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We construct a family of stochastic processes with nonstationary, correlated increments which allow a priori
independent selections of both fractal dimension and mean-square displacement. The family is essentially
fractional Brownian motion �fBm� run with a nonlinear clock �fBm-nlc�. The fractal dimension of fBm-nlc is
shown to be the same as that of the underlying fBm process. We also compute the p-variation and discuss the
problems in using this to differentiate between diffusive processes. The fBm-nlc process illustrates that the
range of anomalous diffusive processes has not been adequately explored.
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I. INTRODUCTION

The standard description of an anomalous process is one
where the mean-square displacement goes asymptotically as
time to some power, �, other than 1. If 0���1, then the
process is called subdiffusive and if ��1, then it is super-
diffusive. Lévy processes �1,2�, that do not have a finite sec-
ond moment fall into the superdiffusive category. Fractional
Brownian motion �fBm� was introduced by Mandelbrot �3�
and allows for � between 0 and 2 exclusive. The exponent
for classical Brownian motion is �=1.

Subdiffusive and superdiffusive processes often occur in
heterogeneous or preasymptotic systems. Anomalous diffu-
sion occurs in confined nanofilms �4–6�, transport in porous
media �7,8�, fractal structures with holes over all length
scales �9�, charge carrier transport in anomalous semiconduc-
tors �10,11�, drifters in near-surface ocean currents �12�, in
the atmosphere �13,14�, geologic formations �15–17�, vortex
arrays in rotating flows �18�, layered velocity fields �19� and
mRNA molecules in live E. coli cells �20� to name a handful
of examples. An overview of continuous-time random walks
�CTRWs� focused primarily on subdiffusion is given in �21�.

In one dimension, a process BH�t� is said to be fBm with
Hurst exponent H, �0�H�1� if �22� �a� with probability 1,
BH�t� is continuous and BH�0�=0; �b� for any t�s�0 the
increment BH�t�−BH�s� is normally distributed with mean
zero and variance �t−s�2H.

Note that the second condition implies the increments are
stationary. The correlation structure is given by

E�BH�s��BH�t� − BH�s��� =
1

2
�t2H − s2H − �t − s�2H� . �1�

It can be shown �22� that

dim�graphBH��0,1�� = 2 − H , �2�

where dim denotes the Hausdorff �fractal� dimension and
graphBH ��a,b�= ��x , t� :x=BH�t� , t� �a ,b��.

The p-variation is a generalization of the total variation. It
has been suggested �23� that the underlying diffusive process
can be determined by examining the p-variation of random
walks. The p-variation from 0 to T of a function H is defined
to be

Vp�H��T� = lim
���→0

�
i=1

N

�H�ti� − H�ti−1��p, �3�

where � is a partition of �0,T� given by 0= t0� t1�L
� tN−1� tN=T and ���=max1�i�N�ti− ti−1�.

We create a process that has arbitrary but a priori speci-
fied fractal dimension and mean-square displacement, the
latter of which need not be related to the former, and com-
pute the p-variation for the process. We show that observa-
tions of the p-variation may eliminate some diffusive pro-
cesses from consideration, but cannot conclusively determine
the underlying process. A brief discussion of how fBm-nlc
may be used to model diffusion in a confined nanofilm is
presented.

II. FRACTIONAL BROWNIAN MOTION RUN
WITH A NONLINEAR CLOCK

Let BH�t� be a fractional Brownian motion with Hurst
exponent H and let F�t� be an absolutely continuous function
with non-negative derivative, so that F�t�=	0

t f�s�ds for some
function f �0. Given an fBm and the function F�t�, the cor-
responding fBm run with a nonlinear clock �fBm-nlc� is
given by X�t�=BH�F�t��. From �a� and �b� above, it can be
shown that X�t� has the following properties:

�i� With probability 1, X�t� is continuous and X�0�=0.
�ii� For any t�s�0, the increment X�t�−X�s� is normally

distributed with mean zero and variance �F�t�−F�s��2H.
Note that the second condition implies that the increments

are nonstationary unless F�t� is linear in t.
If F�t�= t, the original fBm is obtained. The case of

H=1 /2 corresponds to compressed/stretched Brownian mo-
tion �24�. If F�t�= t and H=1 /2 the result is a Brownian
motion. The correlation structure of fBm-nlc follows from
that of fBm: E�X�s��X�t�−X�s���=E�BH�F�s���BH�F�t��

*omalled@math.purdue.edu
†jcushman@purdue.edu

PHYSICAL REVIEW E 82, 032102 �2010�

1539-3755/2010/82�3�/032102�4� ©2010 The American Physical Society032102-1

http://dx.doi.org/10.1103/PhysRevE.82.032102


−BH�F�s����. Upon application of Eq. �1�, we see that

E�X�s��X�t� − X�s��� =
1

2
��F�t��2H − �F�s��2H

− �F�t� − F�s��2H� . �4�

III. FRACTAL DIMENSION

The one-dimensional fBm-nlc process can be easily ex-
tended by taking BH�t� to be a multidimensional fBm. In this
case, the path of X�t� as t varies from a to b is that of BH�t�
as t varies from F�a� to F�b�. That is, assuming that BH�t� is
an fBm in n dimensions,

X��a,b�� = �x � Rn:x = X�t�,a � t � b�

= �x � Rn:x = BH�F�t��,a � t � b�

= �x � Rn:x = BH�t�,F�a� � t � F�b��

= BH„�F�a�,F�b��… . �5�

Therefore, the two paths have the same fractal dimension.
In the one-dimensional case, it is easy to show the fractal

dimension of the graphs of fBm and fBm-nlc are the same.
For brevity, we also make the assumption that 0�L�a,b�
� f�t��M�a,b��� for 0�a� t�b��. The bounds L and
M may depend on the interval �a ,b�, and they may become
very large or small as a→0. This permits the important case
of power law mean-square displacement as well as many
other possible clocks. It should be noted however that fol-
lowing result holds under more general conditions.

Recall that a function, h�x�, is called bi-Lipschitz if there
is a constant C such that 1

C 
x−y
�h�x−y��C
x−y
. Let
��x , t�= �x ,F�t��, and note that ��x , t� is bi-Lipschitz on
�−� ,��	 �
 ,1� for any 
�0 by the boundedness assump-
tion on f . Observe that ��graph�X ��
,1���=graph
�BH ��F�
�,F�1���. It follows from �22�, Corollary 2.4�b� that
dim�graph�X ��
,1���=dim�graph�BH ��F�
�,F�1����=2−H. Let
A0= ��0,0�� and An=graph�X ��1/n,T�� for n�0. The Haus-
dorff dimension has countable stability, which means that the
Hausdorff dimension of a countably infinite union of sets is
equal to the supremum of the dimensions of the sets in the
union, dim��n=0

� An�=supn�0�dim An�. This implies that

dim�graph�X��0,1��� = dim��n=0
� An�

= sup0�n��dim An

= sup�0,2 − H� .

We conclude that

dim�graph�X��0,1��� = 2 − H . �6�

The choice of the function F�t� therefore does not affect
the fractal dimension of the fBm-nlc. This means that the
mean-square displacement and the fractal dimension can be,
but do not have to be, related for fBm-nlc.

IV. p-VARIATION

In �23�, a test was introduced to determine whether sub-
diffusive dynamics originate from an fBm or a CTRW

scheme. The CTRW scheme is equivalent to a very special
subordinated Brownian motion. Random walks from this
scheme can be represented as B1/2�S��t��. The function S��t�
is a stochastic �-self-similar �i.e., S��ct� has the same distri-
bution as c�S��t�� step function. Further details can be found
in �23�, and the references therein. The test is based upon the
concept of p-variation mentioned earlier. Looking only at
fBm and CTRW processes creates a false dilemma because
the actual range of subdiffusive processes is much larger than
these two options. In fact, the p-variation of either of these
processes can be approximated by an fBm-nlc with com-
pletely different dynamics. In �23� the p-variation for fBm,
BH�t�, and the CTRW, Z��t�, are shown to be

Vp�BH��T� =�
� if p �

1

H

CHT if p =
1

H

0 if p �
1

H

� �7�

and

Vp�Z���T� = �� if p � 2

S��T� if p = 2

0 if p � 2,
� �8�

where CH depends on H, but is independent of T, and S��T�
is a stochastic step function which plays a role similar to F�t�
in fBm-nlc.

The p-variation for fBm-nlc, X�t�, is given by

Vp�X��T� =�
� if p �

1

H

CHF�T� if p =
1

H

0 if p �
1

H
.
� �9�

This can be seen by recalling F�t� is absolutely continuous,
and hence uniformly continuous. It is a direct consequence
of the uniform continuity of F�t� that if �n is a sequence of
partition refinements given by 0= t0

n� t1
n�L� tNn−1

n � tNn

n =T
such that ��n�→0, then �F��n��→0 where F��n� is a se-
quence of partition refinements given by 0=F�t0

n��F�t1
n�

�L�F�tNn−1
n ��F�tNn

n �=F�T�. With this in mind, we apply
the definition of p-variation.

We adopt the notation Vp
��H��T�=�n=1

N �H�ti�−H�ti−1��p
where the partition � is given by 0= t0� t1�L� tN−1� tN
=T. Let �n be a sequence of partitions of �0,T� with the
same notation as above and which converges to zero in
norm. It follows that
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Vp�X��T� = lim
n→�

Vp
�n�BH � F��T�

= lim
n→�

�
i=1

Nn

�BH�F�ti
n�� − BH�F�ti−1

n ���p

= lim
n→�

Vp
F��n��BH��F�T��

= Vp�BH��F�T�� . �10�

Equation �9� follows immediately from this and Eq. �7�.
Comparing Eqs. �6� and �8�, we see that over a relatively

small time interval the function F�T� could appear to be lin-
ear. In such a case, the p-variation of an fBm-nlc could be
mistaken for that of an fBm with the same Hurst exponent.
However, over a longer time the nonlinearity will show it-
self. This concept meshes well with the notion that the be-
havior of a diffusive process depends on the scale at which it
is observed.

Nonstationary fractional Brownian motion can also imi-
tate the p-variation of the CTRW scheme simply by choosing
F�T� to be an approximation to S��T� and H=1 /2. The dif-
fusion of such a process would have long periods of slow
diffusion followed by short periods of very fast diffusion.

These observations on the p-variation of fBm-nlc show
that the p-variation test described in �23� cannot be used to
determine the underlying dynamics, but it may be used ef-
fectively to eliminate certain processes from consideration.

V. EXAMPLES

A. Anomalous diffusion with power law mean-square
displacement

Fix H and set F�t�= t�/2H with ��0, then by property �ii�,
X�t�−X�0�N�0, t��. Therefore �X2�t��= t�, and the fractal
dimension and power law mean-square displacement may be
chosen arbitrarily. In the case where ��1, we have super-
diffusion and when ��1 we have subdiffusion. When �
=3 we obtain a version of Richardson superdiffusion �13�.
Figure 1 presents two such possibilities; the Hausdorff di-
mension of the graph in Fig. 1�a� is 1.25 corresponding to
H=0.75, and the Hausdorff dimension of the graph in Fig.
1�b� is 1.75 corresponding to H=0.25. Figure 2 shows the
fBms from which Fig. 1 was generated. Despite the differ-
ence in complexity, these two processes have the same mean-

square displacement. Generally, we may choose the Haus-
dorff dimension of the graph to be anything between 1 and 2
exclusive, regardless of the selection for the power law ex-
ponent of mean-square displacement.

It is interesting to note that if you choose F�t� such that
the mean-square displacement is proportional to t, and yet
choose H�1 /2, then the process is considered classically
diffusive, but would have a fractal dimension other than that
of Brownian motion.

B. Logarithmic subdiffusion

In this case we fix H and set F�t�= �ln�t+ t0�−ln�t0��1/2H

with t0�0, so that �X2�t��=ln�t+ t0�−ln�t0�. The result is a
very slow subdiffusion whose graph can have any Hausdorff
dimension between 1 and 2 exclusive.

C. Arbitrary mean-square displacement

To achieve an arbitrary mean-square displacement, we fix
H �which amounts to a choice of the fractal dimension� and
set F�t�= ��2�t��1/2H where �2�t� is the desired mean-square
displacement. The only requirements that need to be placed
on �2�t� are the same as those placed on F�t� above. The
chain rule then implies that F�t� has the desired properties.
This allows for a wide array of mean-square displacements,
and as above, the graph can have any Hausdorff dimension
between 1 and 2 exclusive.

VI. CONCLUSIONS

A process was constructed, fBm-nlc, with arbitrary but a
priori known mean-square displacement and arbitrary fractal
dimension. We achieved this by running fBm with a nonlin-
ear clock. This allows one to choose the mean-square dis-
placement while maintaining the fractal dimension of the
original fBm. An application of this model to diffusion in
laterally confined rare gas nanofilms is presented in �25�. The
most important facts for the discussion here is that on rela-
tively short time scales subdiffusion occurs, but over longer
periods of time the diffusion becomes Brownian �25�. The
variable power law mean-square displacement and the con-
vergence to Brownian imply that fBm-nlc with F�t� chosen
to fit the mean-square displacement and H=1 /2 would serve
as a reasonable model.
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FIG. 1. �a� The graph of X�t� with H=0.75 and F�t�= t2 and �b�
the graph X�t� with H=0.25 and F�t�= t6.
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FIG. 2. �a� The graph of B0.75�t� on which Fig. 1�a� is based and
�b� the graph of B0.25�t� on which Fig. 1�b� is based.
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The p-variation of fBm-nlc can mimic the p-variation of
other processes. Therefore, a study of a process’ p-variation
cannot determine the underlying stochastic process. Match-
ing a physical phenomenon with a mathematical model of
diffusion cannot be achieved by examining a single property.
The process presented here demonstrates that there may be
other models that share the same property but differ in other
ways. When matching physical phenomena with models it
would be prudent to consider as many diffusive models as
possible and choose a model which matches data in as many

ways as possible. fBm-nlc can match both the mean-square
displacement and complexity �fractal dimension� of a diffu-
sive phenomenon.

It is apparent from the recent literature �23� that there is
an implicit assumption that only a few anomalous stochastic
models exist. The erroneous nature of this assumption is il-
lustrated by the introduction of a novel process like fBm-nlc.
The possibilities are endless and certainly not limited to
fBm, continuous-time random walks or Levy motions.
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