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Reciprocal relation between the fractal and the small-world properties of complex networks
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The fractal and the small-world properties of complex networks are systematically studied both in the
box-covering (BC) and the cluster-growing (CG) measurements. We elucidate that complex networks possess-
ing the fractal (small-world) nature in the BC measurement are always fractal (small world) even in the CG
measurement and vice versa, while the fractal dimensions dg by the BC measurement and dc by the CG
measurement are generally different. This implies that two structural properties of networks, fractality and
small worldness, cannot coexist in the same length scale. These properties can, however, crossover from one to
the other by varying the length scale. We show that the crossover behavior in a network near the percolation
transition appears both in the BC and CG measurements and is scaled by a unique characteristic length &.
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I. INTRODUCTION

Numerous complex systems in nature and society can be
described by complex networks consisted of nodes and edges
[1-3]. It has been shown that many complex networks in the
real-world possess common statistical features such as the
small-world property [4], the scale-free property [5], and the
fractal property [6]. The small-world property is that a net-
work has a short average node-pair distance [ increasing
logarithmically (or more slowly) with the number of nodes N
and a high clustering coefficient. A network is regarded to be
scale-free if the degree distribution function obeys a power
law. This implies that scale-free networks are highly inhomo-
geneous and contain a few nodes having very large degrees
(hubs). The fractal property represents the self-similar struc-
ture of an object without possessing any characteristic length
scale. The measure of a conventional fractal object embed-
ded in the Euclidean space is proportional to [P, where [ is
the linear size of the system and D is the (noninteger) fractal
dimension. Extending this concept to complex networks, a
network is considered to be fractal when the relation
(MC(ZC))~léC holds, where (M(I¢)) is the average number
of nodes in a subgraph of network diameter /- and d is the
fractal dimension of the network measured by the cluster-
growing (CG) method. This power-law relation, however,
obviously conflicts with the small-world property. In fact, a
clear dichotomy between the small-world and the fractal na-
tures has been demonstrated in real-world networks [7].

Despite the apparent inconsistency between two concepts,
Song et al. [6] showed that these two properties are recon-
ciled by defining fractality of complex networks in the box-
covering (BC) measurement. In this definition, a network is
fractal if the relation Ny(lg) ~ [5%® holds, where Ny(lg) is the
minimum number of boxes (subgraphs) of diameter Iy re-
quired to cover the entire network and dy is the fractal di-
mension. This definition of fractality is mathematically dif-
ferent from that in the CG measurement, (M (l¢)) ~ léc. Two
fractal dimensions d and dy usually take the same value for
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conventional fractal objects embedded in the Euclidean
spaces, while they can be different for complex networks
especially with the scale-free property. If the dimension dy of
a network remains finite but dc diverges, the network pos-
sesses the fractal property in the BC sense and the small-
world nature in the CG sense simultaneously.

Inspired by this idea, fractality of complex networks in
the BC measurement has been extensively studied and the
coexistence of the fractal and the small-world properties has
been supported by many works [6,8—16]. In order to clarify
more precisely the relation between fractality and small
worldness, several network models with or without the scale-
free property have been proposed, in which both of these
structural features are provided by controlling parameters
[10,17,18]. In these models, however, the parameter ranges
for fractal networks are separated from those for small-world
ones, which implies that fractality even in the BC sense can-
not coexist with the small-world nature in these models. It
has also been elucidated that a network shows a crossover
behavior from the fractal to the small-world property de-
pending on a length scale if extra shortcut edges are ran-
domly added to a fractal network in the BC sense [19]. Re-
cently, the renormalization approach has been proven to be
efficient to extract detailed information on fractality of net-
works [20,21] and revealed that the crossover behavior and
the coarse-grained (renormalized) structure of a network
added extra edges strongly depend on how to add shortcut
edges to the original fractal network [22]. In the sense of the
CG measurement, on the other hand, such a crossover phe-
nomenon has been well argued from the viewpoint of the
percolation transition [3,23-25]. Although there exist many
works studying the relation between the fractal and the
small-world properties of complex networks, it has not yet
been clarified whether a fractal network in the BC sense can
be nonfractal (small world) by the CG measurement.

In this paper, we examine fractality of several real-world
networks and stochastic network models in both senses of
the BC and the CG measurements, most of which have been
studied previously in the context of the fractal nature of net-
works. Our results suggest that fractal networks in one sense
are also fractal even in the other sense though two fractal
dimensions dg and d¢ can take different values. This implies
that a small-world network never possesses the fractal prop-
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FIG. 1. (Color online) (a) Number of covering boxes as a function of box size Iy for four scale-free networks, namely, from the top to
the bottom, the WWW (circles), the cellular network of E. coli (squares), protein interaction networks in yeast (triangles), and H. sapiens
(inverted triangles). Dashed lines through marks are a guide to the eyes representing the fractal dimensions of dg=4.41 [7-15] (WWW), 3.55
[3-16] (E. Coli), 3.41 [8-16] (yeast), and 5.12 [5-12] (H. sapiens) estimated by data within the region of /jgye; =I5 = I, indicated by
[Ziower—Lupper)- (b) Average number of nodes in a box of size /. for the same networks as treated in (a). The same symbol represents the same
network as in (a). Dashed lines represent the fractal dimensions of d-=4.44 [4-14] (WWW), 2.81 [4-10] (E. Coli), 3.74 [6-10] (yeast), and
3.68 [2-8] (H. sapiens) estimated in the region indicated by [/oyer—Lupper]- (¢) Same as (a) for three fractal network models, namely, from the
top to the bottom, the SHM model (circles), the ERRG (squares), and the FMN (triangles) at their percolation transition. The fractal
dimensions dy represented by dashed lines are dg=2.67 (SHM), 1.77 (ERRG), and 1.84 (FMN). (d) Same as (b) for the same networks as
treated in (c). The same symbol represents the same network as in (c). Dashed line through marks represent d-=2.34 (SHM) 1.70 (ERRG),
and 1.82 (FMN). In these figures, the data are shifted vertically for clarity.

erty either in the BC and the CG senses. Furthermore, we
demonstrate that a network above the percolation transition
exhibits a crossover phenomenon from the fractal to the
small-world property not only in the CG sense but also in the
BC sense. Our result elucidates that the crossover behavior
measured by the BC method is scaled by a unique character-
istic length as in the case of the CG measurement.

The rest of this paper is organized as follows. In Sec. II,
we investigate fractality, in the CG sense, of real-world net-
works known to be fractal in the BC sense. The small-world
property (in the CG sense) of some fractal network models is
also examined in this section. In Sec. III, the crossover be-
havior from the fractal to the small-world nature is argued in
the BC and the CG senses from the viewpoint of the perco-
lation transition of networks. We present our conclusion in
Sec. IV.

II. FRACTALITY IN THE BC AND CG SENSES

It has been reported that a World Wide Web (WWW)
network takes a fractal structure in the BC sense [6] while
the small-world property has also been observed by the CG

measurement [26], which indicates the coexistence of two
structural features. We can find similar examples of the co-
existence in power-grid networks [4,7] and software net-
works [27,28]. In such examples, however, scales in mea-
surements are different or, in some cases, a network
exhibiting fractality is not identical to a network providing
the small-world nature. Here, we systematically examine,
both in the BC and CG measurements, structures of several
complex networks ever treated in the literature.

First, we examine four real-world scale-free networks,
namely, the WWW of N=325 729 nodes and m=1 469 680
edges [29], the cellular network of E. coli (N=2859, m
=7104) [29], protein interaction networks (PINs) of the yeast
(N=1458, m=2203) [29], and H. sapiens (N=1522, m
=2611) [30,31]. These networks are known to be fractal in
the BC sense [6,8]. The number of boxes required to cover
the network is plotted in Fig. 1(a) for these four networks as
a function of the box size /5. To achieve the minimum cov-
ering, we employed the compact-box-burning algorithm [32]
modified to shorten the computing time [33]. Figure 1(b)
shows the average number of nodes within a box of size /-
for the same networks. Results in Fig. 1(b) suggest that all
these networks shown to be fractal by the BC measurement
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are also fractal even in the CG measurement. Since diameters
of these networks are not sufficiently large, it is not easy to
determine definitely whether a network is fractal or small
world. It is, however, possible to find fractal scaling regimes
in Fig. 1(b) at least for small /. The fractal dimensions d of
these networks are not very different from dy except for the
PIN of H. sapiens. It should be noted that (M(l¢)) in Fig.
1(b) does not obey the fractal scaling at a longer length scale
than 23 while the behavior of Ng(Ig) still indicates fractality
in this scale. This is due to the finite-size effect peculiar to
scale-free networks. When /- approaches the network diam-
eter, a box includes a huge hub and almost all of nodes in the
network are contained in this box. As a result, the quantity
(Mc(Ic)) is not sensitive to . Thus, the fractal scaling re-
gime by the CG method is usually narrower than that by the
BC method for scale-free networks. In a network with a rela-
tively small diameter, this effect becomes serious to find the
fractal property. Therefore, the BC method is more appropri-
ate to study fractality of scale-free networks. However, we
should note that the difficulty to find the fractal property in
the CG measurement does not imply that the network is in-
trinsically small world in the CG sense.

Next, we examine structures of complex networks con-
structed by three stochastic models. At first, we study the
Song-Havlin-Makse (SHM) model [8], in which a network is
formed by an inverse procedure of the renormalization
scheme and possesses the scale-free property. The SHM
model has an important parameter ¢( [0, 1]) controlling the
degree of assortativity (attractive correlation between hubs).
The network becomes fractal or small world at e=0 (disas-
sortative) or e=1 (assortative), respectively. We measure
Ng(lp) and (M (Ic)) for a network made by the SHM model
at e=0 [34]. The network has 46 656 nodes and 46 655
edges. Results are shown by circles in Figs. 1(c) and 1(d). As
in the case of real-world networks, the fractal property of the
network is found both in the BC and the CG measurements.
The fractal dimension djy is close to the theoretical prediction
dp=2.58 [8]. It should be noted that the fractal dimension d
is not very different from dy though the SHM network has
the scale-free property with the degree exponent of y=3.58.
It has been pointed out that there is a possibility of a fractal
small-world network at an intermediate value of the assorta-
tivity parameter e [8]. In order to inspect this possibility, we
calculate Ng(lg) and (Mc(Ilo)) for SHM networks with
e=0.2 and 0.8. The results are presented in Fig. 2. For
e=0.2, the network is well approximated to be fractal in both
senses of BC and CG. On the contrary, these quantities,
Ng(lg) and (M(1c)), for e=0.8 show exponential behavior,
which implies the small-world property of the network.
Therefore, our numerical results suggest a reciprocal relation
between the fractal and the small-world properties in the
SHM model.

Other networks by stochastic models we examine are re-
alized as critical networks in two kinds of percolation pro-
cesses. One is the Erdds-Rényi random graph (ERRG) in
which every node pair among N nodes is connected with a
given probability p [35]. For the ERRG, the percolation tran-
sition occurs at p=1/N(=p.) above which the number of
nodes in the largest cluster (giant component) becomes pro-
portional to N [35]. It has been clarified that the largest clus-
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FIG. 2. (Color online) The upper panel shows the number of
covering boxes as a function of box size /g for the SHM model with
e=0.2 (circle) and 0.8 (square). The lower panel shows the average
number of nodes in a box of size /¢ as a function of /- for the same
networks. Dashed lines are a guide to the eyes with the slopes of
dg=3.19 and d-=3.44.

ter of the ERRG at the percolation threshold takes a fractal
structure in the CG sense [23] and the BC sense [6]. We
confirm this fact as shown in Figs. 1(c) and 1(d). Here, the
total number of nodes is N=100 000 and the results are av-
eraged over 100 realizations. Due to the lack of the scale-free
property in the ERRG, the fractal scaling in (M(Ic)) holds
even for a large /c. The fractal dimensions dg and d of the
non-scale-free ERRG are expected to be the same. Our nu-
merical results of these two fractal dimensions are surely
close to each other but slightly smaller than the mean-field
prediction dg=d-=2 [23]. This can also be seen in the result
in Ref. [6] and might be caused by a finite-size effect in
numerical calculations. Although results of the ERRG pre-
sented here have been already clarified and do not provide
any new insights, we display them for comparison with re-
sults for scale-free networks.

Another example of critical networks is provided by the
fitness model [36—38]. In this model, we start with N isolated
nodes and attribute randomly a fitness to each node. The
fitness f; of the node i taking a real continuous value in the
range of [1,%0) obeys the power-law distribution

p(f)=(y=1Df7, (1)

where y(>2) is an exponent. Every node pair (i,j) is then
connected with the probability

pij= 0( a%) , (2)

where « is a parameter and the function 6(x) is defined as
O(x)=x for x<1 and 6(x)=1 otherwise. In the case that the
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number of node pairs satisfying af;f;/N>1 is much smaller
than N(N-1)/2, the fitness-model network (FMN) has the
scale-free property in a large degree regime with the degree
exponent equal to the fitness distribution exponent y [36]. In
our numerical calculations, the exponent vy is fixed as y
=4.0. Then, the FMN is characterized only by «. The FMN
changes its structure from the set of isolated nodes (a=0) to
the complete graph (a=N) gradually by varying the param-
eter a. Thus, we have the percolation transition at a certain
value of a. Since the linking probabilities p;; are independent
to each other and the number of loops in an FMN near the
transition point is negligibly small, the percolation threshold
a, is given by the relation

> kk=2)PY, (k) =0, (3)
k

where P(k) is the degree distribution function of the FMN
for the parameter y and « [39—-43]. We numerically calcu-
lated the entire profile of P)(k) and obtained «
=0.34£0.01 at y=4.0 by using Eq. (3) and extrapolating to
the thermodynamic limit (N— o). Triangles in Figs. 1(c) and
1(d) indicate Ng(ly) and (M (lc)) averaged over 100 realiza-
tions of FMNs (N=50 000) at @=c,. These results clearly
show that the scale-free FMN at the percolation threshold
exhibits the fractal property both in the BC and the CG
senses. It is interesting to note that the fractal dimensions dg
and dc of the scale-free FMN take almost the same value as
in the case of the non-scale-free ERRG.

All these results definitely demonstrate that a fractal net-
work in the BC sense is also fractal even in the CG sense
regardless of the scale-free property of the network and vice
versa. This implies that the fractal property of a network
cannot coexist with the small-world nature in the same
length scale independently of the measurement method,
which contradicts the previous views in the literature
[6,8—16]. Although the fractal property can be easily detected
by the BC method rather than the CG method, the intrinsic
structural property of a network is irrelevant to the way of
measurement. This conclusion seems to be reasonable if we
consider a characteristic length of a network. A small-world
network described by (Mc(Ic)) ~ '’ must include the char-
acteristic length [, while a fractal network must not. The
existence (absence) of such a characteristic length never de-
pends on how we measure the network structure. Here, we
consider two fractal dimensions dg and dc. These fractal
dimensions take close values to each other for each of all
empirical and algorithmic networks we treated, except for
the PIN of H. sapiens. Since the definitions of dy and d are
mathematically independent, these fractal dimensions are not
necessary to have the same value. The fractal dimension dc
represents dominantly the fractal property near hub nodes
because the CG method counts many times measures near
hubs, while dp reflects fractality uniformly the entire net-
work. If the local fractal dimension near hubs is different
from that apart from hubs, d- might be different from dg as
in the case of the PIN of H. sapiens. However, further inves-
tigations are required to elucidate more clearly the condition
for dg=dc. It should be emphasized that our claim on the
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equivalence of fractality both in the BC and CG senses is
independent of the problem of whether dy is equal to d.

III. CROSSOVER FROM FRACTAL TO SMALL-WORLD
BEHAVIOR

Our conclusion in Sec. II suggests that the apparent coex-
istence of the small-world and the fractal properties observed
in several real-world networks [4,6,7,26-28] is not explained
by the difference in measurement methods. A possible expla-
nation of such a coexistence is given by a structural cross-
over depending on the length scale. The crossover behavior
from a fractal to small-world structure has been found by
adding shortcut edges to a fractal scale-free network formed
by the SHM model [19]. In addition, it has been well estab-
lished that in the sense of the CG measurement a network
above the percolation transition shows the crossover between
the fractal and the small-world properties and the crossover
behavior can be scaled by the correlation length £ [23,24].
Since the presence of fractality does not depend on the mea-
surement method, the scaling property of the crossover be-
havior near the percolation transition is expected to be irrel-
evant to whether the network is analyzed in the BC or CG
measurement. In this section, we demonstrate the above is-
sue by examining Ng(/g) and (M (I¢)) of non-scale-free and
scale-free networks slightly above their percolation transition
points.

We numerically calculated Ng(lg) and (M(lc)) for ER-
RGs and FMNs at and above their percolation thresholds.
Conditions for calculations are the same as those for Fig. 1
except for p and «a. Results are shown in Figs. 3 and 4 for
ERRGs and FMNs, respectively. The ERRG and FMN at
criticality take fractal structures in a wide range of length
scale both in the BC and CG measurements. As shown in
Figs. 3(a) and 4(a), Ng(lg) for p>p(a> «,) deviates from a
power-law form for large lz. This implies that additional
shortcut edges to the fractal network at the critical point
make the network small world in a long scale. Similar cross-
over behaviors from fractal to small-world structure are
found also in the CG measurement as depicted in Figs. 3(b)
and 4(b). In both measurements, the crossover length scale
decreases as getting away from the percolation transition
point. Since the ERRG and the FMN are a non-scale-free and
scale-free network, respectively, the crossover behavior is
irrelevant not only to the measurement method but also to
the scale-free property.

In order to confirm that the crossover behaviors found in
Ng(lg) and (M(I)) come from the same physical origin, we
performed the scaling analysis for these data. Assuming that
both Ng(Ig) and {M(Ic)) near the critical point are scaled by
the correlation length £~ |z—z|™", where z denotes p or a for
the ERRG or the FMN, respectively, and v is the correlation
length exponent, we have

Notly) _ (o _ o] (2 = 21l )
Ncl

and
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FIG. 3. (Color online) (a) Number of covering boxes as a func-
tion of box size Ilg for the Erddés-Rényi random graphs of N
=100 000 rescaled by the size of the giant component. Solid lines
are a guide to the eyes with the slope of dg=1.77. (b) Average
number of nodes in a box of size /¢ as a function of /- for the same
networks. Results are averaged over 100 realizations. Solid lines are
a guide to the eyes with the slope of d-=1.70. Different symbols
represent results for different probabilities, p=p. (circle), p
=1.025p, (square), p=1.05p, (triangle), p=1.075p, (inverse tri-
angle), and p=1.1p, (diamond). In both figures, the data are shifted
vertically for clarity.

(Mc(l0)) = (z = 2.) Gl (z - z)IE], (5)

where N is the number of nodes in the giant component.
Figure 5 shows the quantities Ny(l)(z—z.)7"B/N, and
(M (1)) (z=z.)"c as functions of (z—zc)lllg/” and (z—zc)lg”,
respectively, for ERRGs and FMNs. The fact that all data in
Figs. 3 and 4 collapse onto unique curves supports the valid-
ity of the above scaling forms. In the rescaling procedure for
ERRGs [Figs. 5(a) and 5(b)], we used values of dy and d¢
obtained numerically from Fig. 1 and v=1 that is theoreti-
cally predicted for the ERRG [3,44]. In the case of FMNs
[Figs. 5(c) and 5(d)], we employed values of dy and d ob-
tained numerically from Fig. 1 and treated v as a fitting pa-
rameter. The exponent v is then evaluated as v=0.28 for
Ng(lg) and v=0.23 for (M(Ic)), which are close to each
other. As shown in Fig. 5, Ng(lg) and (M (Ic)) for scale-free
and non-scale-free networks above the percolation threshold
are scaled by the unique correlation length &~ |z—z|™" with
the same exponent v for Ng(lg) and (M(lc)). This implies
that the same physical origin causes the crossover behavior
appearing in the BC and the CG measurements, though the
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FIG. 4. (Color online) (a) Number of covering boxes as a func-
tion of box size g for the fitness-model networks of N=50 000
rescaled by the size of the giant component. Solid lines are a guide
to the eyes with the slope of dg=1.84. (b) Average number of nodes
in a box of size /¢ as a function of /- for the same networks. Results
are averaged over 100 realizations. Solid lines are a guide to the
eyes with the slope of d-=1.82. Different symbols represent results
for various different of @, @=a,=0.34 (circle), @=1.03¢, (square),
a=1.06a, (triangle), a=1.09¢, (inverse triangle), a=1.12a, (dia-
mond), a=1.15¢, (pentagon), and a=1.18«, (cross). In both fig-
ures, the data are shifted vertically for clarity.

crossover length by the CG measurement seems to be larger
than that by the BC method due to the finite-size effect as
shown in Figs. 3 and 4.

We should note that the crossover phenomenon in a com-
plex network near the percolation transition is essentially the
same as the dimensional crossover from fractal to Euclidean
structure in the percolation problem of a regular lattice [44].
Only the difference is that the dimension of the network at
one stable fixed point p=1 is infinite (namely, small world)
while the dimension of the perfect lattice realized at p=1 is
finite.

IV. CONCLUSIONS

We have studied the fractal and the small-world properties
of real-world complex networks and several network models
in the BC and the CG measurements. In contrast to previous
studies, all of our numerical analyses suggest that a fractal
(small-world) network in one measurement is also fractal
(small world) even in another measurement. This implies
that these structural features of networks do not depend on
the measurement method and cannot coexist in the same
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FIG. 5. (Color online) (a) Scaling plot of the ERRG data presented in Fig. 3(a). Dashed line is guide to the eyes representing the fractal
scaling with dg=1.77. (b) Scaling plot of the ERRG data presented in Fig. 3(b). Dashed line represents the fractal scaling with d-=1.70. (c)
Same as (a) for the FMN data presented in Fig. 4(a). Dashed line represents the fractal scaling with dg=1.84. (d) Same as (b) for the FMN
data presented in Fig. 4(b). Dashed line represents the fractal scaling with d-=1.82. Meanings of symbols in these figures are the same as

those in corresponding Fig. 3 or 4.

length scale. A network can, however, exhibit the structural
crossover from fractal to small-world scaling by varying the
length scale. Examining the Erdés-Rényi random graphs and
fitness-model networks above their percolation transition
points, it has been found that such a crossover behavior ap-
pears both in the BC and the CG measurements. In addition,
our scaling analysis reveals that the crossover behaviors in
Ng(lg) and (M(Ic)) are caused by the same physical origin.

Most of the real-world complex networks show the small-
world property. More precisely, the average node-pair dis-
tance (I) (or the network diameter) is much smaller than the
number of nodes N. This fact can be reasonably understood
from the viewpoint of the crossover behavior near the perco-
lation transition. A large-scale network usually approaches to
the critical network by removing edges randomly [23], which
means that the network is above the percolation threshold.
Otherwise the network size N remains small. Since the quan-
tity (I) is averaged over all node pairs in the network, ()

reflects the network structure at the length scale of the diam-
eter. Therefore, in most of the networks, we detect the small-
world property by measuring (I). If we observe Ng(ly) or
(Mc(Ic)) in a wide range of real-world networks, we might
find the fractal nature in a short-length scale unless networks
are far beyond the percolation threshold.
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