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Heterogeneity in the degree distribution is known to suppress global synchronization in complex networks of
symmetrically coupled oscillators. Scale-free networks display a great deal of heterogeneity, containing a few
nodes, termed hubs, that are highly connected, while most nodes receive only a few connections. Here, we
show that a group of synchronized nodes may appear in scale-free networks: hubs undergo a transition to
synchronization while the other nodes remain unsynchronized. This general phenomenon can occur even in the
absence of global synchronization. Our results suggest that scale-free networks may have evolved to comple-
ment various levels of synchronization.
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The last decade has witnessed a tremendous growth of
interest in various kinds of collective dynamics in networks
with complex structures, ranging from physical, biological to
social and engineering systems �1–10�. Real-world complex
systems have been modeled as networks of interacting nodes.
Synchronized activities have a major impact on the network
with important fitness consequences to all nodes and network
functioning. The network structure exerts dramatic influence
on its synchronization properties �3–5�.

Recent studies reveal that disparate real-world networked
systems share important structural features such as the scale-
free property �11,12�. Scale-free networks are characterized
by a high level of heterogeneity in the node’s degree—the
number of connections of a node. Such networks contain a
few high-degree nodes, termed hubs, while most nodes re-
ceive only a few connections. The hubs serve specific pur-
poses within their networks, such as regulating the informa-
tion flow and providing resilience during attacks. They
severely affect the dynamical processes taking place over
scale-free networks, particularly the emergence of global
synchronized motion �3–5�.

Heterogeneity in the degree distribution may lead to a
hierarchical transition toward global synchronization, with
hubs synchronizing first, followed by the low-degree nodes
�6�. In large scale-free networks, however, the heterogeneity
inhibits global synchronization �5�. This turns out to be a
desirable property, since in most real-world networks where
synchronization is relevant, global synchronization can be
related to pathological activities, such as epileptic seizures
�7� and Parkinson disease �8� in neural networks. The study
of collective behavior apart from global synchronization is
thus of substantial interest.

In this paper, we show a general cluster synchronization
in scale-free networks—only the hubs undergo a transition to
synchronization even in the absence of global synchroniza-
tion. Interestingly, the very heterogeneity that may prevent
global synchronization is the primary ingredient of hub syn-
chronization. We provide conditions for the onset of hub syn-
chronization and determine the persistence under small per-
turbations. One direct consequence of our theoretical
analysis is that hub synchronization is both dynamically and
structurally stable, thus, allowing the network to function in
a flexible and robust way.

Our approach is to introduce nonlinear dynamics on each
node and then perform stability analysis to determine when
the hubs synchronize. From the point the view of stability,
reasonable arguments show that the network dynamics acts
as a small noiselike coupling. Hence, the linear stability of
the synchronized hubs is maintained. Later on, in the large
size limit, we provide a rigorous treatment on the linear sta-
bility problem. Our analysis is based on the new results of
the theory differential equations and spectral graph theory.

We consider a network compose of n nodes, and label the
nodes according to their degrees k1�k2� ¯ �kn, where k1
and kn denote the minimal and maximal node degree, respec-
tively. Hence, the ith node has degree ki. A scale-free net-
work is characterized by the degree distribution P�k�, the
probability that a randomly chosen node within the network
has degree k, that follows a power-law P�k�=ck−�, for k1
�ki�kn, where c is the normalization factor. The degree
distribution is normalizable for ��1, and for large kn we
have c���−1�k1

�−1. The mean degree �k� attains a finite
limit for large kn provided ��2. We consider only connected
networks with well defined mean degree, that is, ��2.

The dynamics of a general network of n identically
coupled elements is described by

ẋi = F�xi� +
�

kn
�
j=1

n

Aij�E�xj� − E�xi�� , �1�

here xi�Rm is the m-dimensional vector describing the state
of the ith node �node with degree ki�, F :Rm→Rm governs
the dynamics of the individual oscillator and is assumed to
be smooth, E :Rm→Rm is the coupling function �without loss
of generality assumed to be a constant matrix�, � is the nor-
malized overall coupling strength �13�, and A is the adja-
cency matrix. A encodes the topological information of the
network, defined as Aij =1 if nodes i and j are connected and
Aij =0 otherwise. Note that A is symmetric, and by definition
ki=� jAij.

We wish to show that a group of oscillators having nearly
the same number of connections as the main hub may dis-
play a synchronized motion. Consider �i=xn−xi, thus, syn-
chronization is possible between the nodes i and n if �i→0.
Stability of this synchronized state is determined by analyz-
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ing the variational equations governing the perturbations,
which read

�̇i = Ki�t;���i + ��i, �2�

where the matrix Ki�t ;��= 	DF�xn�t��−��iE
 depends con-
tinuously on t, DF stands for the Jacobian matrix of F, �i
=ki /kn is the normalized degree, and

�i =
1

kn
�

j

�Aij − Anj�E�� j�

is the coupling term.
Neglecting the coupling term �i the equations governing

the evolution of the perturbations �i and are decoupled from
the other perturbations and read

�̇i = �DF�xn�t�� + ��iE��i. �3�

We now assume that Eq. �3� is Lyapunov regular and that
its fundamental matrix is integrally separated �14�. The sta-
bility of the zero solution of Eq. �3� is determined by its
largest Lyapunov exponent ����i�, which can be regarded
as the master stability function of the system �3,4�. The per-
turbation �i is damped out if ����i�	0.

For many widely studied oscillatory systems the master
stability function ����i� is negative in an interval �1
	��i	�2 for general coupling function E �3,4�. The pertur-
bation �i is damped out if �1	��i	�2. Moreover, normal-
ization imposes �n=1 and �1
kn

−1, hence, as kn increases,
�1 converges to zero. Not only �1, but most of the normal-
ized degrees �i will converge to zero. Therefore, it will be
impossible, for large kn, to have �1	��i	�2 for all i
=1,2 , . . . ,n. Hence, in the thermodynamic limit no stable
global synchronization is possible in scale-free networks.

Now take � in the stability region. Then, the state xn
=xn−1 is linearly stable. This is true as long as we can neglect
the coupling term �i. Under the effect of �i local mean field
arguments show that xn�xn−1 is stable. The argument goes
as follows. If ����n−1�	0, we guarantee the linear stability
of �n−1. Moreover, if the remaining oscillators are not syn-
chronized, the coupling term �n−1 can be viewed as a small
coupling noise, as long as the signals xi are uncorrelated,
with � fixed and kn large �16�. Results from ordinary differ-
ential equations state that the linear stability is maintained
under small perturbations �15,17�. Therefore, if at t=0 we
have xn�0�−xn−1�0��0, then for all t�0 it yields xn�t�
−xn−1�t��0.

These arguments cannot be applied to low-degree nodes.
The reason is that to set the low-degree nodes into the sta-
bility region we must have ��1��1, requiring � to be as
large as kn. Hence, the coupling term ��i cannot be made
small for low-degree nodes.

The mean field arguments also hold for correlated scale-
free networks. The node correlation does not play a major
role to the onset of hub synchronization. For instance, the
Barabási-Albert �BA� scale-free model is known to present
finite size node correlation, hubs are likely connected �12�. If
we rewire the connections between the hubs, connecting the
hubs with the low-degree nodes, the mean field argument is
still valid, that is, hub synchronization still takes place.

We illustrate this phenomenon with numerical experi-
ments. We generate a Barabási-Albert �BA� scale-free net-
work with 3�103 nodes and m=3 �12�. The network has
largest degrees kn=kn−1=165. Each node xi is modeled as a
Rössler oscillator, for xi= �x1i ,x2i ,x3i�T we have F�xi�= �x2i
−x3i ,x1i+0.2x2i ,0.2+x3i�x1i−7��T. We consider E to be a
projector in the first component, i.e., E�x ,y ,z�T= �x ,0 ,0�T.
The master stability function ���� has a stability region for
�� ��1 ,�2� with �1�0.13 and �2�4.55. Global synchroni-
zation in this network is impossible �18�.

For �=0.30 we have observed the hub synchronization
xn�xn−1. In Fig. 1�a� the time series xn is depicted in full line
while xn−1 is depicted in light gray line and �n−1 in bold line.
Figure 1�a� shows that the local mean field approximation on
�n−1 indeed holds, as shown in the times series xn−1�xn. In
Fig. 1�b� −xn is depicted in bold line while x2000 in full line.
Clearly �n−1�0 whereas �2000 presents large fluctuations.

All this reasoning can be set into a rigorous frame in the
thermodynamic limit, for uncorrelated scale-free networks.
To tackle the problem let us introduce i�t�=xi�t�−s�t�,
where s�t� is a given typical trajectory of ẋ=F�x�. Consider
�= �1 ,2 , . . . ,n�T and �=diag��1 ,�2 , . . . ,�n�. Hence, �
�Rmn. The variational equations of the perturbations � can
be written in a convenient block form

�̇ = ��t;��� + �B� �4�

where ��t ;��= In � DF�s�t��−�� � E, with � standing for
the Kronecker product, and B=kn

−1A � E is the coupling
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FIG. 1. �Color online� Hub synchronization in a BA scale-free
network of 3000 coupled Rössler oscillators with coupling param-
eter �=0.3. �a� Time series of the largest hub xn �full line� and the
second largest xn−1 �light gray line�. The coupling term �n−1 �bold
line� spoiling the stability of the hub synchronization is small as
predicted by the local mean field arguments. �b� Time series of the
largest hub xn �full line� and of a low-degree node x2000 �light gray
line� The corresponding node degrees are kn=kn−1=165 and k2000

=3.
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among the variational equations. We shall demonstrate that
for large scale-free network with ��2, the term coupling
term can be made arbitrarily small.

According to the aforementioned arguments ��t ;�� splits
into independent blocks as in Eq. �3�. By choosing a fixed �
such that nodes with degree larger than kn−� have their per-
turbations damped out, we guarantee that � nodes display a
synchronous behavior with the main hub xn. In other words,
Rnm=U � S, where U and S respectively the unstable and
stable spaces, clearly dim�U�= �n−��m and dim�S�=�m. No-
tice that on the subspace S all Lyapunov exponents are nega-
tive.

It remains to show that the coupling term can be made as
small as one wishes whenever kn is large enough. Thus, re-
sults of qualitative theory of ordinary differential equations
guarantee that the linear stability is not affected by small
continuous perturbations �19�.

By our hypothesis on the symmetry of the matrix A the
spectral theorem guarantees that

A = NJN−1.

where N is an orthogonal matrix and J=diag��1 ,�2 , . . . ,�n�
is the matrix of the eigenvalues of A ordered according to
their magnitudes �1��2� ¯ 	�n.

We endow the vector space Rmn with the norm � · �� such
that for u�Rmn we have �u��= �N � Imu��, where �u��

=supi�ui� for i=1,2 , ¯ ,nm. We also make use of the in-
duced matrix norms. Now we claim that given ��0 there
exists K such that for all kn�K we have

�B�� 	 � .

Indeed, by using the induced matrix norm we can obtain
bounds in terms of the largest eigenvalue of A. We postpone
the technical details and go directly to the result which reads
�A � E����n�E��.

Under mild conditions �20� the largest eigenvalue of a
scale-free network scales almost surely as �n=kn

�, where �
depends on �. We have two distinct cases: �i� �=3−� for
2	�	2.5; and �ii� �=1 /2 for ��2.5. Putting all estimates
together yields

�B�� 

1

kn
1−� . �5�

Hence, for kn large enough our claim follows.
This analysis is grounded on the fact that �n /kn→0. This

is also the case for correlated scale-free networks �10�,
whenever the correlations preserve the scale-free character.
These moderate correlations are immaterial for hub synchro-
nization, as finite size correlation in the BA scale-free model.

In summary, we analyzed a general phenomenon in the
synchronization of large scale-free networks, namely, the
synchronization of hubs even when the entire network is out
of synchrony. Our theoretical analysis provides insights into
further generalizations for the master stability function. The
stability analysis of the synchronous hubs can be tailored to
the master stability function and the coupling term due to the
underlying network dynamics. We have shown that for large
scale-free networks the coupling term can be controlled, ef-
fectively acting as a small noise-like perturbation on the
hubs.

Hub synchronization has counterintuitive effects. For ex-
ample, the hubs do not need to be directly connected to syn-
chronize. Remarkably, when the hubs synchronize, the low-
degree nodes are out of synchrony; these nodes, however, are
responsible for mediating the exchange of information be-
tween the hubs. This seems to challenge our understanding
of the role of synchronization in the exchange of information
within complex networks �9�.

We believe that our findings provide strong evidence that
incomplete, hub-driven, synchronization may be at least as
important and persistent in real-world networks as other
forms of synchronization and collective behaviors previously
examined in the literature.
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