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A model for epidemic spreading on rewiring networks is introduced and analyzed for the case of scale free
steady state networks. It is found that contrary to what one would have naively expected, the rewiring process
typically tends to suppress epidemic spreading. In particular it is found, that as in static networks under a
mean-field approximation, rewiring networks with degree distribution exponent ��3 exhibit a threshold in the
infection rate below which epidemics die out in the steady state. However the threshold is higher in the
rewiring case. For 2���3 no such threshold exists, but for small infection rate the steady state density of
infected nodes �prevalence� is smaller for rewiring networks.
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I. INTRODUCTION

Epidemic spreading can be thought of as occurring on
complex networks where the nodes of the network represent
individuals and the links represent various interactions
among those individuals. For example the spreading of dis-
eases can be thought of as occurring over the network of
human contacts �1� and the spreading of computer viruses as
occurring over the internet �2,3�. Models of epidemic spread-
ing over networks have been studied extensively in recent
years �for reviews see �4,5��. Typically, the underlying net-
work in these models is considered to be static while the
state of the individuals residing on its nodes can change from
infected to noninfected according to some dynamical rules.
One is then interested in studying the evolution of an in-
fected region in time, the average density of infected nodes
in steady state �prevalence� and the way they are affected by
the statistical properties of the network and the infection
rates.

In general, networks can be characterized by the connec-
tivity of their nodes. The connectivity �degree� k of a node is
defined as the number of links connected to the node. The
degree distribution of a network P�k� is defined as the prob-
ability of a randomly chosen node to have a degree k. Many
networks such as social networks, the internet and the World
Wide Web �WWW� have been found to be scale free �SF�
�6–10�, meaning that the degree distribution follows a power
law

P�k� � k−�. �1�

In the thermodynamic limit one can divide SF networks into
two classes based on the exponent �. For ��3 the second
moment of the degree distribution is finite and as such the
system exhibits finite degree fluctuations. For 2���3 the
second moment diverges resulting in infinitely large degree
fluctuations. In the present study we only consider networks
with a finite degree distribution corresponding to ��2. In-
terestingly, many real networks have been measured to be-
long to the second class having 2���3 �10�.

Studies of models of epidemic spreading over static net-
works have shown that in networks with a degree distribu-

tion that is not too heavy tailed, for which all the moments
exist, the prevalence, � vanishes for sufficiently small infec-
tion rates �. The prevalence becomes nonzero only beyond a
threshold rate �c. On the other hand, it has been recently
shown that for power-law networks, for which the m��−1
moment does not exist, the prevalence is nonzero for any
infection rate, and no threshold exists �11�. Thus, epidemics
are much harder to stop in static networks with power-law
degree distributions. The result in �11� contradicts the mean-
field �MF� results �12–15� that state that for power-law de-
gree distributions with a finite second moment, i.e., ��3, a
threshold exists while for networks with 2���3, for which
the second moment of the degree distribution diverges, no
threshold exists.

In many cases networks are not static but rather evolve in
time, for example via rewiring processes. By rewiring we
refer to a process in which edges are detached and reattached
�shuffled� according to some dynamic rule. Steady states of
rewiring networks have been studied in the past. It has been
shown that depending on the average degree and the rewiring
rates, networks may reach an SF steady state, with an expo-
nent � which can be expressed in terms of the dynamical
rates �16–18�.

In the present paper, we consider the MF description of
epidemic spreading over rewiring networks. On such net-
works, the disease can spread at a given time through the
links which are present at that time. We find that as in the
static case the MF approximation suggests a nonvanishing
threshold value of the infection rate, �c, exists for ��3.
Below this threshold the prevalence �fraction of infected in-
dividuals� vanishes while above it the prevalence is nonzero.
For 2���3, in the MF approximation, no such threshold
exists and the steady state prevalence is nonzero for any �
�0. However, contrary to what one would have naively ex-
pected, epidemic spreading in our model is not necessarily
enhanced by the dynamics of the network. For ��3 the
threshold �c is found to be larger than that of the correspond-
ing static network. Also, for 2���3 the prevalence at small
� is found to be smaller than that of the corresponding static
network.
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The paper is organized as follows: in Sec. II, we review
known results on epidemic spreading in static networks and
on networks with rewiring dynamics. In Sec. III, we study
epidemic spreading on evolving networks using mean-field
calculations and numerical simulations. Our results are sum-
marized in Sec. IV.

II. REVIEW OF KNOWN RESULTS

A. Epidemic spreading in static networks

A number of models of disease spreading have been in-
troduced and studied in the past. In the present work we use
the susceptible infected susceptible �SIS� model
�4,5,10,12,13,16,19�. In this model a healthy individual, with
respect to the disease, may be infected through interaction
with diseased individuals. Meaning, that a susceptible node
may be infected through a link connecting it to an infected
node, which we will refer to as his neighbor. Once an indi-
vidual is infected he may become susceptible again by being
spontaneously cured from the disease. The curing process
does not immune the individual and it can be reinfected.

The continuous time dynamics of an epidemic in the SIS
model is defined by two stochastic processes using two pa-
rameters:

�i� �—Infection rate;
�ii� 	—Rate of recovery.
An infected node is spontaneously cured with a rate 	

which we choose to be equal to 1 by adjusting the time scale.
On the other hand a susceptible node gets infected with rate
� from each of its infected neighbors. Thus, the rate a node is
infected depends linearly on the number of infected neigh-
bors. This model of infection is different from the model
explored in �12,13,16,19� where the infection rate is indepen-
dent of the number of infected neighbors. However, both
models behave similarly near the threshold for an endemic
state and we expect our conclusions to hold for both models.

The problem is addressed using a mean-field �MF� ap-
proach and numerical simulations. The MF approach ne-
glects correlation in infection between nodes in the sense that
for any pair of nodes i , j we have �
i
 j�= �
i��
 j� where 

=0,1 is a parameter indicating whether a node is susceptible
or infected, respectively. As an order parameter we use the
prevalence of the disease, the density of infected nodes in the
network, defined as ��Ninfected /N. Hence, our problem is
reduced to a contact equation for the order parameter �.
Since we are interested in formulating the problem for any
degree distribution, as was previously done in �12,13�, we
shall distinguish between nodes of different degree by defin-
ing �k as the fraction of diseased nodes of degree k. The total
prevalence is thus given by

� = 	
k=0

�

�kP�k� . �2�

The MF contact equation has the following form:

��k

�t
= − �k + �k��1 − �k� . �3�

With � being the density of “infected links” defined as

� = 	
k=0

�
kP�k�

�k�
�k. �4�

Note that

P��k� =
kP�k�

�k�
�5�

is the degree distribution of a randomly chosen neighbor of
nodes. Thus Eq. �4� gives the probability that a randomly
chosen end of a randomly chosen link is infected. In the
steady state, a nonvanishing solution for the prevalence is
possible only for infection rates greater than �see �12,13��

�c =
�k�
�k2�

. �6�

For infection rates above the threshold, ���c, a finite frac-
tion of the nodes is infected while for ���c the disease dies
out.1

For Erdős-Rényi �ER� networks, which obey a Poisson
degree distribution �20�, the threshold can be rewritten in the
form �c=1 / ��k�+1�. Moreover, for SF networks with 2��
�3 the second moment diverges and as a result the threshold
vanishes. As a consequence such a system will always reach
an endemic steady state for any nonzero infection rate �
�0.

B. Networks under rewiring dynamics

During rewiring dynamics of a network the number of
nodes and the number of links are unchanged but the links
are stochastically detached from one node and reattached to
another. In our model the process of rewiring a randomly
chosen end of a link from a node with degree k to a node
with degree k� occurs with rate u�k�v�k��, where u�k� is the
detachment rate and v�k�� is the attachment rate. A schematic
representation of the process is given in Fig. 1. These rates
determine the steady state degree distribution of the network
through the relation

1In the thermodynamic limit this is a transition to an absorbing
state, but for finite size systems the only true steady state is one
with zero prevalence �14�. As a result, in finite networks there is no
true threshold but a crossover infection rate which can be calculated
for a quasistationary state.

k'

k

u(k)v(k')

FIG. 1. Rewiring of a link from a node with degree k to a node
with degree k� with a rate u�k�v�k��.
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P�k� =



k�=0

k−1

v�k��

�v�k

�u�k



k�=1

k

u�k��

P�0� , �7�

where P�0� is the concentration of isolated nodes, as deter-
mined from the normalization condition of the distribution
function. The above result �Eq. �7�� can be derived from the
master equation for the node degree distribution �16�.

Under such rewiring dynamics, the resulting networks are
uncorrelated in the sense that the joint probability ��k ,k��
that the ends of a randomly chosen link are nodes of degree
k and k� factorizes to

��k,k�� = P��k�P��k�� , �8�

where P��k� is defined in Eq. �5�.
By choosing the proper attachment and detachment rates

one can create an evolving network with a constant size and
any desired degree distribution. One such choice of rewiring
yields an evolving ER type network. This is achieved by
choosing a link at random and rewiring one of it’s randomly
chosen ends to a randomly chosen node. This rewiring
scheme has a constant attachment rate and a linearly prefer-
ential detachment rate. One can easily verify by using Eq. �7�
that the choice

v�k� =
1

N
,

u�k� = k �9�

indeed yields a Poisson degree distribution.
Through the use of such rewiring dynamics we can create

an uncorrelated SF network with any desired exponent in the
power-law distribution. In what follows we work with rewir-
ing dynamics similar to that of zero-range processes �ZRP�
�17,18�, where the rewiring rate does not depend on the des-
tination site, i.e., v�k�=1 /N. As a further specification we
consider detachment rates of the form

u�k� = 1 +
b

k
�10�

with b as a parameter of the dynamics. In this case, for a
specific choice of the average number of links �given by
�k�=1 / �b−2�� the underlying zero-range process exhibits
critical behavior in which the steady state degree distribution
is a power law P�k��k−b at large k. At lower average link
numbers the steady state distribution decays exponentially
with k while at larger averages a hub becomes present which
is linked to a finite fraction of the nodes in the network
�17,18�.

In order to be able to control the critical value of �k� for a
given value of b one can make a slight modification in the
dynamics by considering

u�k� = �1 +
b

k0
0 � k � k0

1 +
b

k
k � k0

� . �11�

Due to the same asymptotic behavior of Eqs. �10� and �11�
this modification does not change the power-law tail of the
stationary degree distribution. In this case the critical value
of �k� can be obtained numerically �17�. Note that for rewir-
ing rates of the form Eqs. �10� and �11�, �u�=1 at criticality
�17�.

It is important to note that the dynamics, as defined, al-
lows for multiple link between two nodes �melons� and links
that connect a node with itself �tadpoles�. By not allowing
for melons and tadpoles we are introducing an effective pref-
erential attachment rate v�k�=1−k /N as opposed to a con-
stant rate as given in Eq. �9�. This rate takes into account the
fact that the neighbors of a node of degree k are not available
as target nodes for the rewired link. The preferential attach-
ment rate means that a highly connected node has a lower
rate of attachment than a node with a lower connectivity and
induces disassortative, or negative correlations. It can be
shown using Eq. �7� that this attachment rate imposes a
Gaussian cutoff on the degree distribution of the form

P��k� = e−k2/2NP�k� , �12�

where P�k� is the degree distribution for similar dynamics
which allows for tadpoles and melons. For ER type networks
and for SF networks with ��3 the fraction of melons and
tadpoles vanishes in the thermodynamic limit �21�. However,
for SF networks with ��3 the number of melons and tad-
poles diverges and cannot be neglected. In this work we use
v�k�=1 /N, for which tad poles and melons are allowed.

III. EPIDEMIC SPREADING ON EVOLVING
NETWORKS

Our aim is to consider a model of epidemic spreading on
a network which is changing in time. As a consequence, a
given node is no longer connected to a static set of neighbors
but to a dynamic one, and the degree k of the node also
fluctuates. Previous work on epidemic spreading on evolving
networks �22–25� concentrated mainly on rewiring dynamics
resulting from the adaptation of the network to the disease.
In these models the rewiring dynamics depend on the state of
the nodes, i.e., the infection process. However, recent work
�26� suggests that rewiring dynamics that are independent of
the state of the nodes can suppress the spread of disease in
the network. Here we consider such a model where the re-
wiring dynamics is independent of the infection process. To
be more specific, we consider a ZRP-like rewiring dynamics
for the network with rates of the form Eq. �11� and v�k�
=1 /N. For a specific value of �k� this results in a power-law
degree distribution for the steady state of the network �which
depends on k0� with P�k��k−b for large k. In addition, we
introduce a parameter 
, which describes the overall time
scale of the rewiring process as compared to that of the in-
fection process. The rewiring rate from a node of degree k
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then becomes 
u�k�. For 
=0 the model reduces to epidemic
spreading on a static network, whereas for 
→�, due to the
fast mixing we expect a mean-field-like behavior for the in-
fection process, where neighbors change very rapidly. We
note here that we always consider the case where the net-
work is in a stationary state with respect to the rewiring
dynamics, which requires a diverging equilibration time for

→0.

A. Mean-field results

In order to account for the rewiring dynamics, Eq. �3� has
to be modified as follows:

��k

�t
= − �k + �k��1 − �k� − 
�k�uk + �u��

+ 

�k+1

P�k + 1�
P�k�

uk+1 + �k−1

P�k − 1�
P�k�

�u�� , �13�

where we used the fact that the attachment rate is equal to the
average detachment rate �u�. By multiplying Eq. �13� with
P�k� and summing up for all k one obtains

� = ��k���1 − �� �14�

in the stationary state. For infinitesimal � and � �at the
threshold� this reduces to

� = �c�k�� . �15�

Note that one can rewrite definition �4� of � as

� � ��k�inf/�k� , �16�

where � · �inf denotes an average in the ensemble of infected
nodes. We define the average of a quantity x in the ensemble
of infected nodes as

�x�inf = �−1	
k

x�kP�k� . �17�

Using this, Eq. �15� takes the following simple form:

�c
−1 = �k�inf. �18�

On the other hand, multiplying Eq. �13� by kP�k� and sum-
ming up over all k one obtains the following equation for the
steady state near the threshold �the second order term is ne-
glected�:

0 = − ��k�inf + �c�k2�� + 
���u� − �u�inf� . �19�

By using Eq. �18� for the first and Eq. �15� for the second
term, the above equation reduces to

�c
−1 =

�k2�
�k�

+ 
��u� − �u�inf� . �20�

Whether or not there exists a nonzero infection rate
threshold can be easily deduced from this equation. For the
rewiring rates �Eq. �11�� both �u� and �u�inf are finite. Thus
there exists a finite positive threshold as long as �k2� is finite,
namely, for networks with ��3. In this case the rewiring
rate 
 affects the threshold quite strongly. On the other hand

for networks with 2���3, �k2� diverges and �c vanishes.
It is obvious that for 
→0, Eq. �20� reduces to �c

= �k� / �k2� as discussed before. In the other extreme case,
when 
→�, due to the fast rewiring we expect that the de-
gree distribution of infected and noninfected nodes become
identical. This would imply that �k=� for all k and �k�inf
= �k�. Therefore, based on Eq. �18�, one has �c= �k�−1. Note
also that in this infinite rewiring limit the rhs of Eq. �20� is
nontrivial, since 
→�, while �u�− �u�inf is expected to van-
ish.

It is important to note that whereas for small values of 

the MF approximation, that we use throughout this section, is
not necessarily valid. However, in the 
→� limit the fast
rewiring ruins all the correlations in the system, and the MF
approximation is expected to become asymptotically exact.

As shown by Eq. �18� the threshold is determined by the
degree distribution of infected nodes at the transition point.
In the following we attempt to get a deeper understanding of
how this distribution changes with the rewiring rate 
. For
this reason we define

rk = lim
�↘�c

�k

�
, �21�

and assume that this quantity is finite for all k. This implies
the following normalization for rk,

	
k=0

�

P�k�rk = 1. �22�

It is easy to see that

P�k�rk = P̃�k� �23�

is the degree distribution of infected nodes close to the
threshold.

Equation �13� together with the steady state relation

P�k�
P�k + 1�

=
uk+1

�u�
�24�

implies

0 = − �k + �k��1 − �k� + 
��u��k+1 + uk�k−1 − ��u� + uk��k�
�25�

for the steady state. By dividing the above equation with �
and taking the limit �↘�c we obtain

0 = − rk +
k

�k�
+ 
�rk+1�u� + rk−1uk − rk�uk + �u��� . �26�

Here we used the definition �21� of rk and Eq. �15� for the
second term of Eq. �25� �the second order term is neglected�.

After solving the above set of equations for rk one can
determine �c from Eqs. �18� and �21� as

�c
−1 = 	

k

krkP�k� . �27�

One can immediately see that in the 
→� limit the solu-

tion of Eq. �26� is rk=1. This implies P̃=P which results in
the already noted limiting behavior with �c=1 / �k�. On the
other hand, in the case of a static network, where 
=0, �k is
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proportional to k near the threshold, implying rk=k / �k� and

P̃=P�, which results in �c= �k� / �k2�.
Numerical solutions of Eq. �26� for intermediate values of


 are shown in Fig. 2. One can see that for a large but finite

 there are two crossover values of k. For k below some

value k1 one has rk=1 and P̃=P �infinite rewiring�, whereas
for k larger than some other value k2, one has rk=k / �k� and

P̃=P� �static�. Between k1 and k2 we find an intermediate
regime, which connects the two extreme cases. The cross-
over values k1 and k2 increase with increasing 
.

Using these numerical solutions for rk we calculated nu-
merically the effect of rewiring, in networks with ��3, on
the threshold �c by using Eq. �27�. Results are shown in Fig.
2. One can clearly see that as the rewiring rate increases the
threshold increases.

A more careful analysis of the set of Eqs. �26� for 
�1
shows that there are two important limiting cases:

�i� For large 
 the third term balances the first one, to
leading order, whereas the second term is small compared to
them. In this limiting case

rk = 1 +
k3

3
�k��b − 2�
. �28�

This is valid, when 
�k2.

�ii� For large k the second term balances the first one, to
leading order, and the third term is small. In this case

rk =
k

�k�
−


b

�k�k
. �29�

This is valid, when 
�k2.
The above forms suggest, that for 
�1 the solution has a

scaling form
rk = 1 + 
1/2F�k
−1/2� �30�

This is verified by the data collapse shown in Fig. 3, where
�rk−1�
−1/2 is plotted as a function of k
−1/2. From Eqs. �28�
and �29� we obtain that

F�x� = �
x3

3�k��b − 2�
x � 1

x

�k�
x � 1.� �31�

This limiting behavior is apparent in Fig. 3.
In order to obtain the functional form of F�x� in the inter-

mediate regime �x=O�1�� one can take the continuous scal-
ing limit of Eq. �26� with k→�, 
→�, and k /�
=x
=const. This results in the following ordinary differential
equation.

F��x� −
b

x
F��x� − F�x� +

x

�k�
= 0. �32�

Using the scaling form �Eq. �30�� one can easily show that
in the 
�1 limit

�c
−1 = �k�inf = 	

k

krkP�k� = �k� + C
3−b/2, �33�

where C is some constant �this is valid only when �c
−1 is

finite, i.e., for b�3�. The numerically calculated �c fits on
this form with C�50 �see Fig. 2�.

B. Simulations

In this section we use numerical simulations of finite SF
networks to investigate the effect of rewiring on prevalence.
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FIG. 2. �Color online� Top: rk is plotted against k for various
rewiring rates. The curves represent increasing rewiring rates from
left to right. The set of Eqs. �26� is solved numerically with b
=3.5 and k0=15 for the critical case, which corresponds to �u�=1,
�k�=4.917454, and �k2�=99.39410. Bottom: The threshold �c as a
function of 
. It was calculated numerically using Eq. �27� with the
same parameters. The analytically derived 
�1 limiting formula
�33� is also plotted �full line� with C=50, which gives a good fit.
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FIG. 3. �Color online� F�x�= �rk−1�
−1/2 is plotted against
k
−1/2 using the data of Fig. 2. The data collapse confirms the scal-
ing form. The analytically obtained limiting forms �Eq. �31�� are
plotted with dashed lines.
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In order to compare the simulation results to the MF predic-
tions described in Sec. III A we simulate two types of SF
networks; networks with ��3, for which the MF predicts a
threshold �c in the infection rate, and networks with 2��
�3, for which the MF predicts no threshold. We use these
two types even though it was recently shown �11� that in the
thermodynamic limit no threshold exists for any SF network,
i.e., for any �.

The networks were constructed using two sets of param-
eter values for the rewiring dynamics �Eq. �11��. As an ex-
ample of a network with 2���3 we use the dynamics with
v�k�=1 /N, u�k�=1+b /k �k0=1� and b=2.5. As described
previously, �k�=1 / �b−2�=2 corresponds to the critical aver-
age value of the underlying zero-range process for which the
steady state degree distribution is a power law with �=2.5.
The resulting prevalence as a function of the infection rate is
plotted in Fig. 4�a� for various rewiring rates.

As an example of a network with ��3 we used the dy-
namics �Eq. �11�� with �k��4.917, b=3.5 and k0=15, corre-
sponding to the critical average value of the underlying zero-
range process for which the steady state degree distribution
is a power law with �=3.5. The resulting prevalence as a
function of the infection rate is plotted in Fig. 5�a� for vari-
ous rewiring rates.

For a network of finite size, there is no true threshold but
a crossover infection rate which is obtained for a quasista-
tionary state. In simulations one can identify this crossover
value �c�N ,L� as the point where the �numerically obtained�
derivative d� /d� takes its maximum. With such a definition

�c�N ,L�→�c in the thermodynamic limit. One can see in
Fig. 4�b�, corresponding to 2���3, that as the rewiring
rate increases �c�N ,L� increases from approximately
�k� / �k2��0.04 toward 1 / �k�=0.5. Similarly, one can see in
Fig. 5�b�, corresponding to ��3, that as the rewiring rate
increases �c�N ,L� increases from approximately �k� / �k2�
�0.07 toward 1 / �k�=0.2. Even though these simulation re-
sults do not prove our result that �c�N ,L�→1 / �k� as 
 in-
creases they seem to suggest that this is the case.

As described before, rewiring has an effect on the thresh-
old that depends on the network degree distribution. For de-
gree distributions with a finite second moment the threshold
�c is affected even for rewiring rates of order 1. For networks
with a diverging second moment �in the thermodynamic
limit� the threshold is affected only for 
→�. Most real
world networks, however, are finite for which the second
moment scales as �k2��N�3−��/��−1�. What this means is that a
finite rewiring rate has an observable effect on the crossover
rate �c�N ,L�.

In the simulations a very weak external source of infec-
tion was introduced in order to prevent the system from fluc-
tuating into the absorbing state. There are several other meth-
ods of simulating an absorbing phase transition and
computing from it the value of the threshold which are re-
viewed in �27�.

Note that for the considered value of b=2.5, �k2� diverges
in the thermodynamic limit, therefore, based on the MF re-
sults, the threshold is expected to vanish for 
=0. However,
for a finite system one expects a finite crossover value for �,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

λ

ρ

(a)

ν = 0
ν = 105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.3

0.5

0.7

0.9

1.1

x 10
−3

dρ
dλ

λ

(b)

ν = 0

ν = 105

FIG. 4. The prevalence � �a� and the derivative of the preva-
lence with respect to the infection rate d� /d� �b� are plotted as a
function of the infection rate for a network of size N=200, �k�=2
and rewiring dynamics �Eq. �11�� with b=2.5 and k0=1 for which
�k2��58. Curves for rewiring rates 
=0,10,102 ,103 ,104 ,105 are
represented by full lines from left to right respectively. For clarity,
the derivative was calculated using smoothed interpolated data of
the prevalence.
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FIG. 5. The prevalence � �a� and the derivative of the preva-
lence with respect to the infection rate d� /d� �b� are plotted as a
function of the infection rate for a network of size N=200, �k�
=4.9 and rewiring dynamics �Eq. �11�� with b=3.5 and k0=15 for
which �k2��73. Curves for rewiring rates 
=0,10,102 ,103 ,104 are
represented by full lines from left to right, respectively. For clarity,
the derivative was calculated using smoothed interpolated data of
the prevalence.
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which is of order 1 / �k2�. On the other hand, for 
� �k2� the
crossover value should increase up to 1 / �k�. It is interesting
to examine how the crossover � changes if the rewiring rate
is of order �k2�. To this end we performed simulations with

��k2�. We found that the threshold scales as �c

−1��k2�. The
corresponding data collapse is presented in Fig. 6 where the
prevalence is plotted as a function of a scaled infection rate
�c�k2� for networks of different sizes with a rewiring rate
equal to the second moment of the degree distribution 

= �k2�.

In Figs. 7 and 8 the simulation results are compared to the
numerical solution of Eq. �14� for b=2.5 and b=3.5 for both
a static network �
=0� and for 
=104. The numerical calcu-
lation of the MF contact equation was carried out by solving
Eq. �13� for each infection rate. The degree distribution used
in the calculation was taken from the simulation results. For
both the b=2.5 and b=3.5 cases the MF solution for 

=104 agrees quite well with the simulation results which sup-
ports our general argument that as the rewiring rate in-
creases, compared to the infection process, both the degree
of a node and fluctuations average out such that the MF
approximation better describes the process.

IV. CONCLUSIONS

The effect of network dynamics on epidemic spreading
has been studied using mean-field analysis and numerical

simulations. In particular we considered epidemic spreading
over SF networks with rewiring dynamics.

We have shown that the introduction of rewiring affects
the threshold for an endemic state of a network. This is a
surprising result that an evolving network is fitter with re-
spect to disease the faster it is rewired. This result is general
to any network with a general degree distribution.

One can understand this counter intuitive result by asso-
ciating the second moment of the degree distribution with the
heterogeneity of a network. The more heterogeneous is a
network the larger is the fraction of highly connected nodes
which mediate the infection process. The introduction of re-
wiring effectively averages out the heterogeneity and creates
an effective homogeneous network, with respect to the infec-
tion process, where each node has an effective average de-
gree k= �k�.

Different networks differ in the rate of rewiring that is
required for a change of the threshold. We have shown, un-
der the MF approximation, that for networks with different
degree distributions the relevant quantity is the second mo-
ment of the degree distribution. Only if the rewiring is larger
than the second moment 
� �k2� then the threshold, as re-
sulting form the MF calculation, is affected and is increased
from �c

−1= �k� / �k2� to �c
−1=1 / �k�. For homogeneous net-

works, such as ER networks, rewiring has little effect on the
behavior of the disease since �k�2��k2�. For heterogeneous
networks, for which �k2�� �k�, rewiring has a larger effect.
For example, we have argued that in the thermodynamic
limit the threshold for SF networks with ��3 will increase
continuously with the rewiring rate. On the other hand, for
SF networks with ��3 there is no threshold in the thermo-
dynamic limit, except for an infinite rewiring rate.

Our analysis of the effect of rewiring has been carried out
under a MF approximation, where the effects of the third and
higher moments of the degree distribution are neglected.
While this approximation is valid for well behaved degree
distributions, it fails for SF networks. Recent research �11�
has shown, through direct calculation, that for SF networks
no threshold exists even for distributions with ��3. What
this suggests is that, in the thermodynamic limit, for any SF
network only an infinite rewiring rate would effect the
threshold.
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FIG. 8. The prevalence as a function of the infection rate for a
network of size N=200, �k��4.917 and rewiring dynamics �Eq.
�11�� with b=3.5 and k0=15. The simulation results for 
=0 and

=104 are compared with the numerical solution of Eq. �14�.

FIG. 6. The prevalence as a function of the scaled infection rate
�c�k2� for a network of different sizes N, �k�=2 and rewiring dy-
namics �Eq. �11�� with b=2.5 and k0=1 plotted for different rewir-
ing rates where for each network of size N the rewiring rate is 

= �k2�. The behavior near the threshold is replotted on a finer scale
and is given in the inset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

λ

ρ

MF ν = 0
simulation ν = 0
MF ν = 104

simulation ν = 104

FIG. 7. The prevalence as a function of the infection rate for a
network of size N=200, �k�=2 and rewiring dynamics �Eq. �11��
with b=2.5 and k0=1. The simulation results for 
=0 and 
=104

are compared with the numerical solution of Eq. �14�.
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Nevertheless, most real life networks are finite, for which
we have shown that even though a true threshold does not
exist, the crossover infection rate �c�N ,L� increases as we
increase the rewiring rate. Moreover, there are many hetero-
geneous networks which are not SF for which a threshold
exists. Therefore, we can conclude that for most real life
networks a finite rewiring rate will increase the resistance of
the network to epidemic spreading.
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