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In globally coupled networks composed of oscillatory and nonoscillatory elements, the balance between the
subpopulations plays an important role in network dynamics and phase transitions. To extend this framework,
we investigate mixed populations consisting of two types of self-oscillatory elements with different periods,
particularly given by limit cycle oscillators and period-doubled ones. Phase transitions in the mixed popula-
tions are elucidated by numerical bifurcation analyses of a reduced system. We numerically confirm a formula
determining the critical balance between the subpopulations for a phase transition at sufficiently large coupling
strength.
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Coupled nonlinear oscillators have been known to repro-
duce a rich variety of collective behavior like that observed
in real-world systems �1,2�. In past several decades, a large
number of theoretical and experimental studies on coupled
oscillators have focused on synchronization phenomena �3�.
Following early studies on coupled identical oscillators in
regular networks, recently much attention has been paid to
the introduction of additional realistic factors such as hetero-
geneity of couplings, complex network topologies, and sto-
chastic noise.

Another possible practical assumption to be incorporated
is individuality of constituent oscillators. Daido and Nakan-
ishi �4,5� studied robustness of macroscopic synchronized
oscillations in a globally coupled network of self-oscillatory
�active� and non-self-oscillatory �inactive� elements linked
by a Hopf bifurcation. This study was motivated by the prob-
lem of how an active behavior of coupled biological oscilla-
tors terminates as an increasing number of elements in the
population alter their properties from active to inactive due
to aging or disease. They found an aging transition which
means that a global oscillation state turns into a quiescence
state as the proportion of inactive elements exceeds a critical
value for sufficiently large coupling strength. A universal
property of the critical transition between oscillatory and
quiescence regimes was revealed with a scaling law of an
order parameter for network activity. A similar analysis was
carried out for a mixed population of self-oscillatory and
excitable elements linked by a saddle-node on invariant
circle �SNIC� bifurcation �6�.

Inspired by the above studies, we investigate a mixed
population including two types of self-oscillatory elements
with different periods. Our concern is not a transition be-
tween oscillatory and quiescence regimes but one between
qualitatively different oscillatory regimes. Although such a
system has been used as a model to reproduce a specific
phenomenon such as biological rhythms generated by a
mixed population of 20 h period and 24 h period circadian
oscillators �7�, phase transitions and universal properties
have not yet been addressed. For simplicity, we focus on a
special case where the two types of oscillators are linked by
a period-doubling �PD� bifurcation. Namely, the period of

one type of oscillator is almost twice as long as that of the
other type. First, we investigate a mixed population of
period-1 and period-2 limit cycle elements of the Rössler
equation and elucidate its phase transitions through bifurca-
tion analyses of a reduced system. Then, we discuss the uni-
versality of a formula for a critical balance between the two
subpopulations at a period-doubling phase transition.

Following the previous studies �4–6�, we assume that a
population of a sufficiently large size N is divided into two
groups, consisting of pN limit cycle elements �SL1� and �1
− p�N period-doubled limit cycle elements �SL2�. The former
and latter elements are called L1 and L2 elements, respec-
tively. We consider a network with all-to-all diffusive cou-
pling, where the state vector x j of the jth element �j
=1,2 , . . . ,N� obeys the following equation:

ẋ j = F j�x j� +
K

N
�
k=1

N

�xk − x j� , �1�

where F j =FL1 for j�SL1��1,2 , . . . , pN� and F j =FL2 for j
�SL2��pN+1, . . . ,N�.

First we investigate phase transitions in system �1� using
the Rössler equation �8�: ẋ=−y−z, ẏ=x+ay, ż=b+z�x−c�.
The Rössler equation with a=b=0.2 exhibits a typical
period-doubling cascade as the control parameter c is varied.
Figure 1 shows examples of period-1 and period-2 limit
cycles in the Rössler equation to be coupled in the mixed
population. The critical value of the first period-doubling bi-
furcation is given as c�	2.832. A globally coupled system
of N Rössler units is described as follows:

ẋj = − yj − zj +
K

N
�
k=1

N

�xk − xj� , �2�

ẏ j = xj + ayj +
K

N
�
k=1

N

�yk − yj� , �3�
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ż j = b + zj�xj − cj� +
K

N
�
k=1

N

�zk − zj� , �4�

where x j = �xj ,yj ,zj� is the state vector of the jth element for
j=1, . . . ,N. The coupling strength is denoted by K. The pa-
rameters are set as follows: a=b=0.2, cj =cL1=2 for j�SL1,
and cj =cL2=3 for j�SL2.

The network behavior of the coupled Rössler equations is
dominated largely by two control parameters: the coupling
strength K and the ratio p of L1 elements. Figure 2 shows the
�K , p� phase diagram for a network with N=100, where dif-
ferent oscillatory regimes are distinguished by the brute-
force method. In the regimes indicated by one-periodic and
two-periodic oscillations, L1 and L2 elements are completely
synchronized in each group, respectively, as shown in Figs.
3�a� and 3�b�. For a sufficiently large value of K, the ratio p
determines which of L1 and L2 elements entrains the others.
In the remaining regime indicated by complex oscillations,
the network exhibits more complex behavior including qua-
siperiodic and chaotic motions. Examples of quasiperiodic
oscillations are shown in Figs. 3�c� and 3�d�. Our purpose is
to understand phase transitions in the �K , p� diagram of the
globally coupled system.

In the regimes where L1 and L2 elements are perfectly
synchronized in each group respectively, system �1� can be
essentially reduced to the following two-element system:

ẋL2 = FL2�xL2� + Kp�xL1 − xL2� , �5�

ẋL1 = FL1�xL1� + K�1 − p��xL2 − xL1� , �6�

where x j = �xj ,yj ,zj� for Rössler units �j=L1,L2�. This re-
duction enables us to treat p as a continuous parameter in the
limit of N→�. To locate bifurcation points of a periodic
solution in the reduced system, a Poincaré map P is con-
structed with a cross section xL2=0. A local bifurcation point
is obtained by simultaneously solving the fixed point condi-
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FIG. 1. Orbits of �a� a period-1 limit cycle at
c=2 and �b� a period-2 limit cycle at c=3 in the
single Rössler equation �8� with a=b=0.2.
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FIG. 2. �Color online� The �K , p� phase diagram for N=100
populations composed of period-1 and period-2 limit cycle elements
of the Rössler equation. The parameter space is separated into three
regions corresponding to one-periodic, two-periodic, and more
complex oscillations, respectively. The superimposed curves indi-
cate bifurcation sets of the reduced system, including SN, PD, NS,
and TD bifurcations. Attractors at the parameter values indicated by
�a�–�d� are shown in Fig. 3.
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FIG. 3. Phase portraits �left� and time series �right�. �a� One-
periodic oscillations at �K , p�= �0.1,0.5�. �b� Two-periodic oscilla-
tions at �K , p�= �0.1,0.1�. �c� Quasiperiodic oscillations at �K , p�
= �0.006,0.9�. (Yj�n� ,Zj�n�) denotes the nth component in a se-
quence of discrete points (yj�t� ,zj�t�) at the moment when xj�t�=0.
�d� Quasiperiodic oscillations �doubled torus� at �K , p�
= �0.007,0.9�.

TANAKA, OKADA, AND AIHARA PHYSICAL REVIEW E 82, 035202�R� �2010�

RAPID COMMUNICATIONS

035202-2



tion P�w�−w=0 and the characteristic equation ����
=det��I−�P /�w�=0, where w is a fixed point of the
Poincaré map, I is the unit matrix, and the multiplier � speci-
fies the bifurcation type, i.e., �1=1 for saddle-node �SN�,
�1=−1 for PD, and �1,2=e�i� with ��0,� for Neimark-
Sacker �NS� bifurcations �9�. The torus doubling �TD� bifur-
cation is located by a heuristic method as described later. As
shown in Fig. 2, the phase transitions in the globally coupled
system are well understood by the bifurcation curves of the
reduced system, although some differences between them
arise due to the finiteness of the population and a destabili-
zation of the clustering state with two synchronized groups
in system �1�.

The saddle-node and Neimark-Sacker bifurcation curves
in Fig. 2 account for the transition between the regular oscil-
lation regime and the complex one. The Neimark-Sacker bi-
furcation found at values of p close to 1 explains the birth of
a quasiperiodic attractor corresponding to a two-dimensional
torus. The nonsmoothness of the phase transition boundary is
caused by the intersection between the Neimark-Sacker and
saddle-node bifurcation curves. Figure 4�a� shows an en-
larged phase diagram around the nonsmooth boundary point
in the reduced system. There are two saddle-node bifurcation
curves connected at the cusp point, between which two at-
tractors coexist. Such bistability is also observed in the glo-
bally coupled system. The saddle-node and Neimark-Sacker
bifurcation curves collide at the codimension-2 bifurcation
point called 1:1 resonance characterized by a fixed point of P
with multipliers �1=�2=1 �10�. Figure 4�b� shows a one-
parameter bifurcation diagram along the horizontal arrow in
Fig. 4�a�. The curve corresponds to a one-periodic limit
cycle. In the bistability region, a stable limit cycle �lower
branch� coexists with the other one �upper branch� or a qua-
siperiodic attractor. However, it should be noted that the bi-
stability region is not necessarily present in the �K , p� phase
diagram for different combinations of cL1 and cL2 values be-
cause the bifurcation curves can be scaled and the nons-
mooth boundary point can be moved outside the parameter
space with p�1.

In the complex oscillation regime, we observe a quasip-
eriodic solution corresponding to a sequence of discrete

points forming an invariant closed curve �ICC� on the section
xj =0 as shown in Fig. 3�c�. In Fig. 3�d�, on the other hand,
the discrete points form two ICCs alternately. The transition
from a quasiperiodic solution with one ICC to that with two
ICCs is called torus doubling �11�. Since the L1 and L2
elements are nearly synchronized in each group, respectively,
the bifurcation set of torus doubling can also be understood
by the reduced system. For a quasiperiodic solution, we ob-
tain time sequences of discrete points on the section: X j
= �yj ,zj� with xj =0 and ẋj �0 for j=L1 ,L2. We calculate the
centroid Xc�m� of the sequence with sampling period m and
evaluate the error 
Xc�1�−Xc�2�
. The error should be zero
for a torus with one ICC, while positive for a doubled torus
with two ICCs. Therefore, as shown in Fig. 2, we can specify
the torus doubling point using a sufficiently small threshold
value �=10−6� for the error.

Now we discuss a universal property of the phase transi-
tion in system �1�. As shown in Fig. 2, the boundary between
the one-periodic and two-periodic oscillation regimes in the
globally coupled Rössler system can be understood as a
period-doubling bifurcation of a reduced system in the limit
of N→�. As K increases, the critical value pc of the period-
doubling bifurcation seems to converge to a certain value.
The critical p value for period doubling in the limit of K
→� can be written as follows:

pc
� =

	L2

	L2 − 	L1
, �7�

where 	L2=c�−cL2�0 and 	L1=c�−cL1�0 with c�

	2.832 434 793 231. This is supported by the numerical re-
sult in Fig. 5�a�. For various possible combinations of cL1
and cL2 values, the numerically obtained critical value pc for
a sufficiently large value of K is in good agreement with the
left-hand side of Eq. �7�. Equation �7� shows that the critical
proportion of L1 and L2 elements for the phase transition is
determined by the parameters in the individual elements.
Surprisingly this result is consistent with the previous studies
with oscillatory and nonoscillatory elements �4,6�. The gen-
erality of Eq. �7�, which was analytically derived for Hopf
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FIG. 4. �Color online� Bistability in the reduced system. �a� The
�K , p� phase diagram around the nonsmooth boundary point be-
tween the regular and complex regimes. �b� The one-parameter bi-
furcation diagram along the horizontal arrow in �a� where p is fixed
at 0.84. The branch of fixed points of the Poincaré map corresponds
to a limit cycle, which leads to a quasiperiodic solution via a
Neimark-Sacker bifurcation.
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and SNIC bifurcation cases �6�, is enhanced by our numeri-
cal verification in the period-doubling transition case. This is
one of the main results of this Rapid Communication.

We can characterize the period-doubling transition using
the order parameter defined as M =Š
X j − �X j�
‹ for discrete-
time sequences of X j = �yj ,zj� with xj =0 and ẋj �0, where � · �
means a long-term average and the overbar means an en-
semble average. As shown in Fig. 5�b�, the normalized order
parameter Q=M�p� /M�0� is well fitted by the line with a
slope of 1/2 near p= pc in the log-log scale, i.e., M 
 �pc
− p�1/2. Similar power-law scaling was analytically obtained
for the other transitions �4,6�.

We expect that formula �7� holds for a general mixed
population composed of period-2m and period-2m+1 self-
oscillatory elements linked by a period-doubling bifurcation
�m=0,1 , . . .�. Additionally, such a population can exhibit
complex oscillations which are brought about by interactions
between two types of limit cycle oscillators when the cou-
pling strength K is small. Figure 6�a� shows a phase diagram
for a mixed population composed of period-2 and period-4
limit cycle elements of the Rössler equation. Its structure is
rather similar to that shown in Fig. 2. Figure 6�b� shows a
phase diagram for a mixed ensemble of period-1 and
period-2 limit cycle elements of the Hindmarsh-Rose neuron
model �12�: ẋj =yj −axj

3+bxj
2+ I−zj , ẏ j =c−dxj

2−yj , ż j
=rj(S�xj −x1�−zj), with parameter values a=1, b=3, c=1,
d=5, S=4, x1=−1.6, I=3.47 �13�, rj =rL1=0.002 for j�SL1,
and rj =rL2=0.006 for j�SL2. Although the mechanism of a
transition from regular to more complex oscillation regimes
is different from the Rössler model case, the phase transition
between one-periodic and two-periodic oscillation regimes is
similar to Fig. 2. We have numerically confirmed that for-
mula �7� is also valid for these two cases �14�.

In summary, we have investigated phase transitions in
mixed populations composed of two types of self-oscillatory
elements with different periods, especially using limit cycle
elements and period-doubled ones. Numerical bifurcation
analyses of the reduced model have well explained the phase
transitions in the globally coupled populations. We have nu-
merically confirmed the formula for the critical balance be-
tween the two subpopulations at the phase transition and
obtained numerical results suggesting its universality. This
study can be a useful step to understand the effect of indi-
viduality of elements in a network and establish a method to
control network dynamics by adjusting the balance of the
numbers of subpopulations.
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