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Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networks

on synchronization and the rate of information

M. S. Baptista,1 F. M. Moukam Kakmeni,2 and C. Grebogi1

'Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, AB24 3UE Aberdeen, United Kingdom
2Labomtory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of Sciences,

University of Buea, P.O. Box 63, Buea, Cameroon
(Received 6 October 2009; revised manuscript received 20 May 2010; published 7 September 2010)

In this work we studied the combined action of chemical and electrical synapses in small networks of
Hindmarsh-Rose (HR) neurons on the synchronous behavior and on the rate of information produced (per time
unit) by the networks. We show that if the chemical synapse is excitatory, the larger the chemical synapse
strength used the smaller the electrical synapse strength needed to achieve complete synchronization, and for
moderate synaptic strengths one should expect to find desynchronous behavior. Otherwise, if the chemical
synapse is inhibitory, the larger the chemical synapse strength used the larger the electrical synapse strength
needed to achieve complete synchronization, and for moderate synaptic strengths one should expect to find
synchronous behaviors. Finally, we show how to calculate semianalytically an upper bound for the rate of
information produced per time unit (Kolmogorov-Sinai entropy) in larger networks. As an application, we
show that this upper bound is linearly proportional to the number of neurons in a network whose neurons are

highly connected.
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I. INTRODUCTION

Intercellular communication is one of the most important
characteristics of all animal species because it makes the
many components of such complex systems operate together.
Among the many types of intercellular communication, we
are interested in the communication among brain cells, the
neurons, that exchange information mediated by chemical
and electrical synapses [1].

The uncovering of the essence of behavior and perception
in animals and human beings is one of the main challenges in
brain research. While the behavior is believed to be linked to
the way neurons are connected (the topology of the neural
network and the physical connections among the neurons),
the perception is believed to be linked to synchronization.
This comes from the binding hypothesis [2], which states
that synchronization functionally binds neural networks cod-
ing the same feature or objects. This hypothesis raised one of
the most important contemporary debates in neurobiology
[3] because desynchronization seems to play an important
role in perception as well. The binding hypothesis is mainly
supported by the belief that a convenient environment for
neurons to exchange information appears when they become
more synchronous.

Despite the explosive growth in the field of complex net-
works, it is still unclear for which conditions synchronization
implies information transmission and it is still unclear which
topology favors the flowing of information. Additionally,
most of the models being currently studied in complex net-
works consider networks whose nodes (such as neurons) are
either linearly or nonlinearly connected. But, recent works
have shown that neurons that were believed to make only
nonlinear (chemical) synapses make also simultaneously lin-
ear (electrical) synapses [4-8]. To make the scenario even
more complicated, neurons connect chemically in an excita-
tory and/or an inhibitory way. In this work, we aim to study
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the relationship between synchronization and information
transmission in such neural networks, whose neurons are si-
multaneously connected by chemical and electrical synapses.

The electrical synapse is the result of the potential differ-
ence between the neurons and causes an immediate physi-
ological response of the latter one, linearly proportional to
the potential difference. The chemical synapse is mediated
by the exchange of neurotransmitters from the pre to the
postsynaptic neuron and can only be released once the pr-
esynaptic neuron membrane achieves a certain action poten-
tial. The chemical interaction is described by a nonlinear
function [9].

While the electrical synapses between neurons is local-
ized in the neuron cell and therefore it is a local connection,
the chemical synapse is in the neuron axon and is therefore
mainly responsible for the nonlocal nature of the synapses.

Chemical synapses can be inhibitory and excitatory.
When an inhibitory neuron spikes (the presynaptic neuron), a
neuron connected to it (the postsynaptic neuron) is prevented
from spiking. As shown in Ref. [10], inhibition promotes
synchronization. When an excitatory neuron spikes, it in-
duces the postsynaptic neuron to spike. Several types of syn-
chronization were found in networks of chaotic neurons
coupled with only electrical synapses. One can have com-
plete synchronization, generalized synchronization and phase
synchronization, the latter appearing for small synapse
strength [11]. Complete synchrony strongly depends on the
network structure and the number of cells. In networks of
chemically coupled neurons [12], the net input a neuron re-
ceives from synaptic neurons emitting synchronized spikes is
proportional to the number of connected units. Hence, for
chemical synapses, if all the nodes in the network have the
same degree, synchronization will be enhanced; if different
nodes have different degrees, synchronization will be ham-
pered [13]. In fact, Ref. [14] has shown analytically that the
stability of the completely synchronous state in such net-
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works only depends on the number of signals each neuron
receives, independent of all other details of the network to-
pology.

The most obvious possible role of electrical synapses
within networks of inhibitory neurons is to couple the mem-
brane potential of connected cells, leading to an increase in
the probability of synchronized action potentials. This syn-
chronous firing could coordinate the activity of other cortical
cell populations. For example, it has been reported that the
introduction of electrical synapses among GABAergic neu-
rons that are also chemically connected can promote oscilla-
tory rhythmic activity [6]. These possibilities have been ad-
dressed experimentally by several investigators and have
been reviewed recently [7,8,15].

Motivated by these observations and also by the fact that
the behavior of microcircuitry in the cerebral cortex is not
well understood, we analyze the combined effect of these
two types of synapses on the stability of the synchronous
behavior and on the information transmission in small neural
networks. In order to deal with this problem analytically we
consider idealistic networks, composed of equal neurons
with mutual connections of equal strengths (see Sec. II). A
basic assumption characterizing most of the early works on
synchronization in neural networks is that, by adding a rela-
tively small amount of electrical synapse to the inhibitory
synapse, one can increase the degree of synchronization far
more than a much larger increase in inhibitory conductance
[16,17].

Our results agree with this finding in the sense that for
larger inhibitory synaptic strengths complete synchronization
can only be achieved if the electrical synapse strength is
larger than a certain amount. But in contrast, we found that
for moderate inhibitory synaptic strengths, the larger the
chemical synapse strength is the larger the electrical synapse
strength needs to be to achieve complete synchronization.
Additionally, we introduce in this work analytical approaches
to understand when complete synchronization should be ex-
pected to be found and what is the relation of that with the
amount of information produced by the network.

Information is an important concept [18]. It measures how
much uncertainty one has about an event before it happens. It
is a measure of how complex a system is. Very complicated
and higher dimensional systems might be actually very pre-
dictable, and as a consequence the content of information of
such a system might be very limited. But measuring the
amount of information is something difficult to accomplish.
Normally, there is always some bias or error on the calcula-
tion of it [19], and one has to rely on alternative approaches.
Measuring the Shannon entropy of a chaotic trajectory is
extremely difficult because one has to calculate an integral of
the probability density of a fractal chaotic set. But for chaotic
systems that have absolutely continuous conditional mea-
sures, one can calculate Shannon’s entropy per unit of time,
a quantity known as Kolmogorov-Sinai (KS) entropy [20],
by summing all the positive Lyapunov exponents [21]. A
system that has absolutely continuous conditional measures
is a system whose trajectory continuously distribute along
unstable directions. More precisely, systems whose trajecto-
ries continuously distribute along unstable manifolds at
points that have positive probability measure. These systems
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form a large class of nonuniformly hyperbolic systems [22]:
the Hénon family; Hénon-like attractor arising from ho-
moclinic bifurcations; strange attractors arising from Hopf
Bifurcations (e.g., Rossler oscillator); some classes of me-
chanical models with periodic forcing. The result in Ref. [21]
extends a previous result by Pesin [23] that demonstrated
that for hyperbolic maps, the KS entropy is equal to the sum
of the positive Lyapunov exponents. We are not aware of any
rigorous result proving the equivalence of the KS entropy
and the sum of Lyapunov exponent for the Hindmarsh-Rose
neural model neither to a network constructed with them.
But the chaotic attractors arising in this neuron model are
similar to the ones appearing from Homoclinic bifurcations.
Additionally, for two coupled neurons, we show in Sec. VII
(using the nonrigorous methods described in Appendix) that
a lower bound estimation of the KS entropy is indeed close
to the sum of all the positive Lyapunov exponents. Despite
the lack of a rigorous proof, we will assume that the results
in Refs. [21,22] apply in here in the sense that the sum of the
positive Lyapunov exponents provide a good estimation for
the KS entropy.

The KS entropy for chaotic networks has another impor-
tant meaning. It provides one the so called network capacity
[11], the maximal amount of information that all the neurons
in the network can simultaneously process (per unit of time).
A network that produces information at a higher rate is more
unpredictable and more complex. Arguably, the network ca-
pacity is an upper bound for the amount of information that
the network is capable of processing from external stimuli.
In Ref. [11] we discuss a situation were that is indeed the
case.

To understand the scope of this paper and the methods
used, we first justify the chosen network topologies in Sec.
II. Then, in Sec. III, we describe the dynamical system of our
network and derive the variational equations of it in the
eigenmode form, a necessary analytical tool in order to be
able to study the onset of complete synchronization (CS) and
to calculate the rate of information produced by the network.
Complete synchronization happens when the trajectories of
all neurons are equal.

Our main results can be summarized as in the following:

(i) We show (Secs. IV and V) how one can calculate the
synaptic strengths (chemical and electrical) necessary for a
network of N neurons to achieve complete synchronization
when one knows the strengths for which two mutually
coupled neurons become completely synchronous.

(ii) We show numerically (Sec. VI) parameter space dia-
grams indicating the electrical and chemical synapse
strengths responsible to make complete synchronization to
appear in different networks. The analytical derivation from
Sec. V are found to be sufficiently accurate. There are two
scenarios for the appearance of complete synchronization for
inhibitory networks. If the chemical synapse strength is
small, the larger the chemical synapse strength used the
larger the electrical synapse strength needed to be to achieve
complete synchronization. Otherwise, if the chemical syn-
apse strength is large, complete synchronization appears if
the electrical synapse strength is lager than a certain value. In
excitatory networks both synapses work in a constructive
way to promote complete synchronization: the larger the
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chemical synapse strength is the smaller the electrical syn-
apse strength needs to be to achieve complete synchroniza-
tion.

(iii) We show (Secs. VII) that the sum of the positive
Lyapunov exponents provides a good estimation for the KS
entropy. Additionally, we show that there are optimal ranges
of values for the chemical and electrical strengths for which
the amount of information is large.

(iv) If complete synchronization is absent, we show (Sec.
VIII) that while in inhibitory networks one can typically ex-
pect to find high levels of synchronous behavior, in excita-
tory networks one is likely to expect desynchronous behav-
ior.

(v) We calculate (Sec. IX) an upper bound for the rate of
information produced per time unit (Kolmogorov-Sinai en-
tropy) by larger networks using the rate at which information
is produced by two mutually coupled neurons.

II. TOPOLOGY OF THE STUDIED NETWORKS

In order to consider the combined action of these two
different types of synapses, we need to consider in our the-
oretical approach idealistic networks, constructed by nodes
possessing equal dynamics and particular coupling topolo-
gies such that a synchronization manifold exists and CS is
possible. If we had studied networks whose neurons were
exclusively connected by electrical means, we could have
considered networks with arbitrary topologies. On the other
hand, if we had studied networks whose neurons are exclu-
sively connected by chemical means, we would have consid-
ered networks whose neurons receive the same number of
chemical connections. These conditions are the same ones
being usually made to study complete synchronization in
complex networks [14,24].

In order to analytically study networks formed by neurons
that make simultaneously chemical and electrical connec-
tions, we have not only to assume that the neurons have
equal dynamics and that every neuron receives the same
number of chemical connections coming from other neurons,
but also that the Laplacian matrix for the electrical synapses
(that provides topology of the electrical connections) and the
Laplacian matrix for the chemical synapses commute, as we
clarify later in this paper. Naturally, there is a large number
of Laplacian matrices that commute. In this work we con-
struct networks that are biologically plausible. Since the
electrical connection is local, we consider that neurons con-
nect electrically only to their nearest neighbors. Since neu-
rons connected chemically make a large number of connec-
tions (of the order of 1000), it is reasonable to consider that
for small networks the neurons that are chemically connected
are fully connected, i.e., every neuron connects to all the
other neurons. Notice however that while reciprocal connec-
tions are commonly found in electrically coupled neurons,
which is not typical for chemically connected neurons.

Since our small networks are composed of no more than
eight neurons, we make an abstract assumption and admit
another possible type of network in which neurons that are
connected electrically can also make nonlocal connections,
allowing them to become fully connected to the other neu-
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rons. Notice, however, that our theoretical approach remains
valid for larger networks that admit a synchronization mani-
fold.

III. NETWORKS OF COUPLED NEURONS AND MASTER
STABILITY ANALYSIS

The dynamics of the Hindmarsh-Rose (HR) model for
neurons is described by

p=q_ap3+bp2_n+lext’
g=c-dp’-q,

n=rls(p—po) —n], (1)

where p is the membrane potential, ¢ is associated with the
fast current, Na* or K*, and n with the slow current, for
example, Ca®*. The parameters are defined as a=1, b
=3, c¢=1, d=5, s=4, r=0.005, py=—1.60 and [,,=3.2
where the system exhibits a multi-time-scale chaotic behav-
ior characterized as spike bursting.

The dynamics of a neural networks of N neurons con-
nected simultaneously by electrical (a linear coupling) and
chemical (a nonlinear coupling) synapses is described by

N
pi =4q,— ap? + bpzz —-n+ Iext - gn(pi - Vsyn)z CUS(PJ)
j=1
N
+g12 G,H(p;)),

j=1
CiFC—dP,-Z—C]i,

n;=rls(p;=po) — i, (2)

(i,j)=1,...,N, where N is the number of neurons.

In this work we consider that H(p;)=p,. But we preserve
the function H(p;) in our remaining analytical derivation to
maintain generality. The chemical synapse function is mod-
eled by the sigmoidal function

1
S = e ®)

with 0,,=-0.25, A=10, and V,,,=2.0 for excitatory and
Vyn==2.0 for inhibitory. For the chosen parameters and all
the networks that we have worked |p;| <2 and the term (p;
-V, is always negative for excitatory networks and posi-
tive for inhibitory networks. If two neurons are connected
under an inhibitory (excitatory) synapse then, when the pr-
esynaptic neuron spikes, it induces the postsynaptic neuron
not to spike (to spike).

The matrix G;; describes the way neurons are electrically
connected. It is a Laplacian matrix and therefore X,G;;=0.
The matrix C;; describes the way neurons are chemically
connected and it is an adjacent matrix, therefore E]Ci]:k, for
all i. For both matrices, a positive off-diagonal term placed
in the line i and column j means that neuron i perturbs neu-
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ron j with an intensity given by g,G;; (or by g,C;;). Since the
diagonal elements of the adjacent matrix are zero, k repre-
sents the number of connections that neuron i receives from
all the other neurons j in the network. This is a necessary
condition for the existence of the synchronous solution [14]
by the subspace P=P,=P,=..=Py, P;=(p;,q;,n;).

Under these assumptions and, as previously explained, we
consider networks with three topologies: topology I, when
all the neurons are mutually fully (all-to-all) connected with
chemical synapses and mutually diffusively (nearest neigh-
bors) connected with electrical synapses; topology II, when
all the neurons are mutually fully connected with chemical
synapses and mutually fully connected with electrical syn-
apses; topology III, when all the neurons are mutually dif-
fusively (nearest neighbors) connected with chemical and
electrical synapses. We consider networks with two, four,
and eight neurons. By nearest neighbors, we consider that the
neurons are forming a closed ring.

The synchronous solutions P=(p,q,n) take the form

p =q- Clp3 + bp2 -n+ Iext_ gnk(p - Vsyn)S(p)a
G=c—dp’-q,

i =rs(p = po) = n]. 4)

The variational equation of the network in Eq. (2) [calculated
around the synchronization manifold Eq. (4)] is given by

5)71‘ =6q; - 3“17,‘25171' +2bp;dp; = 6n; — 8,(p; = Vsyn)S,(p)

N
X (kapi +2 Gij5pj> — kg,S(p) op;
=1

N
+ 812 GijDH(p) opis
j=1
8q;=2d3p; - 8q;,
5h,~ =r(sdp;— on;). (5)

The matrix C;; has been transformed to a Laplacian matrix

by é:C,»j—kl. DH(p) represents the derivative of H with
respect to p, which in this work equals 1.

The term S'(p) refers to the spatial derivative %fz and
equals
X exp MP=Osy)
S'(p) (6)

- [1+exp MO 2’

Notice that if S(p)=1 (what happens for p>®,,), then
§"(p)=0 and if S(p)=0 (p<B,), then S’ (p)=0. S’ (p) is not
zero when the value of S(p) changes from 1 to 0 (and vice-
versa) and p= 0.

Equation (5) is referred to as the variational equation and
is often the starting point for determining whether the syn-
chronization manifold is stable. This equation is rather com-
plicated since, given arbitrary synapses g, and g;, it can be-
come quite higher dimensional. Also the coupling matrices G

PHYSICAL REVIEW E 82, 036203 (2010)

TABLE 1. Values of 7, in absolute value and k for the consid-
ered networks.

All-to-all Nearest-neighbor
N=2 =2, k=1 =2, k=1
N=4 =4, k=3 Y=2, k=2
N=8 v,=8, k=7 v,=0.585786402, k=2

and G can be arbitrary making the situation to become even
more complicated. However, assuming that whenever there

is a chemical synapse (and g,>0), the matrices G and G
commute, then the problem can be simplified by noticing
that the arbitrary state X (where 8X=(dp;, 8q;,n;) is the
deviation of the ith vector state from the synchronization
manifold) can be written as 5X=E?ilv,-® k;(1), with k()
=(7;,¥;,¢;). The v; be the eigenvector and 7y; and ¥, the
corresponding eigenvalues for the matrices G and G, respec-
tively. So, if that is the case, by applying va(t) (with
Vj-T(t)-V,:ﬁ,-j where §;; is the Kronecker delta), to the left
(right) side of each term in Eq. (5) one finally obtains the
following set of N variational equations in the eigenmode,

7= (2bp - 3ap®) n;— ¢;+ ;- L(p) 7,

'r/fj=2d77j— i/fj,
¢j=r(S77j_(Pj)’

ji=1,23,....N, 7)
where the term I'(p) is given by

r(p)zkgnS(p)_gn(Vsyn_p)S,(p)(k'i' :}71)_gl71 (8)
in which y; (with y;=0, and y;<0, j=2) are the eigenval-
ues of G and ¥; are the eigenvalues of G. The eigenvalues ;
are negative because the off-diagonal elements of G are posi-
tive.

For networks with N=2 we have that |y,|=2 and k=1,
meaning that the neurons are connected in an all-to-all fash-
ion. For networks with N=4, if the neurons are connected in
an all-to-all fashion, we have that |y,|=4 and k=3 or if the
neurons are connected with their nearest neighbors we have
that |y,|=2 and k=2. For N=8, |y,|=8 and k=7 (all-to-all)
and |y,|=0.585 786 402 and k=2 (nearest neighbor). These
values are placed in Table I for further reference.

The previous equations are integrated using the fourth-
order Range-Kutta method with a step size of 0.001. The
calculations of the Lyapunov exponents are performed con-
sidering a time interval of 600 [sufficient for a neuron to
produce approximately 600 spikes (p>0)]. We discard a
transient time of 300, corresponding to 300 000 integrations.

IV. STABILITY ANALYSIS

The stability of the synchronization manifold can be seen
from the perspective of control [14,25-27] by imagining that
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the term I'(p) stabilizes Eq. (7) at the origin. This term can
be interpreted as the main gain of a feedback control law
u(1)=T'(p) n; such that 7; (respectively, ; and ¢;) tends to 0
as t tends to infinity. In fact, the controlling force u(r)
=I'(p)n; could be designed with no previous knowledge of
the system under consideration assuming that it has a para-
metric dependence. A drawback of such a general control
approach is that it leads to nonfeedback control strategy,
which have not guaranteed stability margins. More robust
approaches for determining the structural stability of the syn-
chronization manifold of systems whose equations of motion
are partially unknown have been recently developed [25-27].

In this work, however, we determine the stability of the
synchronization manifold from the master stability analysis
of Refs. [14,24]. A necessary condition for the linear stability
of the synchronized state is that all Lyapunov exponents as-
sociated with 07 and/or ')7j for each j=2,3,...,N (the direc-
tions transverse to the synchronization manifold) are nega-
tive. This criterion is a necessary condition for complete
synchronization only locally, i.e., close to the synchroniza-
tion manifold.

V. RESCALING OF EQS. 4) and (7)

When working with networks formed by nodes possess-
ing equal dynamical rules, we wish to predict the behavior of
a large network from the behavior of two coupled nodes.
That can always be done whenever the equations of motion
of the network can be rescaled into the form of the equations
describing the two coupled nodes. That means that, given
that two mutually coupled neurons completely synchronize
for the electrical and chemical synapse strengths g, (N=2)
and g (N=2), respectively, then it is possible to calculate the
synapse strengths g;(N) and g(N) for which a network com-
posed by N nodes completely synchronizes.

In order to rescale the equations for the synchronization
manifold and for its stability, Egs. (4) and (7), respectively,
we need to preserve the form of these equations as we con-
sider different networks. Concerning Eq. (7), we need to
show under which conditions it is possible to have I'(p,N
=2)=I'(p,N), where I is the term responsible to make the
stability of the synchronization manifold to depend among
other things on the topology of the network and on the cou-
pling function S(p).

Notice that S(p) assumes for most of the time either the
value 0 or 1. For some short time interval S(p) changes its
value from O to 1 (and vice-versa) and at this time S’(p) is
different from zero [see Egs. (3) and (6)]. For that reason we
will treat S’(p) as a small perturbation in our further calcu-
lations and will ignore it, most of the times. That leave us
with two relevant terms in both Egs. (4) and (7) that need to
be taken into consideration in our rescaling analyses. These
terms are g;y; and kg,S(p). While the first term comes from
the electrical synapse, the second term comes from the
chemical synapse.

The first term depends on the eigenvalues of G;; (which
varies according to the number of nodes and the topology of
the network) and on the synapse strength g;. If this term
assumes a particular value for a given network, for another

PHYSICAL REVIEW E 82, 036203 (2010)

@A) B) ©
topology 11 [topology I
N=2 N=4 N=4
ly,1=2 Iy,1=4 ly,1=2
k=1 k=3 k=3

(D) |topology III topology I (E)
N=4 N=8
y,l=2 Iy,1=0.585786
k=2 k=7

FIG. 1. The topology of the networks considered in Figs. 2-5
and the values of N, |y|, and k.

network one can suitably vary g; in order for the whole term
to assume this same value in the other network. So, the term
grv;j can always be rescaled by finding an appropriate value
of g;.

The rescaling of the second term, kg,S(p) is more com-
plicated because it depends on the trajectory (p) of the at-
tractor. Naturally, we wish to find a proper rescaling for the
function S(p), which implies that the attractors appearing as
solutions on the synchronization manifold should present
some kind of invariant property.

In order to find such an invariant property, we study the
time average (S(p)) of the function S(p) for attractors ap-
pearing as solutions of Eq. (4) for five network topologies. In
Fig. 1 we show in the boxes (A-E) the values of N, |y,|, ,
and the type of topology considered in the networks of Figs.
2-5.

The result for excitatory networks can be seen in Figs.
2(A)-2(E), which shows this value as a function of kg,.

I e e
0.8~ —0.8+ - 0.8 ;
%06; A) HosF (B) 1 o6l (©) 4
206] 106 106 1
T 04 104 Jo4r ]
0.2+ —0.2F -1 02 —
00 ‘0‘.5‘ ‘1 ‘1‘.5 2 00 ‘O‘AS‘ ‘1 ‘1‘5 2 00 ‘OﬁS‘ ‘1 ‘lﬁS 2

8, kg, kg,
] ! |
0.8 — 0.8+ —
! i I i
—~ 0.6~ — 0.6 —
g}s L (D) LB
% 0447* i 0,4j i
02+ — 02+ —
Lol | ol i
0051152 0051 152
8, 3

FIG. 2. (A-E) The value of (S(p)) with respect to a rescaled
chemical synapse strength kg, for excitatory networks with a con-
figuration shown in Figs. 1(A)-1(E). Initial conditions of the neu-
rons are set to be equal (and g;=0).
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FIG. 3. (A)—(E) The value of (S(p)) with respect to a rescaled
chemical synapse strength kg, for inhibitory networks with a con-
figuration shown in Figs. 1(A)-1(E). Initial conditions of the neu-
rons are set to be equal (and g;=0).

Apart from some small differences, the function (S(p)) re-
mains invariant for the different networks considered. We
identify two relevant values for (S(p)). Either (S(p))=0.9,
for gn<g£f) or (§(p))=0, for gnngf)-gfl")x 1.67.

We also find an invariant curve of (S(p)) for inhibitory
networks. In Figs. 3(A)-3(E) we show this curve for the
same networks of Fig. 2. For these networks, we define
g,(f)% 1.5 as the value of g, for which the curve of (S(p))
reaches its maximum. In the considered inhibitory networks,
(S(p))=1 is a consequence of the fact that the neurons loose
their chaotic behavior and become a stable limit cycle. No-
tice that the value of (S(p)) does not depend on the value of
the electrical synapse strength g;. This is due to the fact that
g; i1s not present in the equations for the synchronization
manifold [Eq. (4)].

Let us rescale Eq. (4). First notice that the average {(p
—Vyy,)) has the same invariant properties of the average

E

() 0.10.20.30.40.5

00102030405 00102030405

0() 0. 1() 2() 3() 40.5 00 ().10.2().3().40.5

FIG. 4. Excitatory networks. Black points represent values of
the synapse strengths for which all transversal conditional expo-
nents are negative. In (B-E) the horizontal axis represent
2(N)|72(N)|/2 and the vertical axis kg,. Initial conditions of the
neurons are set to be equal.
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FIG. 5. Inhibitory networks. Black points represent values of the
synapse strengths for which all transversal conditional exponents
are negative. In (B-E) the horizontal axis represent g,(N)|y»(N)|/2
and the vertical axis kg,,. Initial conditions of the neurons are set to
be equal.

(S(p)). Then, we assume that both S(p) and (p-V,,,) make
small oscillations around their average value. That implies
that S(p)(p—V,,,) =(S(p)(p—V,,)). From Figs. 2 and 3 we
have that the average (S(p,N)) can be written as a function
of g,(N), as well as ((p—V,,,)). Therefore, we can write
(S(p)(p=Vyy,))» as a function of g,(N). It is clear that the
value of this average obtained for g,(N=2) should be ap-
proximately equal to the value obtained for kg,(N), and so
this average function can be rescaled by kg,(N)=g,(N=2).
Therefore, Eq. (4) describing a large network can be rescaled
into this same equation describing two mutually coupled
neurons by

g(N=2)

. )

gn(N) =
Now, we need to show that it is also possible to do the same
to Eq. (7), the equation responsible for the stability of the
synchronous solution.

Assuming again that S(p) make small oscillations around
its average value allows us to write I'(p,N) as a function of
<S(P)> as in F(P,N) Ekgn(]\])<5(p’]\,)>_gl(1\7) yj Notice from
Figs. 2 and 3 that the average (S(p,N)) can be written as a
function of g,(N). In order to rescale Eq. (7), describing a
network of N nodes in terms of a network of 2 nodes, we
need to have that I'(p,N)=I'(p,N=2) leading to

kgn(N)<S[gn(N)]> - ’YZgl(N) = gn(N= 2)<S[gn(N= 2)]>
+2g/(N), (10)

where we have considered only the second largest eigenvalue
v,, the one responsible for the stability of the synchroniza-
tion manifold; we have ignored terms that appear together
with §” in T".

We make now a reasonable hypothesis that if a stable
synchronous solutions for Eq. (4) exists for g,(N=2)=g (N
=2) (for a two mutually coupled neurons), then this same
stable synchronous solution exists for kg (N) (for a network
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composed by N neurons mutually connected). This hypoth-
esis is constructed from the observation that equivalent at-
tractors can be found in different networks if the rescaling in
Eq. (9) is employed. We are assuming that if g,(N=2) rep-
resents the chemical synapse strength for which complete
synchronization appears in two mutually coupled neurons,
then complete synchronization would appear in a network of
N nodes if

_&(N=2)

g (N) p

(11)
If the previous hypothesis is satisfied, i.e., Equation (11) is
satisfied, we see from Figs. 2 and 3 that
(S[g,(N)]y=(S[g,(N=2)]) and assuming that these two av-
erages are equal, then Eq. (10) takes us to

2g/(N=2)
|y,(N)|

where g;(N) represents the electrical synapse strength for
which complete synchronization occurs in a network com-
posed by N neurons.

In the following, we analyze two special cases of Eq. (10)
when the function S(p) is constant and the previous approxi-
mations (expanding I' around its average and that
(S[g,(N)]y=(S[g,(N=2)])) to arrive to Egs. (11) and (12) are
exact.

g/(N)= . (12)

A. Rescaling in excitatory networks (Vsy,,=2.0)

Case 1. A large chemical synapse strength, kg, (N)> ggf),
with ggc)§1.67, makes for all the time p<®, leading to

S(p)=0 and S’ (p)=0 (see Fig. 2). The neurons become com-
pletely synchronous to a stable equilibrium point.

B. Rescaling in inhibitory networks (V,,,=-2.0)

Case 2. a large chemical synapse strength, kg,(N)> gff>,

with ¢!~ 1.50, makes for all the time p>® and as a con-
sequence S(p)=1 and S(p)' =0 (see Fig. 3). The neurons be-
come completely synchronous to a limit cycle.

VI. COMBINED EFFECT OF THE CHEMICAL AND
ELECTRICAL SYNAPSES ON THE SYNCHRONOUS
BEHAVIOR

The analytical derivations done in the previous section are
approximations, except for some special values of the syn-
aptic strengths (case 1 and 2). However, as we show in this
section, our calculations provide a good estimation of what
to expect from parameter spaces of larger networks when the
parameter space of two mutually coupled neurons is known.
The parameter space is constructed by considering the syn-
apses (g;,g,) and they identify the regions where the state of
complete synchronization is stable.

The stability is determined from Egs. (7), by verifying
whether there are no Lyapunov exponents associated with
transversal directions to the synchronization manifold. These
exponents are numerically obtained, without any approxima-
tion.

PHYSICAL REVIEW E 82, 036203 (2010)

In Fig. 4, we show in black the synchronous regions (all
transversal conditional exponents are negative) for the exci-
tatory networks and in Fig. 5 the same network topologies
but for inhibitory networks. To simplify the understanding of
these two figures, in Fig. 1 we show in boxes (A-E) the
values of N, |y,|, k and the type of topology considered in the
networks of Figs. 4(A)-4(E) and 5(A)-5(E). The values of g;
and g, were rescaled by using Egs. (11) and (12). As ex-
pected, in excitatory networks our rescaling works very well
and roughly in inhibitory networks. So, the vertical axis of
Figs. 4(B)-4(E) and 5(B)-5(E) show the quantity kg,(N) and

t‘h? P?rizontal axis of these same figures show the quantity
Y2181(N,

g1“0 assist the analysis of the parameter spaces, imagine a
curve 2 that is the border between the regions defining pa-
rameters for which the synchronization manifold is unstable
(white regions) and regions defining parameters for which
the synchronization manifold is stable (black regions). There
are four main characteristics in these two types (excitatory
and inhibitory) of networks concerning the occurrence of
complete synchronization.

In excitatory networks, the electrical and the chemical
synapses act in a combined way to foster synchronization.
The neurons become completely synchronous to a stable
equilibrium point. The asynchronous neurons (white regions)
are chaotic. The curve 3 would look like a diagonal line with
a negative slope. Such a curve could be defined by an equa-
tion similar to kg(N)+y,g;~C, C being a function that is
approximately constant (see Fig. 4).

In excitatory networks, with kg,(N)>1.67, Neurons are
completely synchronous to a stable equilibrium point (see
Fig. 4).

In inhibitory networks, with kg,(N)<5, the larger the
chemical synapse strength is the larger the electrical synapse
strength needs to be to achieve complete synchronization.
Neurons become completely synchronous to either a limit
cycle (large chemical synapse strength) or to a chaotic attrac-
tor (small chemical synapse strength). The curve 2 would
look like a diagonal line with a positive slope. Such a curve
could be defined by an equation similar to kg(N)—y,g,~ C,
C being a function that is approximately constant (see Fig.
3).

In inhibitory networks, for large values of kg,(N), com-
plete synchronization appears for y,g,> C and neurons be-
come completely synchronous to a stable limit cycle, which
is unstable if y,g,<C. The curve 2 would look like a
straight vertical line. Such a curve could be defined by an
equation similar to y,g,~C. C being a function that is ap-
proximately constant (see Fig. 5).

If the neurons are set with different initial conditions, but
sufficiently close, complete synchronization is found for
similar synaptic strengths for which the synchronization
manifold is stable.

If the neurons are set with sufficiently different initial
conditions, and we construct parameter spaces that represent
synaptic strengths for which CS takes place, we would have
obtained parameter spaces with similar structure as the one
observed in Figs. 4 and 5. However, the network can become
completely synchronous to other synchronous solutions of
Eq. (4), different from the synchronous solutions observed
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FIG. 6. (Color online) We show the value of the sum of all the
positive Lyapunov exponents H; in black line and an estimation of
the lower bound for the KS entropy in filled squares (red line on-
line) for two mutually chemically coupled neurons under an exci-
tatory synapse (a) and an inhibitory synapse (b), as we vary the
chemical synapse strength. We consider a constant electrical syn-
apse of strength g;=0.1. Initial conditions are not equal.

for the parameters used to make Figs. 4 and 5. In other
words, parameter spaces that show CS in networks whose
neurons are set with different initial conditions constructed
for the same synaptic strengths and networks considered in
Figs. 4 and 5 would present additional black points in the
white areas of Figs. 4 and 5.

VII. COMBINED EFFECT OF THE CHEMICAL AND
ELECTRICAL SYNAPSES ON THE AMOUNT
OF INFORMATION

First, we calculate the sum of all the positive Lyapunov
exponents of the attractor obtained from integrating the neu-
ral network [Eq. (2)] and represent it by H;. The Lyapunov
exponents are calculated from the variational equation of the
network in Eq. (2). As previously discussed, it is reasonable
to assume that H; = Hyg, where Hyg represents the KS en-
tropy [20], which measures the amount of information (Sh-
annon’s entropy) produced per time unit.

In Figs. 6(A) and 6(B) we show in the thin line H; for two
mutually chemically and electrically coupled neurons (g;
=0.1) for excitatory synapse (A) and for inhibitory synapse
(B). To confirm that the sum of the positive Lyapunov expo-
nents have an entropic meaning for the studied Hindmarsh-
Rose neuron model, we have estimated a lower bound for the
KS entropy, represented by the tick line with filled squares
(red online) in Figs. 6(A) and 6(B).

We see that for both cases, as one increases the synaptic
strength, H; decreases. For the excitatory case, for g,
>1.52, the neurons trajectories go to an equilibrium point
and we obtain H;=0. If H; =0, that means that there are no
positive Lyapunov exponents and therefore no chaos. The
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maximal value of Hj;, calculated varying the synaptic
strengths, is almost equal for both types of synapses. One
sees that there is a range of strength values in both figures
within which H; is large. For example, in (A) H is large for
g,€1[0.7,1.2] and in (B) H, is large for g, € [0.3,0.7]. This
was also observed in 3D parameter space diagrams (not
shown in here) that show the value of H, versus g, and g;.
These diagrams indicate that there is an optimal range of
values for g, and g; for which H; remains large.

The reason we have shown results for two coupled neu-
rons is because for such a configuration a lower bound esti-
mation of the KS entropy can be calculated by encoding the
trajectory into a binary symbolic sequence. Since the se-
quence is binary, this method is only capable of measuring
an information rate that is less or equal than 1 bit/symbol or
1 bit/unit of time. Since that for two coupled neurons, H;
<1 bit/unit of time, and assuming that H; is a good estima-
tion for Hgg, then the employed method to calculate a lower
bound of the KS entropy is appropriate. The details of this
estimation can be seen in Appendix.

Notice that in Fig. 6(A) and 6(B) for g,~0 [as well as in
(B) for g,~?2] the estimations of Hyg are larger than H;.
That is the result of a known problem in the estimation of
entropic quantities which prevents the estimation to be small.
The problem arises because the symbolic sequences consid-
ered are not infinitely long for one to realize that there exists
a few or only one symbolic sequence encoding the trajectory.
For example, a long periodic orbit would be encoded by a
series of short symbolic sequences making the estimation of
Hyg to be positive instead of zero as it should be.

VIII. SYNCHRONIZATION (AND DESYNCHRONIZATION)
VERSUS INHIBITION (AND EXCITATION) VERSUS
INFORMATION

To understand the relation between synchronization (de-
synchronization) and inhibition (excitability), when complete
synchronization is absent we do the following. But notice
that the following results are based on a conjecture that is
currently not demonstrated.

We calculate the Lyapunov exponents along the synchro-
nization manifold, which are just the Lyapunov exponents of
the network by assuming that all neurons are completely
synchronous. We call these exponents conditional Lyapunov
exponents and the sum of all the positive ones is denoted by
Hc. There are two ways for calculating them, either using
Egs. (5) or (7), Eq. (7) being simpler because of the dimen-
sionality of the orthogonal vectors employed to calculate the
Lyapunov exponents. While the use of Eq. (5) requires 3N
vectors, each one with dimensionality 3N, the use of Eq. (7)
requires N vectors each one with dimensionality 3. Addition-
ally, once the function that relates the conditional exponents
of two mutually coupled neurons with g, and g; is known,
then one can calculate this function for all the conditional
exponents of larger networks as long as Egs. (4) and (7) can
be rescaled.

We can then classify these neural networks into two types.
The types UPPER or LOWER. More specifically,

HC(Nvgn’gl) >HL(N7gn’gl)’ UPPER7 (13)
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Hc(N.g,,8) < Hy(N,g,.8), LOWER. (14)
To understand what H- and H; exactly mean and the reason
for such a classification, notice that the networks here con-
sidered admit a synchronous solution. This synchronous so-
lution might be unstable (an unstable saddle) and typical
initial conditions depart from the neighborhood of the syn-
chronous solution and asymptotically tend toward a stable
solution, the chaotic attractor. This attractor describes a net-
work whose nodes are not synchronous. In such a situation,
the network admits at least two relevant solutions: a stable
desynchronous one (the chaotic attractor) and an unstable
synchronous one (the synchronization manifold). While H,
can be associated with the amount of information produced
by the unstable synchronous solution, H; can be associated
with the amount of information produced by the desynchro-
nous chaotic attractor. If the complete synchronous state is
stable, then, Ho-=H;, and the network in Eq. (2) possesses
only one stable synchronous solution, for typical initial con-
ditions. The nomenclature in Egs. (13) and (14) comes from
the fact that if Ho(N,g,,g)>H.(N.g,.g;) then, H. is an
upper bound for H;, otherwise it is a lower bound [29].

Assume now that the more information a network pro-
duces, the more desynchronization is observed among pair of
neurons [29,30]. If H(N,g,.g)>H,(N,g,.g) (UPPER),
then H;(N,g,.g;) is limited. As a consequence, the produc-
tion of information in the network is limited and therefore
the level of desynchronization is small. On the other hand, if
HC(Nugn»gl) <HL(N’gn’gl) (LOWER)» then HL(N’gn’gl)
can be large implying a large level of desynchronization.
Another way of understanding the relationship between syn-
chronization and information is by using a result from Ref.
[29], which shows that for two coupled maps (but this result
is trivially extended to networks), the largest transversal con-
ditional exponent, when the maps have a LOWER character,
is larger than this exponent for when they have an UPPER
character. Since this exponent provides a necessary condition
for the stability of the synchronization manifold, it can be
interpreted as a measure of the level of desynchronization in
the network. The larger this exponent is, the more desynchro-
nous the network is. Therefore, UPPER networks should
have neurons more synchronous than LOWER networks.

If H-(N,g,.g)>H;(N,g,,g) (UPPER), the synapse
forces the trajectory to approach the synchronization mani-
fold and, as a consequence, there is a high level of synchro-
nization in the network. On the other hand, if H-(N,g,,g;)
<H;(N,g,,g;) (LOWER), the synapse forces the trajectory
to depart from the synchronization manifold and, as a con-
sequence, there is a high level of desynchronization in the
network.

One can check that in Fig. 7, which shows as gray, the
parameter regions for which H->H; and as black the pa-
rameter regions for which the synchronization manifold is
stable and there is complete synchronization (and therefore,
Hc=H,) for typical initial conditions. Gray points appearing
on black regions represent synaptic strengths for which in
fact one has H-=H;, but numerically we obtain that H,
=H; +€, with € being a very small positive constant. Typi-
cally, neurons coupled via an excitatory synapse [(A-D)]
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FIG. 7. (Color online) Gray regions (green online) indicate
(g,-&)) values for which H->H; (UPPER) and black regions indi-
cate (g,,g;) values for which the complete synchronization state is
stable, in excitatory networks (A-D) and inhibitory networks (E—
H). The networks considered in (A-D) as well as in (E-H) have the
parameters shown in Fig. 1(A)-1(D). In (B-D) and (F-H) the hori-
zontal axis represent g;(N)|y,(N)|/2 and the vertical axis kg,. Gray
points (green online) appearing on black regions represent synaptic
strengths for which in fact one has H-=H;, but numerically we
obtain that H-=H; + €, with € being a very small positive constant.

present a LOWER character while via an inhibitory synapse
[(E-H)] present an UPPER character.

This classification is also important because as it was
shown in Ref. [29], once two coupled neurons are UPPER
(or LOWER) there is always a synaptic strength range for
which a large network is UPPER (or LOWER). And these
synaptic strength ranges can be calculated using the rescal-
ings in Egs. (11) and (12).

In Figs. 7(B), 7(C), and 7(F)-7(H), we show that the UP-
PER and LOWER character of two mutually coupled neu-
rons is preserved in networks composed by a number of neu-
rons larger than 2, if one considers the rescalings of Egs. (11)
and (12). This result is of fundamental importance, specially
for synaptic strengths that promote the network to have an
UPPER character because it allows us to calculate an upper
bound for the KS entropy of larger networks by knowing the
value of H. for two mutually coupled neurons. Such a situ-
ation arises for inhibitory networks for a large range of both
synaptic strengths. One finds an UPPER character in excita-
tory networks for a small value of the chemical synapse
strength.

The electrical synapse favors the neurons to synchronize.
As a consequence, it is expected that networks with neurons
connected exclusively by electrical synapses are of the UP-
PER type. This can be checked in all figures for when g,~0.

We are currently trying to prove the conjecture in Ref.
[29] by studying the relationship between the stability of
unstable periodic orbits [34] embedded in the attractors ap-
pearing in complex networks and the stability of the equilib-
rium points. All the equilibrium points of a polynomial net-
work can be calculated by the methods in Refs. [31-33].
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IX. UPPER BOUND FOR THE RATE OF INFORMATION

According to Ruelle [28], the sum of all the positive
Lyapunov exponents is an upper bound for the Kolmogorov-
Sinai entropy [20]. Therefore, whenever H-(N)>H(N)
(UPPER) it is valid to write that

H(N) > Hgg(N), (15)

where Hgg(N) denotes the Kolmogorov-Sinai entropy of a
network composed of N neurons.

As we have previously seen, the UPPER character of two
mutually coupled neurons is preserved in the special larger
networks here studied. In addition to this, if the positive
conditional exponents of two mutually coupled neurons are
known for a given g, and g, allowing us to calculate H N
=2, g,(N=2), g/(N=2)], then one can calculate the posi-
tive conditional exponents of a network with N neurons,
HN,g,(N),g(N)]. In other words, if the ratio of informa-
tion production of two mutually coupled neurons that have
equal trajectories, Ho(N=2), is known and the neurons have
an UPPER character, one can calculate the upper bound for
the ratio of information production in larger networks, as
long as Egs. (4) and (7) can be rescaled. Therefore, in UP-
PER networks connected simultaneously with electrical and
inhibitory chemical synapses we can always calculate an up-
per bound for the rate of information production in terms of
this quantity in two mutually coupled inhibitory neurons.

Consider two mutually coupled neurons. Denote \;(N
=2,g,) as the sum for the positive Lyapunov conditional
exponents associated with the synchronization manifold for a
chemical synapse strength g, and \,(N=2,g,,g;) as the sum
of the positive Lyapunov exponents associated with the only
one transversal direction for a chemical synapse strength g,
and an electrical synapse strength g;, Remind that A\ and \,
are calculated using Eq. (7) for the index j=1 and j=2, re-
spectively.

Now, consider a network formed by N neurons. Using
similar arguments than the ones presented in Sec. V and
based on the conjecture proposed in [29], the value of the
synapse strengths g,(N),g,(N) for which the exponent \(N)
has the same value of A{(N=2) can be calculated by

N=2
gn(N) = Lk)

(16)
and the value of the synapse strengths g;(N),g,(N) for which
the sum of the positive conditional exponent \,(N,g,,g))
(for w=2) has the same value of \,(N=2,g,,g;) can be
calculated by

gu(N) = —g”(]\;j 2), (17)
g,(N)=gl(N=2)|72(N=2)| (18)

|7 (V)]

Denote A" (N=2) and N\;**(N=2) as the maximal values of
Ni(N=2,g,) and \,(N=2,g,,g,) with respect to g, and g;.
As an example of how to use Egs. (16)—(18) in order to
calculate the upper bound for the rate of information pro-
duced in the network, we consider that the neurons in the
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network with N nodes are coupled via electrical and excita-
tory chemical synapses in an all-to-all configuration (topol-
ogy II), then k=N-1, |y, (N)|=N and |y,(N=2)|=2.

Now, we search for a synapse strength range for which
two mutually coupled neurons have an UPPER character. For
example, let us say the range g,(N=2)e[0,1] and g,(N
=2)e[2,10], in Fig. 7(E), for two inhibitory mutually
coupled neurons.

From Egs. (17) and (18), as long as the network with N
nodes has g,l(N)Sm and %Sgl(N)S%,, then N[™*(N)
=A™ (N=2) and Ny (N) =N**(N=2), and therefore for this
synapse range, the maximum of H is

max[H(N,g,,8) 1=\ (N=2) + (N= )N (N=2)
8n-81

(19)

Notice that Eq. (19) is valid to any network topology as long
as Eqgs. (4) and (7) can be rescaled.

For very large networks that are very well connected,
g/(N) and g,(N) will be very small, since k and N are large.
As a consequence, N[ &N\, since neurons are equal, and
we can write

maX[HC(N9 gm gl)] = N)\glax(N = 2) ’ (20)
881

which means that the rate of information produced by large
UPPER neural networks whose neurons are highly connected
has an upper bound that increases linearly with the number
of neurons. A similar result is obtained when the neurons are
connected with only electrical synapses [29].

X. CONCLUSION

We have studied the combined action of chemical and
electrical synapses in small networks of Hindmarsh-Rose
(HR) neurons in the process of synchronization and on the
rate of information production.

There are mainly two scenarios for the appearance of
complete synchronization for the studied inhibitory net-
works. If the chemical synapse strength is small, the larger
the chemical synapse strength used the larger the electrical
synapse strength needs to be to achieve complete synchroni-
zation. Otherwise, if the chemical synapse strength is large,
complete synchronization appears if the electrical synapse
strength is larger than a certain value. In the studied excita-
tory networks both synapses work in a constructive way to
promote complete synchronization: the larger the chemical
synapse strength is the smaller the electrical synapse strength
needs to be to achieve complete synchronization.

When neurons connect simultaneously by electrical and
chemical ways, there is an optimal range of synaptic
strengths for which the production of information is large.
For strengths larger than values within this optimal range, the
larger the electrical and chemical synaptic strengths are the
smaller the production of information of coupled neurons.

In the absence of complete synchronization, it is intuitive
to expect that excitatory networks have neurons that are
more desynchronous while inhibitory networks have neurons
that are more synchronous. This intuitive idea can be better
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formalized by understanding the relationship between exci-
tation (inhibition), synchronization (desynchronization) and
the rate of information production. For that we classify the
network as having an UPPER or a LOWER character. In a
UPPER (LOWER) network, the sum of all the positive
Lyapunov exponents, denoted by H;, is bounded from above
(below) by the sum of all the positive conditional Lyapunov
exponents, denoted by H, the Lyapunov exponents of the
synchronization manifold and the transversal directions. Net-
works that have neurons connected simultaneously by inhibi-
tory chemical synapses and electrical synapses can be ex-
pected to have an UPPER character. In such networks, one
should expect to find synchronous behavior, since the syn-
apses force the trajectory to approach the synchronization
manifold. On the other hand, networks whose chemical syn-
apse are of the excitatory type might likely have a LOWER
character. In such networks one should expect to find desyn-
chronous behavior since the synapses force the trajectory to
depart from the synchronization manifold.

Notice that H;(N) can only be numerically obtained
whereas H(N) can be calculated from the conditional expo-
nents numerically obtained for two mutually coupled neu-
rons that have equal trajectories. For UPPER networks,
Hq(N)>H;(N), and by Ruelle [28] H,(N) = Hgg(N), where
Hyg is the Kolmogorov-Sinai entropy, the amount of infor-
mation (Shannon’s entropy) produced by time unit; we have
then that H. is an upper bound for Hyg(N). That can be
advantageously used in order to calculate the rate of infor-
mation produced by a large network, composed of N neurons
by using only the rate at which information is produced in
two mutually coupled neurons that are completely synchro-
nous and have equal trajectories.

We have worked with idealistic networks. However, our
results can be extended to more realistic networks [12]. For
UPPER networks, our numerical results show that more re-
alistic networks constructed with nonequal nodes (or net-
works of equal nodes but with random synapse strengths
[30]) have H; smaller than the networks with equal nodes.
Therefore, even though networks with equal nodes might not
be realistic, their entropy production per time unit is an upper
bound for the entropy production of more realistic networks.
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APPENDIX: LOWER BOUND FOR THE KS ENTROPY

Imagine a 2D chaotic system as the one studied in Ref.
[11] [Egs. (5) and (6)]. Following the same ideas from there,
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the KS entropy of two coupled maps with variables x* and x#
can be estimated from the Shannon’s entropy of the prob-
abilities that a trajectory point makes a given itinerary in the
phase space (x%,x®), divided by the time interval for the
trajectory to make that itinerary.

In practice, calculating the Shannon’s entropy [18] for all
possible itineraries on the phase space (x*,x?) of a chaotic
trajectory is equivalent to calculating the joint entropy be-
tween the probabilities of finding a point following simulta-
neously an itinerary along the variable the variable x* and
another itinerary along the variable x.

Since we are unable to make a high resolution partition of
the phase space (nor we do not know the Markov partition)
in the neural networks studied in this work, we estimate a
lower bound for the KS entropy by calculating the joint en-
tropy between symbolic sequences encoding the trajectory.
Such calculation of probabilities involves large matrix opera-
tions and for that reason we restrain ourselves to the calcu-
lation of the joint entropy between two neurons.

It is a lower bound due to two reasons. The first one is
because the entropy will be measured considering the prob-
abilities of occupation of a projected trajectory in a subspace
of the network. The second one is because we calculate the
entropy considering the probabilities of binary symbolic se-
quences and obviously a binary sequence may contain much
less information than the content of a continuous signal [19].

In the following, we show in more details how this esti-
mation is done. The way we encode the trajectory is partially
based on the time encoding proposed in Ref. [30].

Given two symbolic sequences S; and S,, generated by
neuron 1 and 2, respectively, a lower bound for the KS en-
tropy can be estimated by

1
H/0w= _H(SI;SZ)

= (al)

with H(S;;S,) representing the joint entropy between the
symbolic sequences S; and S,. To create the symbolic se-
quences, we represent the time at which the nth maxima
happens in neuron 1 by 77, and the time interval between the
nth and the (n+ 1)-th maxima, by 6T}. A maxima represents
the moment when the action potential reaches its maximal
value. The quantity (7) represents the average time between
two spikes. We then encode the spiking events using the
following rule. The ith symbol of the encoding is a “1” if a
spike is found in the time interval [iA,(i+1)A[, and “0”
otherwise. We choose A e [min(8TY), max(S77)] in order to
maximize H,,,. Each neuron produces a symbolic sequence
that is split into small nonoverlapping sequences of length
L=8.
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