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The Eigen quasispecies model in a periodically moving sharp-peak landscape considered in previous semi-
nal works �M. Nilsson and N. Snoad, Phys. Rev. Lett. 84, 191 �2000�� and �C. Ronnewinkel et al., in
Theoretical Aspects of Evolutionary Computing, edited by L. Kallel, B. Naudts, and A. Rogers �Springer-
Verlag, Heidelberg, 2001�� is analyzed in greater detail. We show here, through a more rigorous analysis, that
results in those papers are qualitatively correct. In particular, we obtain a phase diagram for the existence of a
quasispecies with the same shape as in the above cited paper by C. Ronnewinkel et al., with upper and lower
thresholds for the mutation rate between which a quasispecies may survive. A difference is that the upper value
is larger and the lower value is smaller than the previously reported ones, so that the range for quasispecies
existence is always larger than thought before. The quantitative information provided might also be important
in understanding genetic variability in virus populations and has possible applications in antiviral therapies.
The results in the quoted papers were obtained by studying the populations only at some few genomes. As we
will show, this amounts to diagonalizing a 3�3 matrix. Our work is based instead in a different division of the
population allowing a finer control of the populations at various relevant genetic sequences. The existence of
a quasispecies will be related to Perron-Frobenius eigenvalues. Although huge matrices of sizes 2�, where � is
the genome length, may seem necessary at a first look, we show that such large sizes are not necessary and
easily obtain numerical and analytical results for their eigenvalues.
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I. INTRODUCTION

A quasispecies is, in rough terms, an equilibrium distribu-
tion of similar self-replicating entities. The term was intro-
duced in the early 1970s by Eigen �1� in a context of prebi-
otic evolution, in which entities were identified, e.g., with
RNA molecules. Later on the same kind of models came to
be thought as an interesting framework for understanding the
evolution of viruses, both RNA and DNA based �2�. Besides
Eigen’s model, a different quasispecies model was formu-
lated by Crow and Kimura �3�, also known as ParaMuSe
model. Although the two classes of models are technically
different, results are similar �see, e.g., �4,5��. There is nowa-
days a vast literature on quasispecies models with many con-
tributions given by physicists. The first works dealt mostly
with static fitness landscapes. For this part of the literature,
we refer the reader to reviews �6–8� where relevant and pri-
mary references are acknowledged. Remarkable also are
some works in which quasispecies models are identified with
Ising spin systems �9,10� or quantum spin chains �11–14�.
Such identifications led not only to new insights, but also to
approximate and exact analytical results.

The work on dynamic landscapes began by the year 2000
�15–21�. As arbitrary time dependences are difficult to work
with, almost all results are on some kind of periodic depen-
dence. Even restricting to periodic dynamics, there are two
typical situations. One is when fitnesses depend periodically
on time, studied, e.g., in �17–20�. The other is when the
whole landscape moves through genome space periodically
in time, considered in �21,15,16� and in the present work.

More concretely, in this paper we are going to analyze a
dynamic version of the sharp-peak fitness landscape �SPL�,

in which the peak moves periodically in genome space to a
random nearest neighbor, i.e., Hamming distance �HD� equal
to 1, of the previously occupied position. This is almost ex-
actly the same situation studied in the remarkable papers by
Nilsson and Snoad �15� and Ronnewinkel et al. �21�. The
only difference with respect to �15� is that we are going to
consider discrete time, whereas they use continuous time.
This is an inessential difference resulting only from a matter
of taste, and we will present when necessary the results of
�15� in a discrete-time version.

In �21�, the SPL is called needle in the haystack; discrete
time is used as here, but authors are more concerned with
deterministic motion of the master sequence. Nonetheless,
they comment briefly on the stochastic motion of the master
sequence, concluding that “the overall behavior is similar.”

Despite some differences, both �15,21� arrive at the same
results, which we summarize in Sec. II, using very similar
assumptions. We should note however that the slight differ-
ence between deterministic and stochastic motions of the
master sequence, a subject to be commented on at Sec. III,
was brought to our attention only by �21�.

The motivation behind a moving fitness landscape is that
viruses need to mutate in order to survive the attack of their
hosts immune systems, which is the moving environment in
which they live. As hosts acquire immunity against strains of
a virus, an optimal virus genome at a certain time will no
longer be optimal when most host individuals will have ac-
quired immunity against viruses carrying that genome.

Before we go on, we should point that whereas we con-
sider the immune system as an external influence on the vi-
rus population, there exist different ways of describing the
interaction of viruses and immune systems, e.g., �22–24�.

We also acknowledge recent work by Ancliff and Park on
periodically moving fitness landscapes �25–27�. In �26,27�,
they dealt with a model very different from the one we treat*aneves@mat.ufmg.br
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here, in which the master sequence alternates periodically
between two sequences very far apart in HD. On the other
hand, in �25� they used results from �13� based on the iden-
tification with a quantum spin chain �11� to obtain maximum,
minimum, and optimal mutation rates for the existence of a
quasispecies in a ParaMuSe model in which the peak in a
SPL moves periodically to a sequence apart a certain number
of HD units, with this number being not necessarily equal to
1. Although their results have some resemblance to ours, the
techniques are very different, and the models cannot be
thought of as equivalent. In our opinion, the major difference
with respect to our results is that in their model, sequences
which are not master are taken as having null fitness. In
particular, the region of low selective advantage of the mas-
ter sequence with respect to the other sequences, which we
also treat, is completely excluded from their analysis.

The analysis to be performed here differs from the ones in
�15,21� in that we do not divide the population into error
classes and do not rely on certain approximations they did. In
order not to have to deal with the population at all sequences
in the huge genome space, we choose to track only the popu-
lation in all genetic sequences which are going to be master
sequence at some time. This amounts already to a substantial
increase in complexity with respect to �15� or �21�, but we
are able to obtain very good numerical results without using
overwhelmingly large matrices, and approximate formulas
are also available. A first result is a mathematically sounder
confirmation of the existence of upper and lower thresholds
for the mutation rate between which a quasispecies exists.
More importantly, we show in our analysis that the existence
of a quasispecies is possible in a wider region of the space of
parameters than found in �15� or �21�. The quantitative dif-
ference between the present results and those of �15� or �21�
is important for small values of the selective advantage of
the master sequence with respect to the other sequences.

It has been suggested, see �28� and references therein, that
the error catastrophe present in quasispecies models could be
useful as an antiviral strategy. The idea is that instead of
fighting viruses with conventional drugs, a different possibil-
ity is to induce quasispecies extinction by using mutagen
drugs to increase viruses’ mutation rate beyond the upper
threshold. The necessity of fully understanding how mu-
tagens act justifies our quest for a good quantitative knowl-
edge of error thresholds. We also believe that the more de-
tailed information we provide on populations at many
genetic sequences besides the master sequence could be use-
ful when trying to understand genetic variability in real virus
populations.

The paper is organized as follows. In Sec. II we sketch the
basic notions on Eigen quasispecies models, the SPL, and
provide a statement of the discrete-time version of the analy-
ses by Nilsson and Snoad �15� and Ronnewinkel et al. �21�.
In Sec. III we state the fundamentals of our own finer analy-
sis of the same model. In Sec. IV we present numerical and
approximate analytical results which show the differences
between our results and those of �15,21�. Finally, in Sec. V
we summarize and discuss our findings.

II. EIGEN’S MODEL AND THE ANALYSES OF NILSSON
AND SNOAD AND RONNEWINKEL ET AL.

Consider a population of viruses. Each individual in this
population is characterized by a sequence �= �s1 ,s2 , . . . ,s��
of � letters chosen from an alphabet with N symbols. The
sequence should be thought as the individual’s genome. In-
dividuals reproduce asexually at a rate dependent on their
genome � and in doing so produce new individuals generally
with the same genome, but mutations are allowed and con-
stitute a basic ingredient of the model.

Let � denote the set of all N� possible in principle ge-
nomes. In nature, N=4, as the letters of the alphabet are the
bases A, C, G, and T for DNA-based organisms or A, C, G,
and U for RNA-based ones. In the physics literature a com-
mon practice is to simplify things and use a binary alphabet.
On the other hand, even in an individual as simple as a virus
we have ��103–105 and much larger values for more com-
plex organisms �16�. We will assume throughout that ��1,
so that � is a huge set, much larger than any conceivable
population.

Although this will be given a quantitative definition in a
while, we will say that a population is a quasispecies if it
does not spread too much in the genome space �, i.e., if it
consists of individuals with a wild-type or master sequence
genome �0 along with mutant individuals with genomes not
very distant from the master sequence. The relevant concept
of distance to be used here is the Hamming distance
d�� ,���, defined as the minimum number of letter substitu-
tions to be performed in sequence � to make it coincide with
��.

If p��t� denotes the number of individuals in the popula-
tion with genome � at time t, then the basic equation of
Eigen quasispecies model, which describes the replication
dynamics, is

p��t + 1� = �
����

W�,��f����p���t� . �1�

In this equation, we consider time as a discrete variable, with
each generation living one unit of time, individuals produc-
ing offspring at the end of their lives, and being replaced by
the new generation. f���� is the fitness of an individual, i.e.,
the number of offspring produced by it, which we assume
dependent only of its genome. W�,�� is the probability that an
individual of type �� has offspring of type � due to muta-
tions. In spite of using the term probability here, we are
supposing that populations are so large that statistical fluc-
tuations are negligible, and the model is completely deter-
ministic. For an account of quasispecies theories for finite
populations, see, e.g., �29�.

An important ingredient of quasispecies models is the fit-
ness landscape, i.e., specification of the function f in the
above equation. Many static fitness landscapes such as sharp
peak, Fujiyama, and random have been studied �6�. The
sharp-peak landscape is defined by the relative fitness

f��� = �1 + k , if � = �0

1, if � � �0,
� �2�
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where k�0 is the selective advantage of the master sequence
with respect to all other sequences.

Notice now that Eq. �1� is difficult to analyze without
further simplifications, because it is a system of N� equa-
tions; the matrix of W��� might be very complex and the
fitness landscape f complicates things even more. A first sim-
plification we introduce is to consider that each letter of the
genome has a uniform probability of mutating to any other
letter and that the genome length � is always conserved.
Thus, we have W�,��=�d��,����1−���−d��,���. As the mutation
rate per base and per replication � is very small in real-life
organisms, of order 10−7–10−11 �16�, a further simplification
is to neglect terms O��n� with n�2 and take

W��� = 	1 − �� , if d��,��� = 0

� , if d��,��� = 1

0, if d��,��� � 1.

 �3�

These simplifications are also adopted in �15,21�.
A further simplification also adopted in �15,21�, but not in

this paper, is to divide the set � into error classes. Instead of
studying the number of individuals in all N� genomes, it is
easier to study only the number of individuals in the much
smaller set of error classes. The ith error class �i�t� is defined
as the set of all genomes in � with HD from the master
sequence equal to i �i=0,1 ,2 , . . . ,��. We are anticipating
here that as the master sequence genome �0 may depend on
t, so do the error classes.

Another simplification typical of the SPL and also used in
�15,21� is that of no backmutations. The number of elements
in �i+1 is �−i

i+1 times the number of elements in �i. Then, as
��1, a new mutation in an individual at �i with small i will
most probably result in an individual in �i+1 and not in �i−1.
For i close to �, instead, we expect the contrary. But, as error
classes with very large i are expected to be scarcely popu-
lated, the no-backmutation simplification adopted in �15,21�
and many other papers is that mutations will always drive
individuals to larger order error classes.

The situation studied in �15,21� is the one in which the
static SPL �2� holds for a cycle of 	 units of time �genera-
tions� and is followed by an instantaneous shift of the master
sequence to another sequence in genome space at HD equal
to 1. Then for the next cycle of 	 generations we use again
Eq. �2� with respect to the new master sequence, and then
another shift follows and so on.

Let then pNS�t�= (A�t� ,B�t� ,C�t�), where A�t� is the num-
ber of individuals in error class �0�t�, i.e., in the master se-
quence at time t, B�t� is the number of individuals in the
specific genome in �1�t� which will become master sequence
after the next genome shift and C�t� is the number of indi-
viduals in all other sequences. By using the simplified muta-
tion matrix �3�, the no-backmutation simplification, and Eq.
�2�, we find that for any instants of time between successive
shifts of the master sequence we have

pNS�t + 1� = ENSpNS�t� , �4�

where

ENS =�
�1 − 
��1 + k� 0 0




�
�1 + k� 1 − 
 0


�� − 1�
�

�1 + k� 
 1� , �5�

and we introduced the genome mutation rate 
=��. Of
course, we may calculate population evolution before the
first shift by pNS�	−�ENS

	 pNS�0�.
The effect of the master sequence shift, as in the analyses

of �15,21�, is to instantly replace the population vector at
time 	− by taking A�	+�=B�	−�, because sequence of popu-
lation B will be master for the next 	 generations, and

B�	+� = 0, �6�

because the sequence which will become master at t=2	 is
most probably a sequence which was in �2�t� for 0� t�	,
and it is assumed that this error class is scarcely populated.
In matrix language,

pNS�	+�  SNSpNS�	−� , �7�

where

SNS = �0 1 0

0 0 0

1 � − 1 1
� . �8�

We take then pNS�	+� as initial condition, use again Eq. �4�
for the next cycle, and so on. The above equations define
what we will call Nilsson-Snoad (NS) dynamics.

Another assumption of �15,21� in Eq. �8� is that all �
sequences in �1 are equally populated, and hence B�t� is just
a representative of any sequence in �1. The total population
is then given by N�t�=A�t�+�B�t�+C�t�.

The frequencies �or concentrations� are defined as a�t�
=A�t� /N�t�, b�t�=B�t� /N�t�, and c�t�=C�t� /N�t�. It can be
seen that the frequency vector converges under the NS dy-
namics either to an equilibrium point or to an orbit of period
	. For some values of the parameters 
 ,k ,	 ,�, the limiting
frequencies are the trivial equilibrium point �0,0,1�, and for
the other values the nontrivial orbit starts just after the shift
of the master sequence with a vector in the form �a� ,0 ,1
−a�� with 0�a��1. In the former situation, all individuals
in the population are finally scattered to the higher error
classes, and genetic structure of the population is lost. In the
latter, some genetic structure is preserved to infinite time. In
this case we will say that a quasispecies exists because the
long-term population consists of individuals in the master
sequence along with mutants in the other classes providing
the genetic variability necessary for adaptability.

The condition which separates the above cited situations
is the value of the largest eigenvalue of matrix SNSENS

	 . It is
easy to see that 0 and 1 are always eigenvalues of this ma-
trix, with the latter having �0,0,1� as eigenvector. The third
eigenvalue is
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NS =
��1 + k�	 − 1��1 + k�

k�

�1 − 
�	−1, �9�

which may be larger or smaller than 1. The condition for the
existence of a quasispecies is then

NS � 1, �10�

so that the dynamics is dominated by the nontrivial eigen-
vector related to the largest eigenvalue NS. Equation �10� is
to be taken as the discrete-time analog of inequality �6� of
�15�. With slight differences and already in a discrete-time
version, the above inequality is present also in �21�.

In particular, as shown in �15,21�, if k, 	, and � are fixed,
with k and 	 being large enough and � small enough, then
there exist thresholds 0�
l�
u such that a quasispecies
exists in the range 
� �
l ,
u�. For other values of k, 	, and
� a quasispecies will not exist because NS will be smaller
than 1 for all 
’s. A static version of the upper threshold 
u
was already known for the static SPL �see, e.g., �6��, but the
lower threshold 
l is a novelty of the dynamic case. If 

�
u, mutations are too frequent, and natural selection is not
able to overcome them. If 
�
l, mutations are so rare that
population is not able to follow the periodic shift of the
master sequence in genome space. In the first case, we talk of
extinction due to the error catastrophe and in the second of
adaptability catastrophe �22�.

III. FINER ANALYSIS OF THE DYNAMIC SPL

The main point of the present paper is that we are able to
analyze the same situation as in �15,21� with less assump-
tions or approximations and providing a more detailed ac-
count of the composition of the virus population. In particu-
lar, we think that taking Eq. �6� should approximately hold
only when k is very large. Moreover, the motion of the mas-
ter class breaks the symmetry among sequences in error
classes for a very simple reason: for small i there exist in
�i�t� one sequence which was master in previous cycles and
sequences which have never been masters. Finally, another
information lacking in the analysis in �15,21� is about popu-
lations in error classes �i, with i�2. Such information is
certainly useful when trying to assess genetic variability of
virus populations.

The basic idea of our analysis is that of keeping track at
all times of the population in all sequences which will be
master at some time. In particular, we do not assume that all
sequences in �1�t� are equally populated and that the popu-
lation of sequences in �2�t� is negligible.

If we think of the genome space � as the vertices of an
�-dimensional cube with large �, then the successive posi-
tions occupied by the master sequence are a random walk in
which at every 	 generation a step is made to a nearest-
neighbor vertex chosen with uniform probability. If
�1 ,�2 , . . . are the successive positions of the master se-
quence, then with a probability of 1 the master sequence will
return some time to �1, but the number of steps for that is of
order 2�. More exactly, there is a small probability equal to

1 /� that the master sequence returns to �1 after only two
steps. In case such an event occurs, we let the walk proceed
and wait until the next return of the master sequence to �1,
probably after a number of steps of order 2�. In fact, the
probability of the master sequence returning to �1 at the
fourth step is 2 /�2�1−1 /��, much smaller, and so on. Any-
way, in average once each � steps, the master sequence will
perform a two-step backjump to a previous position. As 2�

��, we may expect many two-step backjumps in the time of
order 2� until the master sequence returns to �1. Backjumps
in four or more steps will also occur many times at time
scales as long as 2�, but they are much less frequent.

Having said that, let �1 ,�2 , . . . ,�M ,�M+1 denote the suc-
cessive sequences in � which will be master at some time
with the periodic boundary condition �M+1�1, so that
d�� j ,� j+1�=1, for j=1,2 , . . . ,M. By the above arguments, M
is a random variable with typical values of order 2�. As � is
large, then in typical realizations of the random walk of the
master sequence, we will have d��i ,� j��2 for most pairs i , j
with �i− j��2. An obvious exception is when i=1, j=M or
vice versa and when backjumps occur. Ronnewinkel et al. in
�21� worked most of the time with what they called regular
motions of the master sequence, in which backjumps do not
occur by definition. They also observed that backjumps were
present in their simulations of stochastic motion of the mas-
ter class, but these were not able to change the long-time
behavior of the model. We will follow the same road and
suppose for the time being that the motion of the master
sequence is random, but without backjumps. In Sec. V we
will justify why including backjumps will not modify the
long-time results.

Since we are going to analyze population at M sequences
in �, it follows that the method of analysis we are now
introducing is located at an intermediate point between ana-
lyzing populations at all sequences in �, which would be
unnecessarily detailed, and studying only populations in er-
ror classes �0 and �1, as in �15,21�.

Let pi�t� denote the number of individuals with genome �i
at time t, p�t� be the vector (p1�t� , p2�t� , . . . , pM�t�) in RM,
and q�t� be the total number of individuals in all sequences in
� which will not be masters at any time. Let also p̂�t� be the
vector in RM+1 defined as p̂�t�= (p�t� ,q�t�). For the sake of
further reference, we will call vector p�t� the relevant popu-
lation and p̂�t� the total population. The extra component
q�t� of p̂�t� will be called the background population.

For the first 	 generations, �1 will be the master sequence.
During this time, i.e., for 0� t�	−1, Eigen’s equation �1�
with the SPL �2� and mutation matrix �3� can be written in
matrix form as

p̂�t + 1� = Ê1p̂�t� , �11�

where Ê1 is the �M +1�� �M +1� matrix given in block form
by
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Ê1 =�
0

0

E1 0

]

0

�1 −
2

�
�
�1 + k� �1 −

2

�
�
 . . . �1 −

2

�
�
 1

� .

�12�

In the above equation, E1 is the M �M matrix for evolution
only of the relevant population, i.e., p�t+1�=E1p�t�, and is
explicitly given by

E1 =�
�1 − 
��1 + k�




�
0 0 . . . 0




�




�
�1 + k� 1 − 





�
0 . . . 0 0

0



�
1 − 





�
. . . 0 0

. . . . . . . . . . . . . . . . . . . . .




�
�1 + k� 0 0 0 . . .




�
1 − 


� .

�13�

More generally, for �j−1�	� t� j	−1 we will have

p̂�t + 1� = Êjp̂�t� , �14�

with

Êj = Ŝj−1Ê1�Ŝ−1� j−1. �15�

The �M +1�� �M +1� matrix Ŝ implements the master se-
quence shift by shifting 1 unit to the right, taking into ac-
count the periodic boundary condition, the first M compo-
nents of the total population p̂, and leaving fixed the last
component, i.e.,

Ŝ =�
0 0 . . . 0 1 0

1 0 . . . 0 0 0

0 1 . . . 0 0 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0

0 0 . . . 0 0 1

� . �16�

As we will need it in a while, we also define an M �M

matrix S which is simply Ŝ with the last row and the last

column deleted, i.e., the restriction of Ŝ to the relevant popu-
lation.

The above Eqs. �14� and �15� define our version of the
discrete-time Eigen quasispecies model with the SPL and a
periodical shift of the master sequence. At a time in which �i
is the master sequence, both pi−1 and pi+1 are populations in
the first error class, but they are not treated collectively as in
�15,21�. Notice that offspring of individuals in the relevant

population may be in the background due to mutation, but
for simplicity we do not allow offspring of individuals in q to
be relevant. This is indeed a sort of the no-backmutation
approximation, but milder than the usual form in �15,21�. In
fact we account partly for the possibility of backmutations,
because individuals in �i are allowed to mutate to �i−1.

With the above definitions, it is easy to see that by the end
of the first cycle of 	 generations, i.e., by the end of the time
in which �1 is the master sequence, the population vector is

given by p̂�	�= Ê1
	p�0�. It should be also clear that a steady

state for the frequencies is a population v̂ obeying

Ê1
	v̂ = ̂Ŝv̂ , �17�

where ̂ is the growth factor for the whole population in the
time of 	 generations. In spite of v̂ not being a steady-state

population if ̂�1, for ease of reference, we will still call it
a steady-state population. By Eq. �17�, the steady-state popu-

lation v̂ is an eigenvector of Ŝ−1Ê1
	, and ̂ is the correspond-

ing eigenvalue.
Of course, identification of an eigenvector with a popula-

tion will be possible only if v̂ is a non-negative vector, in the
sense of having all its components non-negative. As matrices

E1, Ê1, S, and Ŝ are also non-negative, then E1
	, S−1E1

	, Ê1
	,

and Ŝ−1Ê1
	 are non-negative. We remind now the reader of the

most important result on non-negative matrices, the Perron-
Frobenius �PF� theorem �see, e.g., Theorem 4.2 in Chap. I of
�30��. This theorem guarantees that for any non-negative ma-
trix G there exists r�0 such that all eigenvalues �C of G
are such that ���r and that r itself is an eigenvalue of G,
which we will call the PF eigenvalue, and its corresponding
eigenvector can be taken as non-negative.

Using the PF theorem and other related results, see again
�30�, we can prove some important facts:

�1� If PF denotes the PF eigenvalue of S−1E1
	, then PF is

a simple root of the characteristic polynomial of S−1E1
	, and

all other eigenvalues of this matrix have absolute values
strictly smaller than PF. Furthermore, we can associate with
the eigenvalue PF an eigenvector vPF having strictly positive
components, and positive multiples of vPF are the only eigen-
vectors of S−1E1

	 with non-negative components. These facts
depend on the irreducibility and primitivity of S−1E1

	.

�2� If ̂PF denotes the PF eigenvalue of Ŝ−1Ê1
	, then

̂PF = max�PF,1� . �18�

�3� Despite the reducibility of Ŝ−1Ê1
	, we still have unique-

ness of its PF eigenvector if PF�1. If PF�1, the only

eigenvectors of Ŝ−1Ê1
	 with eigenvalue ̂PF=1 are the mul-

tiples of the trivial v̂PF�0,0 , . . . ,0 ,1�. If PF�1, the only

non-negative eigenvectors of Ŝ−1Ê1
	 are multiples of a posi-

tive vector v̂PF which coincides with vPF in its relevant com-
ponents. The last component of v̂PF in the case PF�1 is

q =
vPF · w

PF − 1
, �19�

where w is the vector in RM whose components are wj

= �Ê1
	�M+1,j.
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We refer the reader to �31� for the mathematical details of
the proofs of the following facts. From these facts it follows
that for any initial non-negative population p̂�0� not a mul-
tiple of �0,0 , . . . ,0 ,1�, p̂�j	� will converge as j→� to a
trivial multiple of �0,0 , . . . ,0 ,1� if PF�1 or to some non-
trivial vector having all components positive if PF�1. The
border case PF=1 is still an open mathematical problem, but
we do not think it is biologically relevant. In other words, in
the long term any initial population not entirely concentrated
on the background sequences will preserve some genetic
structure if PF�1 and lose it if PF�1.

The condition for the existence of a quasispecies in the
present analysis is thus PF�1. Equation �19� above shows
that the background population q in the steady-state situation
tends to become larger than the total relevant population
when PF↘1. We will see ahead that in our analysis, as in
�15,21�, for some values of k ,	 ,� there exists a range
�
l ,
u� in 
 where a quasispecies exists. As PF becomes
equal to 1 at the boundaries 
l ,
u of this range, the above
comment shows that the steady-state background population
may be much larger than the steady-state population at the
master sequence if one is in the quasispecies existence range,
but close to its boundaries. It might seem odd to call such a
population dominated by individuals with background ge-
nomes a quasispecies, but what characterizes a quasispecies
is not the relative size of the master sequence and back-
ground populations, but rather the existence of a nonzero
fraction of the population which maintains genetic structure
in the long term.

In the regime of quasispecies existence, Eq. �17� and �18�
show that PF

1/	 is the mean fitness of the population. We will
obtain ahead Eq. �23�, which can then be used to calculate
the optimal mutation rate 
opt for fixed k, 	, and �.

IV. SOME RESULTS

We have shown that dividing the population into the
classes which are going to be master sequences at some time
and a background also reduces the problem of studying the
existence of a quasispecies in the moving SPL to a calcula-
tion of eigenvalues. That would be useless if we would be
forced to use matrix sizes M of order 2�, as may seem nec-
essary at a first look.

In Fig. 1 we plot the numerically calculated PF eigenvalue
of S−1E1

	 for small values of M. The results illustrate the
existence of upper and lower thresholds for the mutation rate
which allow the existence of a quasispecies. We should point
out at this moment that the numerical results also show that

for values of 
 starting from zero up to a value 
̄ we have

PF�1, with the value of 
̄ depending heavily on M, as

shown by the picture. We will argue later that 
̄→0 in the
limit M→�, showing that the existence of this initial inter-
val is an artifact due to the smallness of M and should not be
thought of as a new phenomenon. On the contrary, for larger
values of 
 the numerical calculation gives values for PF
rather independent of M with good coincidence of the values
for M =20 and M =100. We have also calculated values for
M =200, but they are indistinguishable from those for M
=100 and were not included in the plot.

We have included in Fig. 1 a plot of the third eigenvalue
of SNSENS

	 given by Eq. �9�. Notice that it does not approxi-
mate the numerically calculated PF and is smaller than 1 for
all 
’s. The set of parameter values in Fig. 1 exemplifies one
case in which our analysis shows the existence of a quasispe-
cies for some range in 
, whereas the analysis in �15,21�
does not.

In Fig. 2 we show location in the complex plane of all
eigenvalues of matrix S−1E1

	 for parameters 
=0.1, k=1.1,
	=10, �=100, and M =20 or M =100. Notice in Fig. 2 that
PF is noticeably larger than 1 and practically independent of
M, whereas all other eigenvalues, although noticeably depen-
dent on M, have much smaller absolute values. Due to this
fact, any non-negative initial condition p�0� will evolve so as
to become after a few cycles of 	 generations practically
parallel to vPF. Convergence to the steady-state frequencies is
thus rather fast.

In Fig. 3 we show logarithmic plots of the components of
vPF. We take k=1.2, 	=10, �=100, and M =60 and two val-
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FIG. 1. �Color online� We show here the dependence of the
Perron-Frobenius eigenvalue PF of S−1E1

	 on the global mutation
rate 
 for selective advantage k=0.5, period 	=18, and genome
length �=100. The data points located as empty dots �colored red in
the online version� are numerically calculated results for matrix size
M =20, whereas the + signs �black� are numerical results for M
=100. The light solid line is the plot of approximation �23� and the
thicker solid line is the plot of the right-hand side of Eq. �9�. The
dashed line �red�, the dotted-dashed line �blue�, and the dotted line
�black� represent, respectively, the first-order perturbative results for
M =20, M =100, and M =�.
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FIG. 2. �Color online� Location in the complex plane of the
eigenvalues of S−1E1

	 for parameters 
=0.1, k=1.1, 	=10, and �
=100. Empty dots �black� are for M =20 and + signs �blue� are for
M =100. The unit circle is also plotted for convenience.

ARMANDO G. M. NEVES PHYSICAL REVIEW E 82, 031915 �2010�

031915-6



ues for 
: 0.017, just above the lower threshold for the qua-
sispecies existence, and 0.28, just below the upper threshold.
In both cases the eigenvectors are normalized such that the
sum of their components equals 1. We see that in both cases
the largest component is the last one. We also see that com-
ponents seem to decay approximately exponentially at the
beginning, attain a minimum, and then increase exponen-
tially. Interestingly, the rate of decay of the first components
is larger than the rate of growth of the last components, with
this difference being much larger for the smaller values of 
.

Figure 3 shows thus two “snapshots” of quasispecies at a
time in which �1 is the master sequence. So, the vector com-
ponents after the first refer to sequences which will become
master in a few cycles, and the last component and its neigh-
bors refer to sequences which have been masters not too
many cycles ago. This explains the “asymmetry” in the snap-
shots as the fact that populations in the former master se-
quences take some time to decay. In the analysis of �15,21�,
this “memory effect” is not taken into account because of the
separation of all individuals into error classes.

Figure 3 provides also information on the genetic variabil-
ity of the population. Such interesting information is not sup-
plied by the coarser analysis of �15,21�.

Although details are to be left to �31�, it is important here
to stress that it is possible to derive good approximate for-
mulas for PF and explain where these formulas come from.
For any n�n matrix A with elements ai,j, the Collatz-
Wielandt function fA is defined as

fA�x� = min
xi�0

�Ax�i

xi
, �20�

where x are vectors in Rn, �Ax�i and xi are the ith components
of the vectors Ax and x, and the minimum is taken over all
the indices i such that xi�0. A common method for proving
the PF theorem for irreducible matrices �30� goes through
showing that fA attains a maximum over the set Pn of non-
negative vectors in Rn, that this maximum is exactly the PF
eigenvalue, and the vector x which maximizes fA is the cor-

responding eigenvector. Then for any x�Pn, the PF eigen-
value PF of A is such that PF� fA�x�.

Let ek be the unit vector with all components equal to zero
with the exception of the kth. We may obtain lower bounds
for PF by taking, for any pair i , j of indices with i� j, vec-
tors of the form xi,j���=�ei+ �1−��ej and calculating �, so
that fA(xi,j���) is maximized. It results that for any irreduc-
ible non-negative matrix A and any pair of indices i� j,

ri,j = aj,j +
�i,j

1 − �i,j
aj,i �21�

is a lower bound to the PF eigenvalue, where

�i,j =
ai,i − aj,j − 2ai,j + ��ai,i − aj,j�2 + 4ai,jaj,i

2��ai,i − aj,j� + �aj,i − ai,j��
. �22�

In the case A=S−1E1
	 this upper bound with i=1 and j=M is

also an excellent approximation for PF for not too small
values of 
. In �31� we will explain why this is so. Also in
�31� we write elements of E1

	 as a sum of contributions from
directed graphs and obtain good approximations to them by
selecting suitable terms in these expansions. Using these re-
sults in Eqs. �21� and �22� with i=1, j=M we finally get

PF �
�1 + k�	�2 + k�

k�

�1 − 
�	−1. �23�

In Fig. 1 we plot the right-hand side of the above equation
and confirm that it is indeed a good approximation for PF
unless 
 is very close to zero.

It is remarkable that the above approximation has an iden-
tical dependence on 
 as Eq. �9�, but the multiplicative con-
stant is different. As both expressions coincide asymptoti-
cally as k→�, we conjecture that the result of �15,21� should
be exact in this asymptotic limit.

On the other hand, not only Eq. �23� fails for small 
, but
also there is no result in �15,21� for this region. The reader
may notice that E1 becomes diagonal if we take limits �
→0, �→� such that 
 remains constant, and it follows that
S−1E1

	 is exactly diagonalizable in this limit. It is then pos-
sible to approximate PF to first-order perturbation theory in
parameter �=�−1. We refer to �31� for the details. The result
is

PF = �1 − 
�	�1 + k�	/M +
1

�
1 + O�1/�2� , �24�

where

1 = 
�1 − 
�	−1�	�1 −
2

M
��1 + �1 + k�2	/M� +

k + 2

Mk
��1 + k�	

− �1 + k�−	�� . �25�

The right-hand side of Eq. �24� with the O�1 /�2� term
dropped is also plotted in Fig. 1 for M =20 and M =100. We
see that these plots agree well with the corresponding nu-
merical results for small 
.
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FIG. 3. �Color online� Logarithmic plots of the components of
the Perron-Frobenius eigenvector of S−1E1

	. The points located by +
signs �blue� refer to 
=0.017 and points located by dots �red� refer
to 
=0.28. The other parameters values are k=1.2, 	=10, �=100,
and M =60 in both cases. In both cases the eigenvectors are normal-
ized such that the sum of their components equals 1.
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The reader should also notice that the limit M→� can be
taken in Eq. �24�, and we end up with the perturbative ap-
proximation

PF = �1 − 
�	�1 +
2	


��1 − 
�� + O� 1

�2� , �26�

which is smaller than 1 for 
 close to zero. This justifies the
claim we had made before that the small intervals close to

=0 in which PF�1 are in fact an artifact of taking finite
�and small� values of M.

V. DISCUSSION AND CONCLUSIONS

We have analyzed the same moving SPL as in the seminal
papers by Nilsson and Snoad �15� and Ronnewinkel et al.
�21�. Whereas the results in the above papers can be seen, as
we did in Sec. II, as resulting from exact diagonalization of a
3�3 matrix, the results in the present paper depend on the
possibility of approximately diagonalizing matrix S−1E1

	 of
order M. In principle, M should be equal to the number of
cycles of 	 generations it takes until a sequence which had
been master becomes master again. Typically, this number is
of order 2� cycles, with � being the size of the genome.

The existence or nonexistence of a region in parameter 

in which a quasispecies exists, as well as the thresholds that
bound this region, was related in Sec. III to the PF eigen-
value PF of matrix S−1E1

	. In Sec. IV we obtained two for-
mulas which approximate very well PF.

Formula �23�, which does that for larger values of 
 is
already independent of M. This independence stems from the
fact that the elements of matrix S−1E1

	, used in deriving Eq.
�23�, depend very slightly on M. This is by its turn a conse-
quence of the fact that if we write in components p�t+1�
=E1p�t�, we will find a discretized version of the heat equa-
tion with losses

�u

�t
− D

�2u

�x2 + �u�x,t� = 0,

in which ��0 is so large that the heat loss term dominates
the diffusion term. In such a case, what happens at a point x
depends only on its immediate neighborhood and is almost
independent of the rest of the system, so that the length M of
the heat conducting region does not matter. Figure 1 shows
indeed that the numerically calculated PF’s are well approxi-
mated by Eq. �23� and almost independent of M.

Figure 1 shows also that for small 
 the numerical values
of PF are well approximated by Eq. �24�. In this region,
however, unrealistically small values of M such as 20 or 100
do not provide a good approximation to the biologically rel-
evant limit M→�. Anyway, taking this limit in Eq. �24� is
easy, and we obtain Eq. �26� which should be a good ap-
proximation for PF for values of M of order 2� and 
 very
close to zero.

The results obtained so far should be valid only if
�1 , . . . ,�M are all distinct sequences. But, as we have already
commented, this is not a typical situation if M is as large as
2�. We should in fact expect two-step backjumps of the mas-
ter sequence occurring in average each � cycle of 	 genera-

tions. As shown in Fig. 13 of �21� such backjumps have the
effect of increasing the population at the master sequence
beyond the value it would have if there were no backjumps,
but this effect dies out quickly. This phenomenon can be
explained by noticing that in typical situations, such as those
depicted in Fig. 2, PF is much larger than all other eigen-
values of S−1E1

	 in absolute value. Thus, any perturbation in
the dynamics, such as occurrence of a backjump, should be
exponentially damped in a few cycles of 	 generations, i.e.,
in a time much smaller than the typical time between two
backjumps. As a consequence, backjumps cannot alter the
long-time behavior of the system in a typical situation in
which PF is largely dominant. An instance in which back-
jumps may be important is for small 
, because in this case
PF may be close in absolute value to the other eigenvalues,
but we did not analyze further this situation.

The relationship between our results and those of �15,21�
is illustrated also in the phase diagrams of Fig. 4, in which
we show for two values of k the regions in the �	 ,
� plane in
which a quasispecies exists in both analyses. As it can be
seen, our region for the existence of a quasispecies properly
contains that of �15,21�. But the difference is smaller for
larger values of k, and both results coincide asymptotically
when k→�, as an inspection of Eqs. �9� and �23� shows.

We believe that the enlargement of the quasispecies re-
gion with respect to �15,21�, mainly for large values of 
, as
seen in Fig. 4, has two main sources. One is the fact illus-
trated in Fig. 3 that sequences which have already been mas-
ters are more populated than sequences at the same HD
which have never been masters. We believe that the high
population of the sequence in �1 which has just ceased to be
master helps increasing the population in the sequence in �1
which will be the next master sequence, mainly if 
 is large.
The second source is the fact that we need not suppose Eq.
�6�. A third source might be the fact that we do consider
some backmutations in our analysis, but we do not believe
this is so important. In fact we considered such backmuta-
tions only because equations were more symmetric, and it
did not introduce any technical difficulties.

Our analysis not only confirms the validity of the error
thresholds of �15,21� asymptotically as k→�, but also pro-
vides more correct results for small k. This numerical differ-
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FIG. 4. Phase diagrams showing for two values of k �left dia-
gram is for k=0.5 and right diagram is for k=1.5� the regions of
quasispecies existence in the analysis of the present paper and in the
analyses of �15,21�. The dark gray region is the quasispecies region
as in �15,21�, while our own analysis indicates the same region
augmented by the light gray strip. The horizontal lines included for
reference represent the error threshold in the static SPL case.
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ence could be relevant when considering the use of mutagen
drugs as antiviral therapy, as suggested, e.g., in �28�. More-
over, we add more detailed information on the genetic vari-
ability of the quasispecies, as can be seen in Fig. 3, not
available in the results of �15,21�.

A different result from our analysis is that PF is always
larger than 1 for 
 in an interval �0,
ll�, as can be seen from
either Fig. 1 or Eq. �24�. We showed that 
ll tends to zero
when M→�, so that this tiny interval of the existence for a
quasispecies vanishes in the relevant limit for the situation
examined here. But in a situation in which the environment
fluctuates periodically and only a small number of genotypes
�1 , . . . ,�M ,�M+1, with �M+1�1, and d��i ,�i+1�=1, with i
=1,2 , . . . ,M, ever become master sequences, the interval
�0,
ll� represents an additional interval where a quasispecies
exists, even for values of k ,	 ,� for which the other existence
interval �
l ,
u� does not exist. We have not explored this
possibility further.

We indicate here two other possible uses of the tools de-
veloped here in future works. One would be to extend, as in
�25�, the analysis to a periodically moving SPL in which the
master sequence after a shift is at HD d of the previous one.

If d�M, this can be easily done by replacing matrix Ŝ in Eq.
�16� with its counterpart for a shift d units apart. From the
point of view of numerical calculations, there seems to be no
problem, but we do not know yet how to obtain results
analogous to Eq. �23�. A second possible extension of the
tools developed here could be the study of a dynamic SPL in
which 	 is random. For example, it can be easily seen that if
	 does not fluctuate too much, so that the point �
 ,	� always
falls in the dark region in Fig. 4, a quasispecies will exist. Of
course the problem becomes more difficult if this condition
does not hold.
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