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We introduce a method to study random Boolean networks with asynchronous stochastic update. Each node
in the state space network starts with equal occupation probability, which then evolves to a steady state.
Attractors and the sizes of their basins are determined by the nodes left occupied at late times. As for
synchronous update, the basin entropy grows with system size only for critical networks. We determine
analytically the distribution for the number of attractors and basin sizes for networks with connectivity K=1.
These differ from the case of synchronous update for all K.
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One of the main challenges in biological sciences is to
identify regulatory networks from high-throughput experi-
ments. Relevant criteria for models include conceptual sim-
plicity, computational tractability, and robustness to uncer-
tainties in the data. Boolean networks are candidates for
representing classes of behaviors observed in large regula-
tory networks �see e.g., Ref. �1��. Biochemical details like
reactions rates, which are often unknown, are discarded for a
simpler description in which �functional sets of� genes are
“on” or “off” �2,3�. In addition to describing specific small
regulatory networks �4,5�, Boolean networks have been used
to represent other systems such as neural �6�, or evolving �7�
networks.

As canonical examples of disordered systems, random
Boolean networks �RBNs� �8� have attracted attention from
physicists for decades �2,9�. RBNs are directed graphs con-
sisting of N Boolean elements, where each element receives
input from K distinct elements. The value of the ith element,
�i, evolves according to a random Boolean function of its K
inputs: �i�t+1�= f i��i1

�t� ,�i2
�t� , . . . ,�iK

�t��, where �ij
�t� is

the value of the jth input to element i at time t. Here we
choose the function f i to be zero or one with equal probabil-
ity. The functions f i are fixed in each realization of the RBN.

In the classical RBN �CRBN�, elements evolve according
to a globally synchronized clock. States separate into tran-
sient states, which cannot be reached more than once under
the dynamics, and attractor states, which can be reached in-
finitely often. Attractors form cycles in state space, which
divides into nonoverlapping partitions, or basins of attrac-
tion. All states within a given basin reach the same attractor
at long times. Within an annealed approximation, it was
found that K=2 CRBNs are critical �10�: they separate or-
dered �K�2� and chaotic K�2 phases, where distances be-
tween nearby trajectories vanish or diverge, respectively. Nu-
merous investigations have focused on the lengths and
numbers of attractors and their basins �2,9,11–16�. In particu-
lar, the basin entropy, which quantifies variations in the size

of the partitions of state space, increases with N only for
critical CRBNs �17�.

However, many real world systems do not evolve accord-
ing to a globally synchronized clock, and imposing one can
lead to spurious order �18�. This leaves doubts on the appli-
cability of CRBNs as generic models �19–21�. To clarify the
effects of the updating scheme, we consider the opposite
extreme and study asynchronous, stochastic random Boolean
networks �ARBNs� where at each time step, a single ran-
domly selected element is updated.

In fact, ARBNs and CRBNs require distinct definitions of
attractors and basins. Reference �22� argued, using analytic
methods, that asynchronous updating drastically reduces the
average number of attractors and changes its dependence on
N for K=2. While Boolean representations of regulatory net-
works with synchronous updating have reproduced some em-
pirical results �4,23�, this could be due to the fact that these
particular networks have evolved robust genetic wiring that
enables the organism to function in a noisy environment
�5,24�.

Here we show using a novel computational method that
while most properties of ARBNs and CRBNs are drastically
different, certain features are the same for both extremes.
These are generic with respect to the dynamics. In particular
the basin entropy increases with system size only for K=2
ARBNs. Hence it is a robust and unambiguous detector of
critical behavior. Further, the distribution of attractor lengths
is a power law for K=2 networks in both cases. We also
demonstrate that all attractors in a K=1 ARBN have the
same length, and all their basins have the same size. We use
this result to derive analytically the distribution of the num-
ber of attractors and the average basin entropy for ensembles
of K=1 ARBNs as a function of N.

An attractor in a discrete system with nondeterministic
dynamics, such as an ARBN, is also a subset of all possible
states that can be reached infinitely often in the long-time
limit starting from a random initial condition, but attractors
do not necessarily form cycles. Mathematically, an attractor
is a set of states such that starting from any state within it: �a�
all other states of the attractor can be reached and �b� these
are the only states that can be reached. States that do not
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belong to an attractor are transient. Since transient states may
form loops in the state space network �SSN�, our definition is
not the same as in Ref. �22�. We define the normalized size
of an attractor’s basin to be the chance of reaching that at-
tractor starting from a randomly chosen initial state. Note
that unlike CRBNs, an ARBN can reach different attractors
starting from the same initial state, i.e., the transient states in
different basins can overlap. However, different attractors are
still composed of nonoverlapping subsets of states.

We find attractors and their basins using the following
method: First we construct the entire SSN of N=2N states for
an ARBN of size N, by representing the states as nodes. A
directed link, with weight 1 /N, points from a node to each of
its N images reached by choosing, in turn, one element for
update. An image can be the state itself or some other state
with Hamming distance one away. If some among these N
images are identical, we add the weights of the correspond-
ing links. Second, our algorithm initially assigns the same
occupation probability �=1 /N to each node. Then the algo-
rithm updates this probability distribution on the SSN in par-
allel by dividing and moving the entire occupation probabil-
ity on each node along its outgoing links according to the
weights. The algorithm repeats this step until the probability
distribution is stationary �26�. By definition, the occupation
probability � vanishes for transient states, but remains finite
for states on attractors. We identify different attractors as
subsets of these latter states that are dynamically connected
�27�. The value of � for each state is the chance of observing
that state in the long-time limit after starting the ARBN from
a random initial state. The sum of � over all states on an
attractor is its normalized basin size.

Before presenting our numerical findings, we first discuss
the case K=1, where we derive analytical results and com-
pare them with results from the SSN method, finding com-
plete agreement. The structure of a K=1 RBN is particularly
simple: Boolean elements form loops with trees rooted in
them. Only four Boolean functions exist to update elements:
copy, invert, force to zero and force to one. Relevant com-
ponents in CRBNs determine the number and lengths of at-
tractors as well as their basin sizes �9,25�. This is also true
for ARBNs. Loops of elements with at least one forcing
function become frozen eventually, as do elements on trees
rooted in frozen loops. Hence, relevant components are loops
that contain no forcing functions. They are even or odd. Even
�odd� loops have an even �odd� number of invert functions.
Their number in ARBN i is neven�i� �nodd�i��.

Without loss of generality, consider that all functions on
even loops are copy functions. Then the two stable states are
all zeroes �00…00� and all ones �11…11�. Hence a single
even loop generates two point attractors. By symmetry, the
two point attractors split the SSN into two equal parts.
Hence, for an ARBN with neven loops and no odd loops, the
number of attractors is 2neven. Each has a basin of size
2N−neven.

Odd loops are equivalent to a loop with one invert func-
tion, the rest being copy. Assume that the loop is in state
S0= �0. . .0� and call the element with the invert function �.
S0 changes only when � is chosen for update. Then, the new
state S1 does not change until the neighbor on the loop
downstream from � is chosen. Following this argument, we

conclude that a single odd loop of length L in an ARBN has
2L different states it can be in. An ARBN with nodd odd loops
of lengths L1 ,L2 , . . . ,Lnodd

, each loop j having sj unfrozen
elements downstream of it, has one attractor with � j=1

nodd2Lj2
sj

states. Thus for ARBN i that contains neven�i� and nodd�i�
loops, the number of attractors is Ai=2neven�i�. Since the at-
tractor from the odd loops enters equally into all basins, each
attractor � drains a basin of size b�=2N−neven�i�. We confirmed
numerically that in a given ARBN the number of states in
each attractor is the same for all attractors and that all basin
sizes are also equal.

We now use results of Ref. �25� to find the distribution of
the number of even loops, P�neven�, over ensembles of
ARBNs. These authors derive the probability, Q�m�, to ob-
serve the vector m= �m1 ,m2 , . . .� relevant loops of lengths
L= �1,2 , . . .� in a K=1 RBN. In our case this probability
reads

Q�m� = �1

2
	m̂ N!

�N − m̂�!Nm̂

1

2
�1 + m̂/N��

L=1

�
L−mL

mL!
,

where m̂=
L=1
� mLL. The probability P�n� to have n relevant

loops �both even and odd� is P�n�=Q�m �
LmL=n�. P�neven�
is obtained from P�n� as

P�neven� = 

n=neven

�

P�n�� n

neven
	�1

2
	n

.

These expressions do not have closed form solutions, but can
be evaluated numerically. Figure 1 shows P�neven� evaluated
from Q�m�. Noting that P�neven�= P�log2 A�= P�log2

N
b �, Fig.

1 also shows P�log2 A� and P�log2
N
b �, obtained using the

numerical SSN method described previously, finding agree-
ment.

We now consider K	1, and distinguish two measures for
the length of attractors. The first, l�, is the actual number of
states on attractor �. The second, 
�, takes into account how
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FIG. 1. �Color online� The distribution of the number of even
loops P�neven�, obtained using Q�m�—compared to the distribution
of the number of attractors, P�log2 A�, and the distribution of in-
verse basin sizes, P�log2

N
b �, obtained using our SSN method for

K=1 ARBNs with N=16. The number of realizations is 2�104 and
the error bars correspond to two standard deviations.
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often states are visited. Defining the stationary occupation
probability of state j on attractor � as � j,�, the conditional
probability of that state given that the dynamics reaches at-
tractor � is ��j =

��j


 j=1
l� ��j

. The attractor entropy, s�, determines


� through ln 
�=s�=−
 j=1
l� ��j log ��j. If all states on at-

tractor � are visited equally often then 
�= l�. If, on the other
hand, one state dominates, 
�→1. We observe a strong cor-
relation between l� and 
� �data not shown�. Since we find
clearer—although not qualitatively different—behavior using

, we present those results below.

Figure 2�a� shows the probability density function for the
length of attractors, P�
�, for N=16. It is broad for K=1 and
K=2. For K=6, 
 is either of order unity or of the SSN size
N. This is true for all K�2 although subleading effects
dominate for 2�K�6, and no clear separation appears for
this N �28�. A rescaled P�
� is shown in Fig. 2�b�. The cutoff
in the length 
c�2N2/3

is suggested by the arguments in Ref.
�22� and the data is consistent with a power law decay
P�
��
−�
 with �
=1.15
0.05. However, the cutoff
changes shape for different N so the system is not yet in a
regime where subleading corrections can be ignored.

The probability, p�, to reach attractor � from a random
initial state is the sum of all occupational probabilities,
p�=
 j=1

l� ��j over states on �. Its basin size, b�=Np�. Refer-
ence �17� proposed that the average basin entropy 
h�, which
gives a summary measure for the variation in basin sizes, is
a measure of complexity and criticality in CRBNs. The basin
entropy of RBN i is hi=−
�=1

Ai p� ln p�, and the average basin
entropy over the ensemble is 
h�= 1

R
i
Rhi where R is the num-

ber of realizations. Figure 3 shows the average basin entropy

h� for ARBNs with K=1,2 ,3 ,6 and N=8 to 20. This figure
shows that 
h� grows only for K=2 while remaining constant
for K�2. For K=1, Fig. 3 also shows 
h� derived from
Q�m�, which agrees perfectly with the SSN method. For
CRBNs �17�, as well, the basin entropy was shown to grow
with system size only for the critical case K=2—over the
same range of system sizes. This is particularly interesting
since all other properties we measured, such as the number
and size of attractors and their basins �data not shown�, are
remarkably different for synchronous and asynchronous up-
dating.

Reference �15� showed that the distribution of attractor
lengths in CRBNs depends on the sampling scheme. For
CRBNs with K�2 the distribution obtained by counting all
attractors is a power law, while that obtained by randomly
sampling initial states is not. For K=2 both distributions are
power laws. This is due to a lack of correlation between the
size of an attractor and the size of its basin for K=2, while
for K�2 the basin size grows linearly with attractor length.
In the ARBNs studied here, the basin size varies little with
attractor length for all K, so the two distributions are indis-
tinguishable over the range of system sizes 8�N�20.

As in Ref. �17�, a method based on exact enumeration of
state space creates a severe restriction on the system sizes
that can be studied. Indeed for K=2 CRBNs, the mean num-
ber of attractors grows faster than any power law with sys-
tem size �13�, but one cannot reach this asymptotic result for
CRBNs in the range of 8�N�20. The growth we observed
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FIG. 2. �Color online� �a� P�
� for K=1,2 ,6 and N=16. Both
K=1 and K=2 ARBNs show a broad distribution while all attractor
lengths for K=6 are either of order unity or of order 2N. �b� Res-
caled P�
� vs. rescaled 
 for K=2 and N=12–22. The approximate
collapse is consistent with a power law decay up to a cutoff which
is a stretched exponential in N.
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FIG. 3. �Color online� The basin entropy 
h� for ARBNs with
various K, and N=8–20 �curves with error bars�. 
h� grows with N
only for K=2. The solid �black� line shows 
h� for K=1 derived
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for CRBNs is much slower �data not shown�. For ARBNs,
the mean number of attractors increases as a power law with
system size for K=2 �22�. We also do not observe this
asymptotic result for the range of system sizes studied �data
not shown�. Hence, it is not possible to extract an asymptotic
growth law for the size dependence of the basin entropy for
critical networks using this method in either case.

To summarize, we have developed a method to find the
long-time dynamics of ARBNs. It relies on the flow of the
occupation probability over the complete network of possible
states until stationarity is reach. We focused on how the
space of states divides into overlapping basins of attraction
and measured the fluctuations of these fuzzy partitions in
ensembles of ARBNs. Despite the fundamental difference
between ARBNs and classical RBNs, and the fact that all
other observables show major differences, we find that in

both cases the basin entropy increases with system size only
for critical networks. This suggests that “superuniversal” fea-
tures exist for the fluctuations in the structure of state space
of RBNs—these are invariant with respect to the specific
dynamics. As the dynamics for real world systems most
likely lies in between these two extremes, our work suggests
that the basin entropy may be a relevant and robust signifier
of criticality, irrespective of the specific dynamics. Finally,
we showed that all attractors in an ordered K=1 ARBN have
the same length, and that all their basins have the same size.
We used this to derive analytically the distributions of both
basin entropy and the number of attractors in K=1 ARBNs
as a function of system size.
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