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We use the annealed formulation of complex networks to study the dynamical behavior of disease spreading
on both static and adaptive networked systems. This unifying approach relies on the annealed adjacency
matrix, representing one network ensemble, and allows to solve the dynamical evolution of the whole network
ensemble all at once. Our results accurately reproduce those obtained by extensive numerical simulations
showing a large improvement with respect to the usual heterogeneous mean-field formulation. Moreover, by
means of the annealed formulation we derive a new heterogeneous mean-field formulation that correctly
reproduces the epidemic dynamics.
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A variety of natural and socioeconomic complex systems
have a networked interaction backbone. This interaction
backbone is usually described as a graph where nodes repre-
sent the constituents of the system and edges account for the
relation between them. The complex network’s approach has
proved to be a powerful tool to unveil common topological
properties of systems related to seemingly different fields
�1�. The ubiquity of properties such as the small-world phe-
nomenon and the scale-free character of real interaction net-
works, has spurred on applied and theoretical research aimed
at understanding the origin of their underlying principles.

In the last decade the studied on how structural properties
of complex networks affect their functionality �2,3� have fo-
cused the attention of the physics of complex systems. Most
of the theoretical studies about the dynamics on top of com-
plex networks make use of synthetic networks with some
prescribed structural properties in order to study the impact
that these topological features have on the dynamical behav-
ior. Typically, the dynamics is carried on top of a number of
different networks that can be seen as microstates of a large
network ensemble characterized by some topological proper-
ties of interest. The numerical simulation of the dynamics on
top of a large enough number of network realizations belong-
ing to the same topological ensemble allows to obtain mean-
ingful averages for the dynamical quantities that characterize
the state of the system. However, the computational costs
increase with the complexity of both the network ensemble
and the dynamics at work. Apart from numerical simulations,
dynamical processes on static networks have been widely
studied by means of the heterogeneous mean-field �HMF�
approximation �4–6�. This formulation relies on the dynami-
cal equivalence of the nodes belonging to the same degree
class, i.e., the set of nodes with the same number of neigh-
bors. The HMF coarse-graining has provided important in-
sights about the critical phenomena taking place on several
dynamical processes �3� and, although it has been recently
debated in the context of contact processes �7–10�, it has
constituted the main theoretical framework for the study of
dynamical processes on complex networks.

In this Rapid Communication we study the susceptible-
infected-susceptible �SIS� epidemic dynamics by means of
the annealed adjacency matrix �AAM� of an entire network
ensemble. We show how, inserting the AAM into the micro-
scopic equations for the dynamics of the nodes, it is possible
to overcome the need of statistics over network realizations
and to obtain accurate results about the dynamical state of
the system. On the other hand, we show that the HMF for-
mulation fails to reproduce the SIS diagram, even for the
case of uncorrelated networks. Moreover, we will use the
annealed formulation to derive a new HMF formulation that,
for the first time, captures the entire epidemic phase diagram.
Finally, we show how the annealed formalism can be effi-
ciently applied to the important case of adaptive networks in
which network growth coevolves with SIS dynamics, thus
providing with an unifying framework for the study of gen-
eral epidemic dynamics in complex systems.

The idea behind the annealed approximation is to deal
directly with the network ensemble of interest rather than
with a collection of network realizations �see �11–16� for its
application to the study of both structural and dynamical
properties of networks�. A ensemble is a family of networks,
each of them represented by an adjacency matrix, A, with
binary entries: Aij =1 when nodes i and j are connected and
Aij =0 otherwise. All the networks belonging to the same
ensemble share some topological quantities, being the most
general the ensemble of graphs with fixed number of nodes,
N, and links, L. Other ensembles recently explored �12� are
those composed of networks with the same degree distribu-
tion P�k�, i.e., the probability of having a node with k con-
nections. One network ensemble can be described by a single
matrix, the AAM, whose terms, Aij, account for the probabil-
ity that two nodes share a connection as dictated by the en-
semble constraints. To construct the AAM of a given net-
work ensemble, one can average over the set of adjacency
matrices or to define each element Aij from scratch by cal-
culating the probability of attaching i to j. In the following
we will focus on ensembles of undirected networks, Aij
=A ji.

To show the use of the annealed approximation for the
study of dynamical processes on top of static networks we
will analyze the spreading of a SIS disease. The SIS disease*gardenes@gmail.com
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spreading takes place as usual: Starting from a fraction I0 of
infected nodes, at each time step the infected nodes attempt
to infect each of their neighbors with a success probability �.
Additionally, infected nodes recover �and become suscep-
tible of being infected in the next time steps� with probability
�. Typically, after enough time steps the number of infected
individuals reach a steady number that characterizes the im-
pact of the disease. The infection probability � plays a key
role on the disease spreading. In particular, when the ratio
� /� exceeds some critical value �� /��c the disease infects a
macroscopic part of the population whereas below this epi-
demic threshold the time evolution of the number of infected
nodes vanishes. Therefore, � /� acts as a control parameter
of the phase transition from the healthy to the epidemic
phase while the asymptotic fraction of infected nodes, I, is
the order parameter.

The SIS phase diagram of a network ensemble described
by a given AAM can be accurately obtained by using a Mar-
kov chain formulation similar to that introduced in �17� for
particular network realizations. In our case, we denote as
si�t� the probability of finding node i in the healthy state
�si=1� after t time steps in a randomly chosen network of the
ensemble. We can express the evolution for the set of prob-
abilities �si�t�� through the following set of discrete-time
Markovian equations:

si�t + 1� = si�t� + ��1 − si�t�� − si�t��1 − qi�t�� , �1�

where qi�t� is the probability that node i is not infected by
any neighbor:

qi�t� = �
j=1

N

�1 − �Aij�1 − sj�t��� . �2�

The last two terms of the right-hand side of Eq. �1� corre-
spond to the recovery of infected nodes and the infection of
healthy nodes respectively. Note, that the above time evolu-
tion has the same functional form of the equations introduced
in �17� but, instead of having a particular adjacency matrix
Aij, we have the probability that two nodes, i and j, are
connected in a randomly chosen network of the ensemble,
i.e., Aij. By iterating Eqs. �1� from the initial condition si
=1− I0∀ i, a stationary distribution �si

�� is reached and the
order parameter I for the corresponding network ensemble is
computed as I=�i�1−si

�� /N.
The most general network ensemble is provided by the

configurational model �18� that generate a family of graphs
by specifying a fixed degree sequence for the N nodes,
�k1 ,k2 , . . . ,kN�. Each particular network realization is con-
structed by sorting each of the L available links �L=�iki /2�.
The probability that two nodes i and j are chosen to be con-
nected in one network realization depends on their respective
degrees as kikj / �2L2�. Therefore, the probability that, after
sorting the L links, two given nodes i and j with degrees ki
and kj are connected is Aij =Aij =kikj / �2L�. Now, inserting
this latter AAM in Eqs. �1� and �2� we can study the SIS
dynamics of configurational ensembles. In Fig. 1 we repre-
sent the curves I��� and the fraction of infected individuals
with degree k, ��k� obtained via the annealed formulation
and the use of extensive numerical simulations of the SIS

dynamics. The results of I��� are shown for three families of
configurational ensembles corresponding to P�k�	k� with
�=2.2, 2.6 and 3.0. The network realizations used for the
numerical simulations were constructed using the method in-
troduced in �19� so to assure that no degree-degree correla-
tions are present in any of the networks generated. As shown
in Fig. 1, the results obtained using the AAM strongly agree
with those obtained through extensive numerical simulations.

We have compared the results of the AAM formulation
with those obtained with the HMF. Surprisingly, the HMF
fails to reproduce the phase diagrams I��� as observed in Fig.
1. The reason of these discrepancies can be explained with
the annealed formulation of the SIS dynamics. Taking the
continuous-time formulation and assuming that all the nodes
with the same degree have the same probability of being
healthy, i.e., si=�k∀ i with ki=k, we can derive a new HMF
approximation from Eqs. �1� and the expression of Aij:

�̇k = ��1 − �k� − �k
1 − �
k�

1 − �

kk�

2L
�1 − �k���Nk�� �3�

where Nk=NP�k�. This new HMF approximation when inte-
grated for the different model networks perfectly reproduces
the annealed approximation in contrast with the usual HMF
approximation extensively used in network epidemiology up
to date �4–6�.

The natural extension of Eqs. �3� and �4� to general
network models is done by considering that the probability
of finding two nodes of degrees k and k� in the config-
urational model, P�k� ,k�=kk� /2L, reads as P�k� ,k�
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FIG. 1. �Color online� The top and bottom left panels show the
phase diagrams, I���, for the numerical simulations �points�, the
annealed formalism �squares�, the usual �dashed line� and the new
�solid line� HMF approximation. The networks have been con-
structed using the configurational model as introduced in �19� with
degree sequences following power-law degree distributions, P�k�
	k−�, with �=2.2, 2.6 and 3.0. The networks have N=5000 and
�k
=4 and the statistics of the numerical simulations is made over
500 network realizations for each value of �. Besides, the bottom
right panel show the fraction of infected nodes of degree k, ��k�,
using numerical simulations �points� and the annealed formalism
for the case �=2.2 and several values of �. The recovery probabil-
ity is set to �=0.3.
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=kP�k� �k� / �NP�k��� for general network models. Then, we
can write the new HMF as:

�̇k = ��1 − �k� − �k
1 − �
k�

1 − �

kP�k��k�
Nk�

�1 − �k���Nk��
�4�

Note that the new HMF formulation takes the form of the
usual HMF equations only when ��1−�k��1∀k:

�̇k � ��1 − �k� − �k�k�
k�

P�k��k��1 − �k�� + O��2� �5�

Therefore, the usual HMF is only correct for � values before
and around the epidemic onset �as observed from Fig. 1�.

Now we describe the case of ensembles of networks con-
structed via attachment processes. In this case, network real-
izations are usually assembled by starting �at �=0� from a
small graph of m0 nodes coupled all-to-all. Therefore, the
AAM has Aij =1 for i and j=1, . . . ,m0 provided i� j and
Aii=0 otherwise. At each step � of the network growth ��
=1, . . . ,N−m0� a new node is added and launches l links to
the nodes of the network. Each of these nodes have some
attachment probability, 	i��� �i=1, . . . ,�+m0−1�, of receiv-
ing one of the l links from the new node. Therefore, the
remaining �N2−m0

2� terms of the AAM read Aij =1− �1
−	m�M��l �where m=min�i , j� and M =max�i , j�� when i
� j, and Aii=0 otherwise. Once the AAM is constructed one
can obtain the annealed degree of the nodes as ki=� jAij.

The networks grown through attachment processes are
know to have nontrivial node-to-node correlations �e.g., age
correlations� that play a key role in their dynamical behavior
and are difficult to capture via HMF formulations. Now we
show that these peculiarities of the attachment ensembles are
captured by the annealed formulation of the SIS dynamics.
Let us focus on the preferential attachment kernel introduced
by Barabási and Albert �BA�, 	i���=ki��� /� jkj��� �20�. In
this case the networks have a power-law degree distribution,
P�k�	k−3, and average degree �k
=2m. Thus, by fixing the
value of m we can construct an ensemble of BA networks
with the same values of �k
. In Fig. 2 we show the results of
I��� and ��k� by solving Eqs. �1� with the expression of Aij
corresponding to three BA ensembles with m=2, 5 and 10.
Again, the results of the AAM approximation show a perfect
agreement with those obtained by means of numerical simu-
lations of the SIS dynamics on top of BA networks.

Now we focus on a more complicated attachment kernel
describing a network growth interplaying with the internal
dynamics of the nodes. In particular, the two entangled pro-
cesses �network growth and system’s dynamics� coevolve in
such a way that the attachment preferences of newcomers
are driven by the dynamical states of their predecessors.
Therefore, the attachment probability of a node i at time
t
 i, 	i�t� depends, not only on the topological properties
of node i, but also on its instant dynamical state xi�t�. In
our case xi�t�=si�t� and the attachment kernel reads: 	i�t�
=ki�t�si�t� /� jkj�t�sj�t�. This particular kernel couples net-
works growth and SIS dynamics so that newcomers prefer
acquaintances with both structural importance and a healthy
state. Therefore, infected nodes cannot receive a link from

newcomers until they recover, whereas those healthy ele-
ments compete with each other according to their degrees as
in the preferential attachment model.

The study of the above adaptive growth mechanism can
be efficiently tackled with the help of the annealed formula-
tion. To this aim we consider again the Markov SIS Eqs. �1�
incorporating a time-dependent AAM, A�t�, in Eq. �2� that
evolves simultaneously to the disease spreading. The initial
condition of the AAM is set to Aij�0�=1 for i , j�m0, i� j
and Aij =0 otherwise, while the dynamical state of the nodes
is initialized as: si�0�=1− I0 when i�m0 and si�0�=1 other-
wise. Then, we couple Eqs. �1� with the evolution of the
AAM:

Aij�t� = H�t − �TM��1 − �1 − 	m��TM��l� , �6�

when i� j and Aii=0 otherwise. The function H�x� is the
Heaviside step function so that the above equations state that
the element Aij has a zero value until the youngest element
M is incorporated. At this step, t=�TM, the value of Aij
jumps to a stationary value that only depends on the attach-
ment probability of the oldest node m at time M.

Iterating the above dynamics until the system size have
reached a large enough value N �so that it has reached a
stationary regime for its intensive observables� we can evalu-
ate the asymptotic impact of the disease and the structural
properties of the generated networks. First, in Fig. 2 we show
the phase diagram I��� and the microscopic distribution of
infected nodes across degree-classes, ��k�. Both measures
clearly show the accuracy of the annealed approximation
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FIG. 2. �Color online� �Top� In the left we show the epidemic
phase diagram I��� for three BA ensembles with �k
=4, 10 and 20.
In the right we show the fraction of infected individuals across
degree-classes ��k� for the ensemble with �k
=4 and for different
values of �. The points correspond to numerical simulations of the
SIS dynamics on top of 500 network realizations while curves stand
for the annealed approximation. The size of the networks is N
=5000. �Bottom� Again, we show both I��� �left� and ��k� �right�
for the case of adaptive growing networks when N=104. Both re-
sults of numerically grown networks �points�, averaged over 5000
realizations, and the solutions of the annealed formalism �curves�
are shown. The network development is characterized by �=0.3,
�T=1 and l=3.
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when compared to the results obtained averaging over a
number of numerically grown networks. Besides, in Fig. 3
we show the corresponding accumulated degree distributions
of the grown networks using different infection probabilities
�. From the figure we show that the AAM generated repro-
duces correctly the degree distributions obtained numeri-
cally. In particular, it is shown that for small values of �
rather homogeneous networks are obtained, pointing out that
the prevalence of disease on network hubs, as shown in Fig.
2 �bottom right panel�, screens their fitness to attract new
links and thus avoids the development of degree heterogene-
ity. On the contrary, for large � the disease affects homoge-
neously the forming system and newcomers mainly guide
their links toward large degree nodes, thus recovering the
behavior of the BA preferential attachment model.

Summing up, in this Letter we have shown that the dy-

namical behavior of static and adaptive networks can be ef-
ficiently described by the use of an unifying framework: the
annealed formulation of the adjacency matrix. In both cases,
the annealed formulation allows to compute the macroscopic
observables and the microscopic distributions of the dynam-
ics of a network ensemble in one single computation, thus
avoiding the need of extensive simulations. In the case of
adaptive networks, the treatment of the AAM as a dynamical
object allows a simple formulation of the coupled structure-
function problem. Particularizing to the case of SIS disease
spreading on top of static networks, we have shown that the
HMF approximation does not reproduces the phase diagram.
Moreover, using the annealed formulation of the dynamics
we have obtained an HMF formulation that shows an accu-
rate agreement with the numerical results. The use of the
annealed formulation in other kind of network dynamics
only requires to substitute the usual adjacency matrix by the
AAM in the microscopic equations at work. Therefore, the
formalism allows to write down explicitly the evolution
equations for a wide variety of network ensembles, adaptive
schemes and dynamics, regardless of their stochastic �e.g.,
contact processes, information diffusion, evolutionary dy-
namics, etc.� or deterministic �e.g., nonlinear dynamical sys-
tems� nature. Although more research is needed to assess to
what extent this approach can be such an important improve-
ment in other dynamic network models, we expect that the
annealed formulation will allow to tackle several open prob-
lems on networks dynamics and will pave the way to the
theoretical studies of the growing field of complex adaptive
systems.
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