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The results of an experimental study of pattern formation on sandy bottom under the action of regular
harmonic surface waves are reported. It is found that two modes of pattern formation occur: sand ripples form
uniformly on the whole bottom or from localized nucleation sites. In the second regime, the ripples appear in
isolated regions �patches� increasing in size, and front propagation speed is measured. A simple dynamical
model based on the Ginzburg-Landau equation is proposed to explain the characteristics of patches.
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I. INTRODUCTION

Pattern formation on a bottom under the action of surface
waves has been investigated theoretically and experimentally
for many years. The morphological characteristics of sand
ripple patterns observed in the near shore region are impor-
tant for the prediction of the dissipation of waves energy, and
for the sediment transport. Ripples also influence the biologi-
cal processes occurring on the bottom and the dispersion of
pollutants. Ayrton �1� and Bagnold �2� carried out the pio-
neering works on these structures. Detailed investigations of
the onset of instability caused by oscillating water over sand
were performed in �3,4�. The formation of vortices at the lee
side of the ripple crest and their ejection upward at flow
reversal were considered in �5,6�. These vortices control the
mass transfer between neighboring ripples during their for-
mation �6,7�, and the wavelength of fully developed ripples
is proportional to the amplitude of the oscillatory flow �6,8�.
The stability of bottom patterns in relation to changes of
amplitude and frequency of water oscillations was studied in
�9�.

In this paper, we focus on the investigation of the ampli-
fication of initial perturbations of small amplitude leading to
the formation of sand ripples. The front propagation plays a
key role in the involved processes, and we present in this
brief report a detailed investigation of the characteristics of
this front. The study of front propagation has been consid-
ered in different unstable systems �10�, and in particular in
numerous hydrodynamic systems �11–13�. The phenomenon
of front propagation for sand ripples under waves was men-
tioned in �2�. However, this propagation has not been accu-
rately investigated to our knowledge. The aim of the present
paper is to study the features of front propagation in sand
ripple patterns. The main difference between sand ripples
and the systems considered in �11–13� is the following. The
action of regular surface waves �propagating usually in one
direction� results in anisotropy of the sand ripples instability,
and consequently of the front propagation velocity, whereas
the systems studied in �11–13� may be considered as isotro-
pic. The characteristics of fronts propagating in the same

direction as surface waves or in the opposite direction are
investigated in detail in the present study.

II. EXPERIMENTAL SETUP AND RESULTS

The experiments were performed in a 10 m long, 0.5 m
high, and 0.49 m wide wave flume at Le Havre University.
Regular surface waves were produced by an oscillating
paddle at one end of the flume. At the other end a porous
beach was installed to minimize wave reflection. The tempo-
ral evolution of the free surface was measured with two fixed
resistive probes and analyzed with Goda’s method �14�. The
reflection coefficient was less than 5% for all of the tests.
The mean water depth at rest was d�=27 cm. Experiments
were carried out in a large range of wave and sediment
parameters: 0.95 s�T�2.2 s, 0.045 m�H�0.099 m,
111 �m�d50�375 �m, where T and H are the wave pe-
riod and height, respectively, and d50 the median grain size.
For each test, the bed was initially flat and covered by a 25
mm sand layer. In spite of the care taken to flatten the bot-
tom, some defects of flatness are observed. The maximum
amplitude of perturbations is approximately 2 mm. The bed
deformation was measured from the first excitation cycles
with an optical method, detailed in �15�. The spatial reso-
lution in the horizontal and vertical directions was 0.5 mm/
pixel. The dimensions of the processed field were 5.46 m
long and 0.325 m width. The ripples wavelengths at the equi-
librium state were in the range 28.4 mm���77 mm for
present tests. Characteristics of ripples were obtained using
the one-dimensional �1D� -Hilbert transform. A great advan-
tage of this technique is that in each patch the amplitude and
phase of ripples may be determined.

Two distinct modes of ripple patterns formation are ob-
served. In the first mode, any perturbation on the bottom is
enough to trigger ripple formation and ripples form uni-
formly on the whole bed. In the second mode, patterns form
from isolated rippled zones �described as patches by Faraci
and Foti �16��. For present tests, patches appeared in zones
where the characteristic amplitude of disturbances was
greater or equal to the critical value of 2 mm. Two nondi-
mensional parameters were used to characterize the regime
of pattern formation: the Reynolds number Re and the
Froude number Fr. These parameters are defined as follows:*Corresponding author. francois.marin@univ-lehavre.fr
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Re=U�b /�, Fr=U� /��s−1�gd50, where b and U� are the
fluid particle semiexcursion and the fluid velocity amplitude
at the edge of the bed boundary layer, respectively, s is the
relative density of sediment, g the acceleration due to grav-
ity, and � the water kinematic viscosity. The delineation of
the two observed modes of ripple formation in the �Re,Fr�
plane is presented in Fig. 1. The data of Jarno-Druaux et al.
�17� obtained in the same wave flume with lightweight grains
of relative density 1.35 and median grain diameter 170 �m
are also shown in this figure. Present tests show that for fixed
values of Re, there is a critical value Frcr of the Froude
number below which ripples form from localized sites; for
Fr�Frcr, no “patch” is observed. The critical Froude number
becomes independent of the Reynolds number for Re
�5000. This suggests that for Frcr=Frcr_max�3.9, the sedi-
ments move all over the bottom with a very low resistance to
motion for every hydrodynamic conditions and ripples can
form everywhere on the bottom. When Fr�Frcr_max, the in-
ertial effects become more important for increasing values of
Re �keeping constant the value of Fr�, and the bed local
perturbations lead to patches formation. The critical value
Frcr grows with Re when Fr�Frcr_max. This may result from
a decrease of the gravity effects in comparison with the in-
ertial effects acting on the grains for increasing values of Fr
for a given value of Re ��5000�, leading to a higher mobil-
ity of the grains and preventing patch formation.

In order to study the front propagation, we focus on a test
for which a slow dynamics of pattern formation from ampli-
tude defects is observed. We have Re=5512 and Fr=2.2 for
this test, and the mean ripple wavelength is �=42 mm at the
equilibrium state. An example of bed image in gray levels is
given in Fig. 2 for n=800 excitation cycles where three main
patches are clearly identified �P1 to P3�. The temporal evo-
lution of the bottom elevation is plotted as a function of the

x-longitudinal position in Fig. 3, for y=0.20 m where the y
axis refers to the cross-section direction. The origin of the x
axis is situated at 2.3 m from the wave paddle, increasing
values of x corresponding to shorter distances from the ab-
sorbing beach. The time step is equal to 50 cycles for the first
1000 cycles, and afterward to 100 cycles. Isolated systems of
propagating ripples can be observed during more than 1000
cycles before the invasion of the whole bottom. The estima-
tion of front velocities can then be performed on a long time
for the three observed patches. The bottom elevation signal
��x , t� of each patch is cut into two parts in order to process
the two fronts separately. The Fourier spectra of signals are
then calculated and harmonics are filtered. After this filtering
process, we get ��x , t�=�m�x , t�cos�kx+	�x , t��, where
�m�x , t� is for the slow varying amplitude, 	�x , t� is the slow
varying phase of the bottom profile, and k is the bottom wave
number.

Using the Hilbert transform,

�̂�x,t� =
1



PV��

−�

+� ��x,t�
x − �

d�	 = �m�x,t�sin�kx + 	�x,t�� �1�

where PV denotes principal value, it is possible to determine
the phase and amplitude of sand ripples on the flume bottom
and compare with the theoretical predictions. We can con-
sider the bottom profile as the real part of a complex function
��x , t�=Re
A�x , t�exp�i�kx��� with A�x , t�= �A�x , t��ei	�x,t� and
where

�A�x,t�� = a = ��2�x,t� + �̂2�x,t�, 	�x,t� = arctan �̂

�
� − kx .

�2�
We extract the module of the complex amplitude a and the
phase 	�x , t� from the signals. An example of the spatial
dependence for a�x� and 	�x� is shown in Fig. 4. It is impor-
tant to emphasize that large changes of phase occur at wave
front. The wave front is localized in the region where a tran-
sition from a low amplitude to a high �nearly constant� value
is detected. We have chosen the following criterion to deter-
mine the front position: the front is situated in the region
where the value of the amplitude is equal to 15% of the
maximum value for the patch. The ripple fronts are presented
in Fig. 3. They propagate linearly with time, and a good
coefficient of regression �in the range 0.70–0.98� is obtained.
The up-flow �vp−; propagation in the direction opposite to the
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FIG. 1. Delineation of the two observed modes of ripple forma-
tion in the �Re,Fr� plane, indicating the boundary �dashed line� be-
tween the modes with and without patch �the test for which Re
=5512 and Fr=2.2 is identified with the label 1�.
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FIG. 2. Example of bed image in gray levels for n
=800 cycles �Re=5512, Fr=2.2�. P1 to P3 refer to the three pro-
cessed patches.
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FIG. 3. Bottom elevation as a function of the x-longitudinal
position and number of excitation cycles �Re=5512, Fr=2.2�. The
arrows show the ripple front positions detected for the three patches
P1, P2, and P3.
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surface waves propagation� and down-flow �vp+; propagation
in the same direction as the surface waves� front velocities of
the patches are given in Table I. The results show that the
fronts propagating in the direction of surface wave propaga-
tion have greater velocities than the fronts propagating in the
opposite direction ��vp+�� �vp−��.

III. DISCUSSION OF RESULTS

According to the present experimental results, the front
propagation may be considered as an envelope wave, and we
have found the amplitude and phase of this envelope. Let us
compare the experimental results with the solution of an
equation describing the envelope amplitude, the complex
Ginzburg-Landau equation �GLE� which is widely used to
investigate pattern dynamics �18�. Present experiments show
us that there is a threshold value of the initial bed perturba-
tions in the front propagation regime: perturbations with an
amplitude less than a critical value decay with time, whereas
perturbations with an amplitude greater than the critical
value grow. To take this effect into account, it is necessary to
keep the nonlinear terms proportional to the third and fifth
degrees of amplitude in the GLE �quintic version of GLE�
�10�. The cubic version of the GLE is able to describe the
linear instability of infinitely small perturbations and the
nonlinear amplitude saturation. The simplest model to de-
scribe the front propagation in our system is the following:

�A

�t
= �1 + ic1�

�2A

�x2 + �A + �1 + ic3��A�2A − �1 − ic5��A�4A , �3�

where A is the complex amplitude of sand ripples, � the
super criticality ���0 in our case�, and c1 ,c3 ,c5 are real

coefficients for dispersion �c1�, cubic nonlinearity �c3�, and
quintic nonlinearity �c5�. The analytical solution of Eq. �3�
has the following form �19�: A=e−ita���ei����, �=x�Vt
where V is the front velocity and  the frequency of sand
ripples. The amplitude and phase obey the following differ-
ential equations �anzatz�: �a /��=KL�a�1−a2��� /aN

2 �,
�� /��=qL+ �qN−qL�a2��� /aN

2 . For propagating fronts, the
solution has the following form:

a = aNeKL��/�1 + e2KL��. �4�

The amplitude grows exponentially from an infinitely
small value to a constant value aN. The six constants KL�, qL,
qN, , V, aN are determined by inserting the ansatz into
Eq. �3� �10�. The sign “+” corresponds to a front which
propagates in the positive direction �direction of surface
waves propagation�, KL+�0, a�x=−� , t=0�=aN, a�x
=+� , t=0�=0, and the sign “−” corresponds to a front
propagating in the opposite direction: KL−�0, a�x=−� , t
=0�=0, a�x=+� , t=0�=aN. It should be noted that for re-
gions where a=aN, we have �=qN�x�Vt�, and for a�aN,
��qL�x�Vt�. The profile of the sandy bottom may be
written as ��x , t�=Re�A�x , t�exp�ikx��=a�x�Vt�cos�t
−qN,L�x�Vt�−kx�. This means that qL and qN may be con-
sidered as infinitesimal and finite amplitude additional terms
for the wave number of sand ripples, respectively. Using the
aN

2 expression from the first equation of ansatz, we find a
correlation between the phase and amplitude derivatives:
�� /��=qN− ��qN−qL��a /��� /aKL�, and after integration we
get

� = qN� − ��qN − qL�/KL��ln a . �5�

Excluding a linear growth of the phase with space for a given
instant, we are able to present a local correlation between the
wave amplitude a�x� and the wave phase 	�x�: 	�x�= �qL
−qN�ln a /KL�. Such correlation really occurs for the wave
front in sand ripples. Figure 5 shows an example of the
variation of the phase 	 with the amplitude a. Using the best
linear fit approximation �dashed line in Fig. 5�, we deter-
mined the coefficient ��= �qL−qN� /KL�. The results are dif-
ferent for the fronts propagating in the direction of surface
waves and in the opposite direction. The values of the coef-
ficient �� are estimated for both fronts of Patch 1, for dif-
ferent numbers of excitation cycles; these values are given in
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FIG. 4. Example of spatial distribution for the amplitude �bold
line� and phase �thin line� of sand ripples for a front propagating
upward �Patch P1, t=550 wave excitation cycles�. The segment
crossing the bold line delineates the border between the flat bottom
and the ripple patch according to the criterion of threshold
amplitude.

TABLE I. Up-flow and down-flow patch velocities for the three
patches P1, P2, and P3 �Re=5512, Fr=2.2�.

Patch

Up-flow patch
velocity vp−

�mm s−1�

Down-flow patch
velocity vp+

�mm s−1�

1 −0.23 0.62

2 −0.19 0.64�400�n�650�; 0.43�1000�n�1400�
3 −0.16 0.37�500�n�800�; 0.52�900�n�1400�
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FIG. 5. Dependence of the wave phase 	 on the logarithm of
wave amplitude ln a for 462 mm�x�520 mm �bold curve� with
its best linear fit approximation �	=1.82 ln a−1.52; square of the
correlation coefficient R2=0.96; dashed line�; t=700 wave excita-
tion cycles.
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Table II. It can be noted that the linear dependence between
the phase 	 and ln a is obtained with lower values of the
regression coefficient for fronts propagating in the direction
of surface waves �except when t=950 excitation cycles�. In
this case, for some instants, no estimation of �+ could be
proposed. The fronts propagating in the direction of surface
waves are then not as regular as the fronts propagating in the
opposite direction. We were able to estimate the coefficient
KL�: the solution �4� shows us that this exponent may ap-
proximate the amplitude growth on the wave front. Using an
exponential approximation of experimental data, we have
found different coefficients for the fronts: the averaged value
for KL+ was KL+=−0.047 mm−1, and for the front propagat-
ing in the opposite direction, KL−=0.03 mm−1. The front
propagating in the direction of surface waves is “steeper”
than the front propagating in the opposite direction. We have
estimated the changes in wave number due to the finite am-
plitude of sand ripples: qL−qN�0.039 mm−1 for waves co-
directed with the surface waves, and qL−qN�0.025 mm−1

for waves propagating in the opposite direction. In both
cases, the finite amplitude leads to a decrease in wave num-
ber k+qN in comparison with the linear wave number k+qL,
but this effect is larger for the front propagating in the direc-
tion of surface waves.

The differences between the characteristics of the fronts
propagating in the same direction as the surface waves and in
the opposite direction may be due to the drift induced by
surface waves. It is well known �20� that in the bed boundary
layer above a flat bed, induced flows lead to mass transport
in the direction of waves propagation. Above sand ripples,
the momentum transfer and suspended sediment dynamics
are dominated by the formation and shedding at flow reversal
of lee wake vortices �21�. Present data involve weakly asym-
metrical waves �B�0.1 where B=3bksw /4 sinh2�kswd�� and
ksw is the surface wave number�. Using a one-dimensional
vertical �1DV� two-layer model where vortex shedding is
represented in the lower layer by a time-varying eddy vis-
cosity, Davies and Thorne �21� have shown that the near-bed
sand transport is in the direction of surface waves propaga-
tion for weakly asymmetrical waves. Such transport of sand
increases the front velocity vp+ and decreases the velocity
vp−.

IV. CONCLUSIONS

We have shown that depending on the values of the con-
trol parameters �Froude and Reynolds numbers�, sand ripples
on the bottom may arise as a result of two types of bifurca-
tion: spatially homogeneous growth of small perturbations,
and appearance of patches. In the last case, wave front propa-
gation occurs. Using the Hilbert transform, we measured the
amplitude and phase of ripple waves, and we have found
coincidences between the experimental characteristics of
propagating fronts and the analytical solution of van Saar-
loos and Hohenberg �19�. Such coincidences allowed us to
find a correlation between the sand ripples amplitude and
wave number, and conclude that there exists an effect of
wave number decrease due to the finite amplitude of sand
ripples. Our measurements agree with the measurements of
other researchers �see, for example, �16��: the spatial period
of sand ripples increases with increasing ripples amplitude.
We have found that the propagating front characteristics de-
pend on the direction of surface waves which generate
ripples. If the front propagates in the direction of surface
waves, it has a larger celerity, is steeper and more irregular
than the front which propagates in the opposite direction. In
our opinion such differences are caused by the mean flow
induced by surface waves near the bottom.
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