in all
the domain, and this allows to transform Eq. �7� into the KPZ
equation through the Hopf-Cole transformation h�x , t�
=ln�w�x , t��. In contrast, the saddle solutions of Eq. �7� van-
ish at several points, what precludes KPZ as a valid equation
for CLVs other than for 	=1.

In Hamiltonian systems, the anomalous scaling exponent
���2� of the main LV was traced back �18� to the long-
range correlations of the multipliers driving the linear Eqs.
�2�. For Hamiltonians of the form Eq. �1�, these multipliers
are functions of the displacements �qi	 with specific proper-
ties for FPU and �4 models. The minimal model proposed in
�18� for the main LV-surface was the KPZ equation �or Eq.
�7� reversing the Hopf-Cole transformation� with long-range
correlated noise. Unfortunately, theoretical expressions for �
�42,43� consider the KPZ equation with either spatially or
temporally correlated noise �but not both�. The exponent �
may take the same value with different combinations of spa-
tial and temporal long-range correlations. Hence there is not
a univocal relation between correlations and �.

Minimal models are important as they are more amenable
to theoretical analysis, which should allow to distinguish dif-
ferent universality classes.1 Our present work has the value
of giving more constraints to the minimal stochastic model
for perturbations in Hamiltonian lattices. A minimal model
should reproduce the scaling properties of both the main LV
and subdominant LVs. These subdominant �	�2� LVs have
been the subject of the present study. A possible alternative
to Eq. �7� pointed out in �12� is the time-reversible equation,

�ttw�x,t� = ��x,t�w�x,t� + �xxw�x,t� . �8�

Future work is needed to find out the true minimal model for
LVs in Hamiltonian lattices. In any case, our results should
be a guide in the search of such a minimal model for Hamil-
tonian systems, since any suitable minimal model must pro-
duce surfaces with the scaling properties in Figs. 4 and 5.

Finally, a bit reversible algorithm, which operates with
integer arithmetic, has been implemented to take advantage
of the time reversibility of Hamiltonian systems. Although
trajectory reversibility is not strictly required to compute the
CLVs �in previous works �19,20� CLVs have been computed
in nonreversible dissipative systems�, our methodology
makes use of the aforementioned reversibility to completely
bypass the need to store the phase-space trajectory in order to
maximize the efficiency of the computation of the CLVs
from the intersection of backward and forward LV subspaces
if only limited computer resources are available.
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APPENDIX: BIT REVERSIBLE ALGORITHM

Since the so called “bit reversible” technique has been so
far implemented using the standard Verlet integrator �which
does not considers the momenta explicitly� and employed
mainly for studies of time reversibility in Lennard-Jones flu-
ids �45–47�, �although it has also been applied in cases in
which the so-called smoothed-particle continuum mechanics
becomes isomorphic to molecular dynamics, see Ref. �48�.�
we will give a brief explanation of its current implementation
in order to make this paper self-contained. Starting from the
initial condition ��0�, the phase-space point ��
t� is ob-
tained by means of the symmetrical velocity Verlet integrator
�37� written, in floating-point arithmetic, as

pi�
t

2
� = pi�0� +


t

2
Fi�qi�0�� , �A1a�

qi�
t� = qi�0� +

t

mi
pi�
t

2
� , �A1b�

pi�
t� = pi�
t

2
� +


t

2
Fi�qi�
t�� , �A1c�

where Fi is the total force on the ith oscillator. The bit re-
versible version of algorithm �Eqs. �A1�� employs an integer
representation of phase space instead of the conventional
continuous phase space. To accomplish such transformation,
for the considered lattices the minimum distance by which
the phase space is discretized is defined as 
L=N /2n, where
N is the system size and 2n is the largest integer value if n-bit
integers are employed. Because of the discretization, the
phase-space coordinates are represented by integers, i.e.,
�iq , ip	. Therefore the evolution equations can be recast in
the following form:

ipi�
t

2
� = ipi�0� + �

j=i−1

i+1 �
t

2
Fij�qi�0���

Integer
, �A2a�

iqi�
t� = iqi�0� + �
t

mi
pi�
t

2
��

Integer
, �A2b�

ipi�
t� = ipi�
t

2
� + �

j=i−1

i+1 �
t

2
Fij�qi�
t���

Integer
,

�A2c�1For instance the heat conductivity is anomalous for the FPU
chain, whereas it is normal for the �4 lattice �44�.
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where Fij is a partial force from the j-th nearest neighbor
on the ith oscillator. It should be noted that the discrete
coordinates �iq�t� , ip�t�	 are integers, and the actual
phase-space coordinates are obtained as q�t�= iq�t�
L
and p�t�= ip�t�
L. The second terms in the right hand
side of Eqs. �A2� are calculated based on the continuous
phase-space variables �q ,p	 and the values in brackets
� · 	Integer are converted to integers; in this way the total
momentum is exactly zero at all times during the simulation
�45�.

With the aforementioned implementation time reversibil-
ity is achieved exactly throughout the simulations performed,

which were rather long. To give an example, for the �4

model a simulation of 5�108 time steps, after a transient of
1.5�108, was needed to obtain the reported results. The situ-
ation is definitely better for the FPU model, where only 5
�106 time steps, with a transient of 5�105, were sufficient
for the employed system size. Due to the conversion process
to integer, energy is not exactly conserved. Nevertheless, the
exact-time-reversibility of the integration algorithm pre-
cludes any systematic drift in the total energy. We have con-
firmed that the fluctuation of the total energy by the bit re-
versible simulations is equivalent to that by conventional
floating-point simulations.
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