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Living cells are continually exposed to environmental signals that vary in time. These signals are detected
and processed by biochemical networks, which are often highly stochastic. To understand how cells cope with
a fluctuating environment, we therefore have to understand how reliably biochemical networks can transmit
time-varying signals. To this end, we must understand both the noise characteristics and the amplification
properties of networks. In this paper, we use information theory to study how reliably signaling cascades
employing autoregulation and feedback can transmit time-varying signals. We calculate the frequency depen-
dence of the gain-to-noise ratio, which reflects how reliably a network transmits signals at different frequen-
cies. We find that the gain-to-noise ratio may differ qualitatively from the power spectrum of the output,
showing that the latter does not directly reflect signaling performance. Moreover, we find that autoactivation
and autorepression increase and decrease the gain-to-noise ratio for all of frequencies, respectively. Positive
feedback specifically enhances information transmission at low frequencies, while negative feedback increases
signal fidelity at high frequencies. Our analysis not only elucidates the role of autoregulation and feedback in
naturally occurring biological networks, but also reveals design principles that can be used for the reliable
transmission of time-varying signals in synthetic gene circuits.
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I. INTRODUCTION

Living cells constantly have to respond and adapt to a
changing environment. In some cases, such as in response to
a changing sugar concentration �1�, a cell may wish to inte-
grate out rapid variations and only respond to slow variations
of the environmental signal, while in other cases, such as
osmo adaptation �2� or bacterial chemotaxis �3�, the cell
needs to do the opposite—respond to rapid but not slow
variations �adaptation�. Indeed, to understand how cells cope
with a fluctuating environment, we have to understand how
cells transduce time-varying signals. Cells detect, process,
and transduce signals via biochemical networks, which are
the information processing devices of life. However, experi-
ments in recent years have demonstrated that biochemical
networks are often highly stochastic �4,5�. This raises the
question how reliably biochemical networks can transmit
time-varying signals in the presence of noise.

Interestingly, biochemical networks exploit commonly re-
curring architectures �6,7�, such as autoregulation, cascades,
and feedback, to process signals. These network motifs often
implement signal amplification in order to raise the level of
the input signal relative to the noise. Amplification can be
characterized by the gain, the fold-change in the signal am-
plitude. However, it is important to recognize that such am-
plification cannot only increase the levels of the desired sig-
nal, but can also amplify the noise itself. Therefore, to
understand the possibilities and limitations of different net-
work motifs for enhancing the fidelity of signal transduction,
we need to understand how both the signal and the noise are
propagated through these motifs. Specifically, information
theory indicates that the reliability of signal transmission is
determined by the ratio of the gain of the network to the total

noise in the output signal—the gain-to-noise ratio. Moreover,
to assess how reliably signals of different temporal charac-
teristics are transduced, we have to understand the frequency
dependence of the gain and the noise. Importantly, we expect
that different network architectures will affect the frequency
dependence of the gain and the noise differently, which
means that we have to study both these quantities. In this
manuscript, we study the frequency dependence of the gain-
to-noise ratio for simple cascades, and for cascades employ-
ing autoregulation and feedback. This allows us to elucidate
how autoregulation and feedback can shape the frequency
range over which signals can be transduced reliably.

Information theory provides a formalism for quantifying
the reliability of information transmission in the presence of
noise �8�. A natural measure for the fidelity of signal trans-
mission from an input signal S to an output signal X �the
network response� is the mutual information between S and
X, which is defined as

I�S,X� = H�S� − H�S�X�

= −� dSp�S�log�p�S��

− �−� dXp�X�� dSp�S�X�log�p�S�X��� . �1�

Here, p�S� and p�X� are the probability distributions of
possible input and output signals respectively, and p�S �X� is
the conditional probability of S once X is specified. The mu-
tual information quantifies the reduction in entropy of �or
uncertainty about� the signal after one obtains knowledge of
the network response, averaged over all possible responses.
In other words, I�S ,X� is how much we learn �on average�
about S by measuring X. For a deterministic system, every S
leads to a unique X �we assume no degeneracy�. Measuring
X thus precisely specifies S, such that the uncertainty in S*deronde@amolf.nl
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after a measurement of X is H�S �X�=0 and I�S ,X�=H�S�.
However, in the presence of noise in the network each input
S will lead to a distribution of possible outputs X. As a result,
an observed X can correspond to multiple S values and
I�S ,X��H�S�. For completely uncorrelated S and X,
I�S ,X�=0. By construction, the mutual information is sym-
metric, such that I�S ,X�= I�X ,S�.

Recently, the mutual information has been used to study
the reliability of information transmission in biochemical
networks �9–12�. However, these studies considered only the
steady-state response of a network to a distribution of con-
stant input signals, which do not change on the time scale of
the network response. Yet, in many biological systems, it
cannot be assumed that the input signal is constant on the
time scale of the network response.

Indeed, in many systems the message is encoded in the
temporal dynamics of the input signal. A well-known ex-
ample is bacterial chemotaxis, where the concentration of the
intracellular messenger protein depends not on the steady-
state ligand concentration, but rather on the change of this
concentration in the recent past �13�—the response of the
network thus depends on the history of the input signal.
Moreover, the extracellular signal may be encoded in the
temporal dynamics of the intracellular signal transduction
pathway. An interesting example is provided by the rat
PC-12 system: while stimulation with a neuronal growth fac-
tor gives rise to a sustained response of the Raf-Mek-Erk
pathway, stimulation by an epidermal growth factor gives
rise to a transient response of this pathway �14�. In all these
cases, the message is encoded not in the concentration of
some chemical species at a given moment in time, but rather
in its concentration as a function of time. This means that to
understand how reliably the network can transmit informa-
tion, we need to know how accurately an input signal as a
function of time—the input trajectory s�t�—can be mapped
onto an output trajectory x�t�. We thus need to understand the
mutual information between the two trajectories, I(s�t� ,x�t�).

The ability of a biochemical network to transduce a time-
varying input signal depends on the correlation time of the
input signal and the architecture and response dynamics of
the network. An instructive example is provided by the
chemotaxis network of the bacterium Escherichia coli. This
network employs integral negative feedback �15�, as a result
of which the intracellular messenger protein can adapt to a
constant extracellular ligand concentration. This means that
the signaling network cannot respond to changes in ligand
concentration that occur on time scales longer than the adap-
tation time. At the other end of the frequency spectrum,
changes in the messenger protein that occur on time scales
shorter than the motor switching time will be integrated out;
indeed, the network cannot respond reliably to rapidly vary-
ing input signals �16�. The architecture and the response dy-
namics of the processing network thus determines the fre-
quency range over which signals can be transduced reliably.

Recently, we have applied information theory to bio-
chemical networks and studied the mutual information be-
tween in- and output trajectories, I(s�t� ,x�t�) �16�. Here, we
apply this framework to study the propagation of time-
varying signals through a number of network motifs—
cascades, autoregulation, and feedback. It is known that for

constant signals �or, to be more precise, signals that do not
vary on the time scale of the network response time�, the
mutual information decreases as a function of cascade length
�11�. The same also holds true for time-varying signals. In-
deed, the data-processing inequality states that in a cascade
with n nodes, the information about the input encoded in the
signal at node i+1 cannot be greater than the information at
node i. Once lost, information about the input cannot be
recovered later in the cascade. Simply increasing the length
of a signaling cascade therefore can never increase the trans-
mitted information. Conversely, maximizing the total trans-
mitted information cannot be the driving force behind the
evolution of such cascades.

Cascades, however, often employ autoregulation and
feedback, which can be used to shape the response of the
network to signals of different frequencies. Importantly, au-
toregulation and feedback affect not only the frequency-
dependent gain, which describes how strongly an input sig-
nal at a particular frequency is amplified in the absence of
any biochemical noise, but also the frequency dependence of
the noise. While the frequency dependence of the gain
�17–19� and the noise �20� have been studied separately, the
frequency dependence of their ratio, the gain-to-noise ratio,
has not. However, it is the gain-to-noise ratio which deter-
mines how reliably an input signal at a particular frequency
can be transmitted �16�. In fact, as we will show, autoregu-
lation and feedback affect the frequency dependence of the
gain and the noise differently, which means that it is essential
to study these quantities together.

In this paper, we study the frequency-dependent gain-to-
noise ratio using a Gaussian model. In the next section, we
describe this model, and how we can use it to compute the
frequency-dependent gain-to-noise ratio and the information
transmission rate, which is given by the integral of this ratio
over all frequencies �16�. In section Results we discuss the
frequency-dependent gain-to-noise ratio of simple cascades,
and cascades employing feedback and autoregulation. Our
results highlight the idea that the output power spectrum is
not a direct measure for the information content of the output
signal—the output power spectrum can differ qualitatively
from the spectrum of the gain-to-noise ratio. We also show
�Fig. 1� that positive regulation tends to increase the gain-to-
noise ratio, while negative regulation tends to decrease it.
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FIG. 1. �Color online� A schematic of the main conclusions of
this paper. The frequency of the variations of the input is shown on
the x axis. For three different motifs the gain-to-noise ratio is
shown. The arrows indicate the specific frequency regime for which
each motif performs better with respect to a simple cascade. �fb is
feedback, ar is autoregulation.�
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Moreover, we show that the frequency spectra of motifs with
negative feedback can exhibit windows in which the gain-to-
noise ratio is increased; these motifs can thus act as bandpass
filters for information transmission. Finally, we discuss some
of the implications of our findings and the limitations of our
analysis.

II. METHODS

We consider information transmission through a bio-
chemical network from an input signal s�t� to an output sig-
nal x�t�. The dynamics of the network can be described
mathematically by a set of coupled Langevin equations �21�
for the signal, response and an arbitrary number of interme-
diate components vi, in vector form v. In using the Langevin
representation we assume that the copy number of each com-
ponent is large such that the discrete number of molecules
can be approximated by a continuous concentration.

ds

dt
= fs

+�s� + fs
−�s� + ��t� , �2a�

dv
dt

= fv
+�s,v,x� − fv

−�s,v,x� + �v�t� , �2b�

dx

dt
= fx

+�s,v,x� − fx
−�s,v,x� + �x�t� . �2c�

Here, f i
+ and f i

− contain all the reactions involving the pro-
duction and degradation of component i, respectively. fs

+ and
fs

− only depend on s, so that we restrict our analysis to net-
works that do not feed back onto s itself. In these cases, the
gain-to-noise ratio is independent of the input signal �22�, as
discussed in more detail below Eq. �10�. ��t� is a stochastic
driving process that serves to define the ensemble of possible
input signals. The various noise sources �i are taken to be
independent and Gaussian-distributed �22–24�, such that
	�i�t�� j�t��
= 	��i�2
�ij��t− t��. Here, we note that the as-
sumption of independent noise sources is only made to sim-
plify the analysis. �Anti�-correlations between noise sources
can affect noise propagation �22�, and can be included by a
straightforward extension of the present discussion. Further-
more, we assume that 	��i�2
= 	f i

+
+ 	f i
−
=2	f i

+
 and 	���2

=2	fs

+
 �25�, the sum of the production and degradation
terms.

We introduce the vector y= �s ;v ;x� and �= �� ,�v ,�x�
and assume the network has a steady state 	y
. Linearizing
around this steady state we obtain

dỹ

dt
= J�y=	y
ỹ + � . �3�

Here ỹi=yi− 	yi
 is the deviation of the concentration of com-
ponent i from its steady-state value, 	yi
, and J is the Jaco-
bian evaluated at the steady state �26�. Jij describes the re-
sponse of the component i to small changes in component j,
while keeping all other components at their steady-state lev-
els. The diagonal element Jii=−�i

−1 is the relaxation time or
dissipative time scale of component i; it describes the time

scale on which component i relaxes back to its steady-state
value after a perturbation. After linearization, the architecture
of the network is encoded in the structure of the Jacobian
matrix �see Fig. 2�: the diagonal terms correspond to auto-
regulation, the lower triangular part to downstream �feedfor-
ward� regulation and the upper triangular part to upstream
�feedback� regulation. Since we restrict ourselves to systems
without feedback from the network to the signal itself, we
require that all elements on the first row of J are zero but for
Jss.

We take as our input signal the variations s̃. A linear sys-
tem does not change the frequency of the transmitted signal,
but only the amplitude and the phase. Since Eq. �3� is linear
in ỹ, we can calculate exactly the power spectra of the net-
work components �25�,

P = �i�I − J�−1��− i�I − JT�−1, �4�

where Pij���= 	Ỹi���Ỹ j�−��
 is the �cross-�power spectrum

of ỹi and ỹ j, Ỹi��� is the Fourier transform of ỹi�t�, I is the
identity matrix, and � is the noise matrix with entries �ij
= 	�i���� j�−��
= 	��i�2
�ij. The power spectrum is a com-
monly used tool to study time-varying signals, and describes
how the total power of a signal is distributed over different
frequencies. Power at low frequencies is related to slow
variations of the signal, while power at high frequencies cor-
responds to rapid fluctuations. The integral of the power
spectrum over all frequencies equals the total variance of the
signal.

The information transmission rate for time-varying sig-
nals is �27,28�

lim
T→�

I„s�t�,x�t�…
T

= R„s�t�,x�t�… = −
1

2	
�

0

�

d� ln�1 − 
sx���� ,

�5�

where T is the length of the trajectory and 
sx��� is the
coherence function, defined as

FIG. 2. �Color online� The Jacobian matrix. The entries of the
Jacobian matrix encode the structure of the reaction network.

EFFECT OF FEEDBACK ON THE FIDELITY OF… PHYSICAL REVIEW E 82, 031914 �2010�

031914-3




sx��� =
�Psx����2

Pss���Pxx���
. �6�


sx��� is a measure of the average correlation between the
in- and output signals in the frequency domain. For com-
pletely independent in- and output signals, 
sx���=0, while
for a noiseless system 
sx���=1.

The power spectrum of the output signal, Pxx���, can be
decomposed as

Pxx��� � ���� + N��� , �7�

�g2���Pss��� + N��� . �8�

Here, �����g2���Pss��� is the transmitted signal, g2���
��Psx����2 / Pss

2 ��� is the frequency-dependent gain, Pss���
is the power spectrum of the input signal and N��� is the
frequency-dependent noise. With these definitions, the coher-
ence function, Eq. �6�, can be recast as


sx��� =
����

N��� + ����
, �9�

and the mutual information rate can be rewritten as �16�

R„s�t�,x�t�… =
1

2	
�

0

�

d� ln�1 +
g2���
N���

Pss��� . �10�

We see that the information transmission rate depends on the
power spectrum of the input signal, Pss���, and on the gain-
to-noise ratio g2��� /N���.

As discussed in Ref. �22�, in a biological system the re-
action that detects the input signal can, depending on the
nature of the detection reaction, introduce significant corre-
lations between the variations in the input signal and the
intrinsic noise of the reactions that constitute the processing
network. These correlations are a consequence of the mo-
lecular character of the components and are thus unique to
biochemical networks. If the detection reaction does not in-
troduce correlations, then Eq. �8� is the spectral-addition rule
�22�. The noise N��� is then the intrinsic noise of the pro-
cessing network and also g2��� only depends on properties
of the processing network. On the other hand, if the detection
reaction does introduce correlations, then the output power
spectrum Pxx��� can be written in the form of Eq. �8�, but
then N��� and g2��� depend not only on characteristics of
the processing network, but also on the statistics of the input
signal; conversely, the variations of the input will also be
affected by the noise in the processing network �22�. In what
follows below, we assume for simplicity that the spectral-
addition rule holds, which means that the gain, noise and
gain-to-noise ratio are independent of the input signal, and
that the input does not need to be specified.

Applying the linearization procedure outlined above may,
in general, qualitatively change the dynamics of the network
being considered. However, previous studies �9,29� have
shown that the linear-noise approximation provides an accu-
rate description of many systems if the average copy num-
bers are of order 10 molecules or more. For the networks
considered in this paper we also compared the power spectra
calculated in the linear approximation with the results of

stochastic simulations performed with Gillespie’s algorithm
�30�, and again found good agreement when protein copy
numbers are large �see Appendix�. We therefore expect that
the linear analysis presented in this paper provides an accu-
rate description of the signaling characteristics of these net-
works.

III. RESULTS

First we study a simple cascade, where “simple” means
that we consider a cascade where each component only regu-
lates the activity of the next component in the cascade; a
“simple” cascade is thus a cascade without autoregulation,
feedback, or feedforward interaction. We analyze this net-
work in detail such that it can serve as an instructive example
of the method described above. In addition, we will highlight
general features of the results which recur in more complex
networks. We then discuss network motifs including auto-
regulation and negative feedback loops, which are com-
monly observed in biochemical networks.

To understand the effects of autoregulation and feedback
we will compare information transmission in these motifs to
a corresponding simple cascade with the same number of
components but without the additional regulation. In order to
perform such a comparison of different motifs on an equal
footing we constrain the average production rate of every
component such that these are equal in the networks under
comparison. We argue that from a biological perspective the
rate of protein production is a more significant constraint on
network design than average protein copy number, since the
latter only depends on the ratio of the synthesis and degra-
dation rate, while it is the absolute synthesis and degradation
rate that determines the cost of having a protein at a particu-
lar copy number. This constraint also enforces that the noise
strength at each level of the cascade 	��i�2
=2	f i

+
 is the same
in the motifs being compared. When comparing two systems
with many parameters, equalizing production rates is not a
sufficient constraint to uniquely specify all parameter values.
To reduce this potential parameter space we will �unless oth-
erwise stated� hold constant as many of the network param-
eters as possible. For brevity we will only discuss networks
in which all regulation occurs via the production reactions,
with linear degradation of each component. However, our
results are qualitatively unchanged if we instead consider
regulation via protein degradation.

We characterize information transmission through these
motifs in terms of the gain, noise and gain-to-noise ratio.
Since we assume that the spectral-addition rule holds �22�,
these quantities are intrinsic, signal-independent properties
of the network. We also wish to highlight differences be-
tween the information transmission characteristics of the net-
work, as determined by the gain-to-noise ratio, and the out-
put power spectrum Pxx���, since this is commonly
discussed in studies of signal transmission. Since Pxx��� de-
pends not only on the processing network but also on the
input signal �see Eq. �8��, we must therefore specify Pss���;
for this purpose we assume, for convenience, that the input
signal s�t� is generated via a Poisson birth-death process as
in Eq. �11a� �Simple cascade�.

DE RONDE, TOSTEVIN, AND TEN WOLDE PHYSICAL REVIEW E 82, 031914 �2010�

031914-4



A. Simple cascade

Initially we study a simple cascade with a single interme-
diate component. Extension of the cascade with more inter-
mediate components is straightforward. The appropriate re-
action scheme is

ds

dt
= ks − �ss + ��t� , �11a�

dv
dt

= kvs − �vv + �v�t� , �11b�

dx

dt
= kxv − �xx + �x�t� . �11c�

We reiterate that we assume that there are no cross-
correlations in the noise; 	��t����t��
=����t− t�� and
	��t���t��
=0. This means that the reactions are of the type

s→s+v and v→v+x, and not s→v and v→x, respectively;
put differently, the firing of a reaction does not consume a
molecule of the reactant, and hence does not affect the fluc-
tuations of the up-stream component �22�. In the Discussion
section, we will briefly address some of the limitations of
this assumption.

Fourier transformation gives

X̃��� =
kxkvS̃

�i� + �x��i� + �v�

signal

+
kx�v���

�i� + �x��i� + �v�
+

�x���
i� + �x

noise

.

�12�
As indicated, we can identify the components of the out-

put which are due to the input S̃ �“signal”� and components
which are due to intrinsic noise in the network. We obtain for
the power spectrum of x,

Pxx��� = �X̃X̃�� =
kx

2

��2 + �x
2�

kv
2

��2 + �v
2�

2ks

��2 + �s
2�

ssg2��� P ���

+
kx

2

��2 + �x
2�

2kv�s�
��2 + �v

2�
+

2kx�v�
��2 + �x

2�

Nv→x��� Nx���

N���

�13�

Figure 3�a� shows the output power spectrum of this net-
work Pxx��� �red thin solid�, as well as its decomposition
into the noise N��� �green thick dashed� and the transmitted
signal ����=g2���Pss��� �black thick solid� �see also Eq.
�8��. Simple cascades are characterized by a number of
“knee” frequencies �vertical dashed�, corresponding to the
characteristic relaxation rates of the different components of
the network �in this case �s, �v and �x�. These knee frequen-

cies are the inverse of the response times of the components,
e.g., �v=�v

−1.
In order for the processing network to track variations in

the input s on a time scale �−1, the network should be able to
respond on this time scale. If any component of the process-
ing network has a longer response time, this variation in s
will be filtered. This filtering can be observed in the trans-
mitted signal ����, where at frequencies above the first knee
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g2(ω)
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FIG. 3. �Color online� Typical power spectra for a linear cascade. �a� The power spectra of x and s, Pxx��� and Pss���, together with the
signal ���� and noise N��� components of the output, for the two-step cascade shown in Eq. �11�. �b� The frequency-dependent gain g2���,
noise N��� and gain-to-noise ratio �g2 /N�. Thin green lines indicate the two noise contributions, Nv→x��� �dashed� and Nx��� �solid�.
Parameters: ks=10, kv=10, kx=1, �v=0.5 and �x=5. Vertical lines indicate the degradation rates of the three components.
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frequency, ���� scales with �−2 and for every consecutive
knee frequency, ���� decays with an additional factor �−2

�Fig. 3�a��. In effect each level of the cascade acts as a low-
pass filter, because the incoming signal is averaged over the
protein response time. Mathematically, the transmitted signal
���� can be factored into the input signal Pss��� �black thin
dashed�, and the total gain g2��� �Fig. 3�b�, black thick
solid�, which is independent of the input signal �because we
assume that the network does not feed back onto s�. More-
over, the total gain of the network is the product of the gain
of each cascade step: g2���=gs→v

2 ���gv→x
2 ���; decaying as

�−4 for ���v ,�x �Fig. 3�b��. Consequently, the transmitted
signal ���� decays as �−6 for ���s ,�v ,�x.

Since we assume that there are no cross-correlations be-
tween the different noise terms, the total noise N��� �green
thick; dashed in Fig. 3�a� and solid in Fig. 3�b�� is given by
the noise-addition rule �22,31�, which means that N��� is
simply given by the sum of two independent contributions,
Nv→x��� �Fig. 3�b�, green thin dashed� and Nx��� �green thin
solid� �see Eq. �13��. Here, Nx��� is the noise in the concen-
tration of x that arises from the intrinsic stochasticity in the
production and decay events of x; Nx��� would be the total
variance in the concentration of x if v, the input for x, would
not vary over time. However, the upstream component v
does vary in time, not only because it is driven by variations
in the input s, but also because it fluctuates spontaneously
due to the noise in its synthesis and decay events. This noise
is propagated to x. Its contribution to the total noise power of
x is Nv→x���, which is given by the noise in v, Nv���, mul-
tiplied by how much this noise is amplified at the level of x,
given by gv→x

2 ��� :Nv→x���=gv→x
2 ���Nv���, where

gv→x
2 =kx

2 / ��2+�x
2�. The “extrinsic” contribution to the noise

in x, Nv→x, decays as �−4 since the noise in v, decaying as
�−2, is filtered by the finite lifetime of the protein x. The
“intrinsic” contribution, Nx���, decays as �−2, meaning that
for ���v ,�x, N����Nx���. Hence, while the transmitted
signal ���� decays as �−6 for ���s ,�v ,�x, the noise N���
decays as �−2 �Fig. 3�b�, green thick solid�. As a result, for

frequencies ���s ,�v ,�x, the transmitted signal ���� is
completely obscured by the noise and the output Pxx��� is
simply given by the noise N��� �Fig. 3�a��.

Finally, the gain-to-noise ratio �Fig. 3�b�, red thick
dashed� is

g2���
N���

=
kvkx�v

2	s
��2 + �v
2 + �vkx�

. �14�

This expression shows that the simple cascade effectively
acts as a low-pass filter for information, meaning that it can-
not reliably respond to signals that vary �much� faster than a
characteristic cut-off frequency �c

2=�v��v+kx�. We note that
the gain-to-noise ratio is independent of �x, since both the
gain and the noise have the same functional dependence on
�x. This is a general feature of the biochemical networks we
will study: degradation of the output species occurs indepen-
dently of the upstream components, and therefore provides
no additional information about the input �16�.

B. Autoregulation

In this section we consider direct feedback of a compo-
nent onto its own production, as indicated in Figs. 4�a� and
5�a�. Autoregulation is one of the most common forms of
regulation in signaling networks. It is well known that nega-
tive autoregulation speeds up the response time of compo-
nents, which can also change the response time of the com-
plete signaling cascade �32�. Positive autoregulation slows
down the response time and can lead to bistability �32,33�.

Autoregulation alters only the diagonal entries of the
Jacobian matrix �Fig. 2�. This means that the characteristic
time scale for dissipation of small fluctuations—the response
time—changes, which is as expected. For the steady state of
the system to be stable we require that the diagonal of the
Jacobian has only negative terms. Thus autoregulation can-
not qualitatively change the form of the output power spec-
trum Pxx���. In fact, once linearized, the dynamics of a net-
work with autoregulation is equivalent to that of a simple

(a) (b)

dx

dt
= f (x) s − µxx + ηx, (20)

f (x) =
νβ

K + x

⎧⎪⎪⎨
⎪⎪⎩

β = K, negative regulation

β = x, positive regulation

Jxx = −µx + 〈s〉

[
∂f (x)

∂x

]
s.s.

(c)

g
2 =

J
2
xs

ω2 + J2
xx

(21a)

N =

〈
|ηx|

2
〉

ω2 + J2
xx

(21b)

g
2

N
=

J
2
xs〈

|ηx|
2
〉 (21c)

FIG. 4. �Color online� Auto-
regulation of the output compo-
nent. �a� Schematic representation
of the negative autoregulation mo-
tif, where s is the input signal and
x the output signal, which nega-
tively regulates its own produc-
tion. �b� The Langevin equations
of the network. �c� The character-
istic equations for the gain, noise
and gain-to-noise ratio �see also
section Autoregulation�.
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cascade with a different degradation rate. In terms of infor-
mation transmission, however, this is not always true, as we
shall see below.

1. Autoregulation at the response x does not affect information
transmission

We first consider autoregulation by the network output x
on its own production, as depicted in Fig. 4�a�. For
this motif the relaxation time of x is given by
�x=−Jxx

−1= ��x− 	 �
�x f�x�s
�−1, where f�x� describes the effect

of the feedback of x onto its own production �see Eq. 20 in
Fig. 4�b�� For negative regulation �Jxx���x, while for posi-
tive regulation �Jxx���x. Negative �positive� regulation
therefore reduces �increases� the response time of x to
changes in s, compared to the equivalent simple cascade net-
work for which f�x�=constant. In the output power spectrum
Pxx��� this change in time scale appears as a shift in the knee
frequency corresponding to �x

−1. A corresponding change can
also be seen in both the gain and noise �see Eq. 21 in Fig.
4�c��.

However, despite these changes in the response time, we
find that the gain-to-noise ratio for an autoregulatory net-
work �Eq. 21c in Fig. 4�c�� is identical to the gain-to-noise
ratio for a simple �two-component� cascade. The effect of

changing Jxx on the noise and gain is identical �Eqs. 21a and
21b in Fig. 4�b�� and therefore cancels in the gain-to-noise
ratio �as we also saw previously for the effect of �x in the
simple cascade, Eq. �14��. The autoregulation by x of its own
production alters the timing of production events. However,
our constraint of equal average production means that the
mean rate of this process in the two cascades is the same.
Moreover, in the linearized regime the production of x is an
identical Poissonian process in both simple and autoregu-
lated cascades. Hence, to the extent that the system can be
linearized, autoregulation at the output of a network does not
affect information transmission. It is conceivable that nonlin-
ear effects cause autoregulation of the output component to
affect information transmission, but a comparison of our ana-
lytical results discussed here with results of Gillespie simu-
lations of the full system, suggest that the linearization ap-
proximation is surprisingly accurate �see also Appendix�.

2. Positive autoregulation within the cascade increases the
gain-to-noise ratio

In a cascade with autoregulation by an intermediate com-
ponent the story is different �Fig. 5�a� and Eq. 22 in Fig.
5�b��. First, we reiterate that since we compare the simple
cascade and the cascade with autoregulation on the basis of

(a) (b)
dv

dt
= f(v)s − µvv + ηv (22a)

dx

dt
= βv − µxx + ηx. (22b)

f (v) =
νβ

K + v

⎧⎪⎪⎨
⎪⎪⎩

β = K, negative regulation

β = v, positive regulation

and

Jvv = −µv + 〈s〉

[
∂f (v)

∂v

]
s.s.

(23)

(c)

g
2 =

(JxvJvs)
2

(ω2 + µ2
x) (ω2 + J2

vv)
(24a)

N =
J

2
xv

〈
|ηv|

2
〉

+
(
ω

2 + J
2
vv

) 〈
|ηx|

2
〉

(ω2 + µ2
x) (ω2 + J2

vv)

(24b)

g
2

N
=

JxvJvsµv

2 〈s〉
[
ω

2 + J
2
vv + Jxvµv

] (24c)

(d)
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FIG. 5. �Color online� A two-step cascade with autoregulation of the intermediate component. �a� Cartoon of the negative autoregulation
motif, where the intermediate component v negatively regulates its own production. �b� The Langevin equations describing the network. �c�
The characteristic equations for the gain g2���, noise N��� and gain-to-noise ratio. �d� The gain, noise, gain-to-noise ratio �g2 /N� and output
power spectrum Pxx��� plotted as a function of frequency for three different cascades: simple �thin black solid�, positive autoregulation �red
thin dashed� and negative autoregulation �green thick solid�. Negative autoregulation reduces the gain, noise and gain-to-noise ratio. For
positive autoregulation the opposite holds. Positive autoregulation has a smaller knee frequency in the gain-to-noise ratio than negative
autoregulation �see also section Autoregulation�. Parameters: ks=10, kv=100, kx=10, �v=5, �x=0.5, K= 	v
 and �a=200, �r=200. �ar is
autoregulation.�
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equal average production and degradation rates, the noise
strengths 	�x

2
 and 	�v
2
 are the same for both cascades. How-

ever, as noted above the effective relaxation time scale of
component v, �v=−Jvv

−1 �Eq. �3��, decreases with negative au-
toregulation and increases with positive autoregulation. This
again leads to a reduction �increase� in both the gain �Fig.
5�d�, top left� and the noise �Fig. 5�d�, top right� of the net-
work for negative �positive� autoregulation, as has been re-
ported previously �20,34�. However, unlike the case of auto-
regulation of the output x, the gain-to-noise ratio �Fig. 5�d�,
bottom left� can change as a result.

Negative autoregulation �Fig. 5�d�, green thick solid�
leads to a decrease in the response time compared to a simple
cascade �black solid thin�, corresponding to an increase in
�Jvv�. This leads to a decrease in the gain of the autoregulated
component gs→v

2 ���=Jvs
2 / ��2+Jvv

2 � at frequencies �� �Jvv�.
Negative autoregulation therefore tends to suppress slowly
varying signals relative to the simple cascade. Noise which is
introduced upstream of or at the autoregulated component is
filtered by the feedback-modified gain in exactly the same
way as the signal, whereas noise introduced downstream of v
is unaffected. Hence negative autoregulation reduces both
the total gain of the network, which is the product of the
individual reaction gains g2���=gs→v

2 ���gv→x
2 ���, and the

noise transmitted from v to x, Nv→x���=gv→x
2 Nv���, relative

to the simple cascade. However, noise in the production and
degradation of x is unchanged relative to the simple cascade.
Since the total noise �Eq. 24b in Fig. 5�c�� is the sum of
independent noise contributions, N���=Nx���+Nv→x���, the
total noise decreases by a smaller factor than the gain, and
the gain-to-noise ratio decreases compared with the simple
cascade.

Conversely, positive autoregulation �Fig. 5�d�, red thin
dashed� increases the relaxation time of v, which increases
gs→v

2 ��� at frequencies �� �Jvv�. We can therefore see that
positive autoregulation amplifies slowly varying signals.
This leads to an increase in the network gain and the noise
that is propagated from v to x. However, since the noise that
is introduced at x is unchanged, positive autoregulation at v
increases the gain-to-noise ratio compared to the simple cas-
cade. Figure 5�d� shows the comparison between a simple
cascade and cascades with positive and negative autoregula-
tion. Hornung and Barkai previously studied transmission of
a constant signal with additive noise through a deterministic
�noiseless� network �35�, and found that positive autoregula-
tion can increase the signal-to-noise ratio. Our results for
time-varying signals with intrinsic network noise parallel
their results.

Given a network with autoregulation, our constraint of
equal production of each network component does not define
a unique “equivalent” simple cascade. That is, different pa-
rameter combinations can be chosen for a simple cascade
which satisfy the production constraint. The results in the
preceding discussion correspond to one such parameter
choice. Specifically, we choose the production rate of v in
the simple cascade �Eq. �11�� to be kv= 	f�v�
, while taking
the same value for �v in both networks. A consequence of
this choice is that the relaxation time �v changes between the
two cascades, as discussed above. One can equally well con-
struct a simple cascade for which the diagonal entries of the

Jacobian, J, are equal to those of the autoregulated cas-
cade, so as to hold constant the relaxation time of each com-
ponent between the two cascades. This is achieved by setting
the spontaneous degradation rate for v in Eq. �11� to be
�v

new=�v− 	 �
�v f�v�s
. By choosing this new rate, the average

protein number 	v
 changes in the simple cascade, and as a
result also the average production of x. To restore equal pro-
duction of x we thus also require a rescaling of the kinetic
production rate kx

new=kx�v
new /�v in the simple cascade �Eq.

�11��. Thus, in this comparison, the diagonal entries of the
Jacobian matrices of the autoregulated and simple cascade
are the same, while the off-diagonal entry Jxv=kx differs be-
tween the two.

Compared to a cascade with positive autoregulation, this
new kinetic production rate in the simple cascade is smaller
�kx

new�kx�. The reduction in Jxv leads to a uniform decrease
in gv→x

2 ��� at all frequencies. As described above, this affects
the signal and also the propagated noise Nv→x��� equally, but
not the intrinsic noise at x, Nx���. Thus, compared to a cas-
cade with positive autoregulation, the gain-to-noise ratio is
reduced at all frequencies in the simple cascade, as can be
seen in Fig. 6 �black thin dashed�. Interestingly, the decrease
in the gain-to-noise ratio is most pronounced at high frequen-
cies. This is because the propagated noise Nv→x��� only has
a significant contribution at frequencies ���v

new; at higher
frequencies the total noise is dominated by Nx���, as dis-
cussed in section: Simple cascade. Thus at these higher fre-
quencies, the gain is reduced relative to the positively auto-
regulated cascade, but the noise is not, and so the change in
the gain-to-noise is largest. For networks with negative au-
toregulation, the converse applies: the gain-to-noise ratio is
higher in the simple cascade at all frequencies, but by a
larger factor for ���v

new. Hence, the effect of positive or
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FIG. 6. �Color online� The gain-to-noise ratio for a cascade with
positive autoregulation �red thick solid� and two simple cascades
�black thin solid, dashed�. Solid: as in 5d, the degradation rate of
the simple cascade equals that of the cascade with positive auto-
regulation, �v=�v

ar. Hence �Jvv� is smaller in the cascade with au-
toactivation, and the gain-to-noise ratio is larger at low frequencies.
Dashed: In the simple cascade we take �v=Jvv

ar , and instead increase
the production rate Jxv. This decreases the gain-to-noise ratio of the
simple cascade with respect to the autoregulated cascade over the
full frequency spectrum. Inset: the ratio of the gain-to-noise ratio of
the cascade with positive autoregulation to that of the simple cas-
cade; solid: �v=�v

ar, dashed �v=Jvv
ar . The dotted red vertical line

indicates Jvv
ar , the vertical solid red line �v

ar, which shows the shift in
frequency dependence. Parameters: ks=10, kv=100, kx=10, �v=5,
�x=0.5, K= 	v
, and �=200. �ar is autoregulation.�
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negative autoregulation is qualitatively the same in both pa-
rameterizations.

More generally, even if we relax the production constraint
on each component, and instead require only the total pro-
duction in the two cascades to be the same �i.e., 	fv

+
+ 	fx
+


=constant�, we see the similar qualitative behavior for the
gain-to-noise ratio �see Eqs. �D18� and �D16��. Positively
autoregulated cascades have a larger gain-to-noise ratio than
a simple cascade of the same length, while for a cascade with
negative autoregulation the gain-to-noise ratio is smaller. For
longer cascades drawing such general conclusions is more
difficult. However, if the majority of parameters are kept the
same between the simple and autoregulated cascades, as in
the cases discussed in detail above, then we again find that
positive autoregulation increases and negative autoregulation
decreases the gain-to-noise ratio. Furthermore, given a spe-
cific simple cascade one can always add positive autoregula-
tion to the network in such a way as to achieve a larger
gain-to-noise ratio while maintaining the same total produc-
tion cost.

We have here considered only autoregulation via the pro-
duction of the intermediate v. However, for autoregulation
via the degradation of v we observe similar results for the
gain-to-noise ratio: if v suppresses its own degradation, the
decrease in the effective turn-over rate leads to a reduction of
the noise strength Nv→x���, increasing the gain-to-noise ra-
tio; when v enhances its own degradation rate the transmitted
noise is increased, reducing signaling fidelity.

C. Feedback

Feedback, both positive and negative, corresponds to the
upper-triangular part in the Jacobian of the linearized system
�see Fig. 2�. It is known that negative feedback allows for
adaptation as, for example, in the E. coli chemotaxis path-
way �3,13,36�. Feedback can also shift noise to higher fre-
quencies �20�. We will again consider separately the two
cases of feedback by the output x onto an upstream compo-
nent and feedback by an intermediate component onto a
component higher up the cascade.

1. Feedback from x does not affect information transmission

For negative feedback from x to v �Fig. 7�a� and Eq. 25 in
Fig. 7�b��, the power spectrum of the response Pxx��� �Fig.
7�d�, red thin solid� can have a resonance peak while none is
present in the input signal �black thick dashed�. Surprisingly,
this peak does not correspond to an increase in information
transmission capabilities at the peak frequency ��peak�, since
no peak is present in the gain-to-noise ratio �Fig. 7�d�, red
thin dashed�. For positive feedback, no peak is present in
either Pxx��� or the gain-to-noise ratio.

For a system with negative feedback from x to v the gain
and noise both show a peak, but these can occur at different
frequencies. We consider first the frequency dependence of
the gain. At low frequencies the negative feedback leads to

destructive interference at v between the input signal S̃���
and the signal that is fed back, X̃���. On the other hand, at
high frequencies these two signals are exactly out of phase,

(a) (b)

dv

dt
= f (x) s − µvv + ηv (25a)

dx

dt
= βv − µxx + ηx, (25b)

where

f (x) =
νC

n

Kn + xn

⎧⎪⎪⎨
⎪⎪⎩

C = x, positive feedback

C = K, negative feedback

(c)

g
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2
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v) (ω2 + µ2

x) + F (ω)

(26a)
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〉
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2
〉

(ω2 + µ2
v) (ω2 + µ2

x) + F (ω)
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=
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FIG. 7. �Color online� Feed-
back from the output signal x to
an upstream component, discussed
in section Feedback. �a� Cartoon
of the negative feedback motif,
where the output signal x nega-
tively regulates v. �b� The Lange-
vin equations describing the net-
work. �c� The characteristic
equations: gain g2���, noise N���
and gain-to-noise ratio
g2��� /N���. �d� Power spectra of
the output, Pxx���, input, Pss���,
gain g2��� and noise N���.
Pxx���, g2���, and N��� all ex-
hibit a peak due to the negative
feedback, while the gain-to-noise
ratio is monotonically decreasing.
The red dots indicate the peaks of
the gain and noise, which occur at
different frequencies �see section
Feedback�. Parameters: ks=10, K
=0.2	x
, �=1260, kx=5, �v=5,
�x=5, and n=3.
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and hence the interference becomes constructive �since the
feedback combines the two signals negatively�. However, at
frequencies ���v ,�x the amplitude of the fed-back signal
decreases, due to averaging over the lifetimes of v and x;
hence, even though the two signals interfere constructively,
the significance of this interference decreases. Together,
these three effects lead to a maximum in the gain. This maxi-
mum occurs at

�res
2 = −

1

2
��x

2 + �v
2 + 2JvxJxv� , �15�

which depends on the relaxation rates �x, �v and the cou-
pling �feedback� loop between v and x, JvxJxv. This time
scale corresponds to the imaginary part of the eigenvalues of
the Jacobian �see Eq. �E11��.

The frequency of the peak in the noise depends on the
relative strengths of the two noise sources, �v and �x. The
two noise terms are propagated differently through the net-
work, because �x originates at the regulator of the feedback
loop, while �v originates at the regulated component. We
consider two limiting cases. If the total noise N��� �Eq. 26b
in Fig. 7�c�� is dominated by the transmitted noise, Nv→x���,
both the signal ���� and the dominant source of noise origi-
nate upstream of the feedback loop. Effectively, therefore,
the feedback affects both the gain and noise of the network
similarly. As a result the peak frequencies of both the noise
and the gain are the same. On the other hand, when the total
noise is dominated by Nx���, which is located downstream
of the regulated component v, the feedback loop affects the
signal and noise differently. As a result, the noise that is fed
back has a different frequency profile than the signal, such
that the peaks in the gain and the noise occur at different
frequencies �Fig. 7�d�, red dots�.

One might therefore expect that when Nx����Nv→x��� a
peak in the gain-to-noise ratio is possible. However, an in-
spection of the expressions for the gain, Eq. 26a, and the
noise, Eq. 26b �both in Fig. 7�c��, shows that they have the
same denominator, such that the gain-to-noise ratio is a
monotonically decreasing function of frequency �Eq. 26c in
Fig. 7�c��. The effect of the negative feedback is cancelled.
Ultimately, this is due to the fact that the noise in the output
x goes back into the feedback loop, such that the peaks in the
gain and the noise cannot be controlled separately; in the
next section, we show how this can be done. Furthermore,
we note that the gain-to-noise ratio is again identical to a
simple three-component cascade, as we also saw in the case
of autoregulation of x. We conclude that feedback from x
onto the cascade also has no effect on information transmis-
sion through the network.

This network �Eq. 26 in Fig. 7�b�� also highlights the idea
that the power spectrum of the output Pxx��� may not be
indicative of the information that is transmitted at different
frequencies. We see in Fig. 7�d� that due to the negative
feedback Pxx��� can have a peak at nonzero frequencies,
even if none is present in the input signal. However, this
peak does not correspond to the frequency at which the sig-
nal is transmitted most reliably. Instead, we can see that the
peak is simply due to resonant amplification of both the sig-

nal and the noise at the characteristic frequency of the nega-
tive feedback loop.

It has been suggested �19� that a system where a negative
feedback loop acts on the response component can have a
large peak in the gain, such that signals on specific time
scales can be selected for. If we take in Fig. 7�a� not x but v
to be the output of the network, we obtain

g2���
N���

=
Jvs

2 ��2 + �x
2�

Jvx
2 	��x�2
 + ��2 + �x

2�	��v�2

. �16�

We observe that the gain-to-noise ratio is a monotonically
increasing function of frequency and does not show a peak at
any specific frequencies. Furthermore we note that as
�→� the gain-to-noise ratio becomes equal to the gain-to-
noise ratio for the one-step simple cascade �Jvs /2	s
�, since
for large � the noise from the downstream component is
averaged out. Thus this network motif has a higher gain-to-
noise at all frequencies than the cascade with x as the output.
However, the information transmitted at low frequencies is
less than if x were not present. Following the information
processing inequality, the amount of information about s
which is encoded in the dynamics of v is always larger than
the corresponding information in x. By feeding back x to v
we thus do not add more information to the signal, but es-
sentially add an extra source of noise to the pathway from s
to v. The strength of this noise is highest at frequencies
���x, and hence the effect of the feedback is to obscure the
signal at these frequencies. As a result this motif acts as a
high-pass filter for information.

2. Negative feedback within a cascade can lead to a peak in the
gain-to-noise ratio

In section Autoregulation we saw that the gain-to-noise
ratio is sensitive to the precise position of autoregulation in a
cascade. In this section we therefore study a cascade where
the feedback is not from x to v, but between two intermediate
components w and v �see Fig. 8�a� and Eq. 28 in Fig. 8�b��.
This also corresponds to taking the output of the previous
feedback cascade �Fig. 7�a�� as the input to another down-
stream process.

Expressions for the gain, noise and gain-to-noise ratio are
given in Fig. 8�c�. For positive feedback the gain, noise and
gain-to-noise ratio are once again monotonically decreasing
with increasing frequency. However, we find that for a net-
work with strong negative feedback �Hill coefficient n�1,
see Eq. �E26��, the gain-to-noise ratio can have a maximum
as a function of frequency at

�peak
2 = −

1

2
�Jxw

2 ���w�2�
���x�2�

noise

+ �v
2 + �w

2 + 2JvwJwv

resonance ��res
2 � �

= −
1

2
�Jxw

2 ���w�2�
���x�2�

+ �v
2 + �w

2 − 2
n�w�v�w�n

Kn + �w�n
� .

�17�
This peak frequency depends on the characteristic resonance
frequency of the feedback loop, �res, which is determined by
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the interactions between v and w: �v, �w, Jvw and Jwv. It is
additionally dependent on the relative strengths of the noise
introduced into the network at w and at x.

We can understand the appearance of this peak as follows.
For a network with negative feedback, g2��� �Fig. 8�d�, bot-
tom right� has a maximum as a function of frequency at �res,
the characteristic resonance frequency of the feedback loop.
Input signals at this frequency are amplified by the construc-
tive interference between the signal transmitted to v from s
and the signal which is fed back from w to v. We note that
the resonance frequency has the same form as Eq. �15�, and
depends only on the interactions between v and w. The be-
havior of the noise power spectrum �Fig. 8�d�, top right� is
more complex. We consider two limiting cases in which dif-
ferent noise terms dominate. When the total noise is domi-
nated by noise introduced at v or w, the noise is processed
through the feedback loop together with the signal. As dis-
cussed in the previous section, N��� therefore shows a peak
at a similar frequency to the gain �black thin solid�. These
two peaks cancel, and hence the gain-to-noise ratio �Fig.
8�d�, top left, black thin solid� is monotonically decreasing
with frequency. On the other hand, when the total noise is
dominated by Nx��� �top right, red thin dashed� the noise in
the network is not affected by the feedback loop. Hence no
peak is found in the noise power spectrum. In this limit, the

peak in the gain-to-noise ratio corresponds to the peak in the
gain at �res �top left, red thin dashed�.

From these arguments we see that the peak in the gain-to-
noise ratio becomes more pronounced as the relative contri-
bution of Nx��� to the total noise increases. Additionally,
increasing the strength of the negative feedback by reducing
K or increasing n leads to a more pronounced peak. How-
ever, this increase in the relative peak height comes at the
expense of a reduction in the value of the gain-to-noise ratio
at all frequencies.

How does the gain-to-noise ratio of the network with
feedback compare to the corresponding �four-component�
simple cascade? We examine the ratio of the gain-to-noise
for the network with feedback to the gain-to-noise of the
simple cascade,

Gfb��� = �g2���
N��� fb

��g2���
N��� simple

, �18�

and find that �Fig. 9 and 10�

Gpos��� � 1 if �2 � �v�w�1 −
n

2

Kn

Kn + 	w
n ,

�19a�

(a) (b) dv

dt
= f (w) s − µvv + ηv (28a)

dw

dt
= βv − µww + ηw (28b)

dx

dt
= γw − µxx + ηx, (28c)

f (w) =
νC

n

Kn + wn

⎧⎪⎪⎨
⎪⎪⎩

C = w, positive feedback

C = K, negative feedback

(c)
g
2 =

(JvsJwvJxw)2

HxF (ω)
(29a)

N =
(JxwJwv)

2
〈
|ηv|

2
〉

+ J
2
xwHv

〈
|ηw|

2
〉

+ F (ω)
〈
|ηx|

2
〉

HxF (ω)

(29b)

g
2

N
=

(JvsJwvJxw)2

(JxwJwv)
2
〈
|ηv|

2
〉

+ J2
xwHv

〈
|ηw|

2
〉

+ F (ω)
〈
|ηx|

2
〉 ,

(29c)

where

F (ω) = ω
4+

(
µ

2
v + µ

2
w + 2JvwJwv

)
ω

2+(JvwJwv − µwµv)
2

(30a)

Hi = ω
2 + µ

2
i (30b)
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FIG. 8. �Color online� A three-step cascade with feedback from an intermediate component, discussed in section Feedback. �a� Cartoon
of a negative feedback motif, where s is the signal and x the response, and w negatively regulates v. �b� The Langevin equations of this motif.
�c� The characteristic equations: gain g2���, noise N��� and gain-to-noise ratio g2��� /N���. �d� The effect of changing the strength of the
intrinsic noise in x, Nx���, on the spectra of the gain, noise, and gain-to-noise ratio of a cascade with negative feedback. Nx��� is varied by
changing ��=Jxw� and �x, in such a way that 	x
 remains constant. Lines show: black thin solid, �=50; green thick solid, �=10; red thin
dashed, �=0.01. Decreasing � and �x in this way increases the relative contribution of Nx��� to the total noise. We see that as � is reduced
the gain and noise decrease at frequencies ���x, but the noise increases at lower frequencies. The gain-to-noise ratio decreases at all
frequencies. However, the peak in the gain-to-noise ratio becomes more pronounced. Parameters: ks=10, �=10, �=330, K=0.5	w
, n=5,
�v=10, �w=10.
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Gneg��� � 1 if �2 � �v�w�1 +
n

2

	w
n

Kn + 	w
n .

�19b�

Interestingly, for both types of feedback there is a range of
frequencies over which the gain-to-noise ratio increases rela-
tive to the simple cascade. This contrasts to the results of
section Autoregulation, where we found that autoregulation
affected the gain-to-noise ratio in the same way at all fre-
quencies.

This difference can again be understood in terms of the
interference of the two signals arriving at v. As described
above �and in Eqs. �E15� and �E16��, at low frequencies the
signal propagated from s to v and the feedback signal from w
to v are in phase, while at high frequencies the two signals
are exactly out of phase. Hence for a positive feedback loop
�Figs. 9 and 10; red thin dashed� the signals combine con-
structively at low frequencies, increasing the gain, but de-
structively at high frequencies, decreasing the gain. Recall
that, since we are comparing networks with equal produc-
tion, the noise strengths 	��v�2
, 	��w�2
, and 	��x�2
 are equal
in the regulated and simple cascades. In an analogous way to
the autoregulation discussed in section Autoregulation, the
presence of feedback between w and v affects both the signal
and noise introduced upstream of x, but not noise introduced
at x. Hence, at low frequencies positive feedback amplifies
the signal and the noise introduced at the levels of v and w,
but not noise introduced at x. Hence at low frequencies the
gain-to-noise ratio increases relative to the simple cascade.
At high frequencies, however, positive feedback reduces the
gain and the noise upstream of x, but not the intrinsic noise
Nx���; consequently, the gain-to-noise ratio is reduced com-
pared to the simple cascade. Conversely, a network with
negative feedback �Figs. 9 and 10; green thick solid� reduces
the gain at low frequencies, reducing the gain-to-noise ratio.
However, at high frequencies, the feedback amplifies the sig-
nal but not Nx���, leading to an increase in the gain-to-noise
ratio.

From these results we conclude that if a cell is only con-
cerned with low frequency input signals, it is beneficial in
terms of information transmission to add positive feedback
within the signaling cascade. If the system wishes to respond
specifically to high-frequency signals, negative feedback can
be used to increase the fidelity of transmission for these sig-
nals. Additionally for a strong negative feedback �n�1 or
K� 	w
, see Eq. �E33�� the gain-to-noise can have a peak in
the regime where signaling is more reliable than for a simple
cascade, allowing the cell to focus on signals in a particular
frequency band. We note that the negative feedback motifs
considered here do not lead to perfect adaptation to constant
input signals, which is characterized by g2��=0�=0 and is
necessary for true bandpass behavior. Perfect adaptation re-
quires that the feedback to be implemented via a buffer node
or side branch �37�. An example of this network architecture
is the E. coli chemotaxis pathway �15�, for which the gain-
to-noise ratio does indeed indicate a bandpass for informa-
tion �16�.

IV. DISCUSSION

In this paper we have analyzed information transmission
through a number of network motifs, namely cascades, auto-
regulation and feedback. One of the most important conclu-
sions of our analysis is that to understand how reliably bio-
chemical networks can transmit time-varying signals, we
have to study the frequency-dependent gain-to-noise ratio
�16�. In particular, the power spectrum of the output signal
may not be a good measure for how biochemical networks
transduce time-varying input signals. The power spectrum of
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FIG. 9. �Color online� The spectra of the gain, noise, gain-to-
noise ratio, and the output power, Pxx���, for a three-step cascade
with negative �Fig. 8�a�� and positive feedback �Fig. 8�a� with nega-
tive feedback replaced by positive feedback�. For small �, positive
feedback �red thin dashed� enhances the gain, noise, and gain-to-
noise ratio, while negative feedback �green thick solid� decreases
these. For higher frequencies, negative feedback increases the gain,
enhancing the gain-to-noise ratio. With negative feedback a peak in
the gain-to-noise ratio is present �denoted by the green dot�, while
none is present in the output power spectrum Pxx���. Parameters:
ks=10, �w=10, �v=10, �x=0.5, �=10, �=10. For positive feed-
back: K=0.5	w
, n=1 and �=150. For negative feedback:
K=0.5	w
, n=4 and �=1700.
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FIG. 10. �Color online� Solid lines show Gfb��� �left axis�, the
gain-to-noise ratio for networks with positive �red, thin� or negative
�green, thick� feedback divided by that of the corresponding simple
cascade. Dashed lines show the gain-to-noise ratios for the positive
�red, thin� and negative �green, thick� feedback motifs �right axis�.
Relative to the simple cascade, positive feedback increases the gain-
to-noise ratio at low frequencies, while negative feedback increases
the gain-to-noise ratio at high frequencies. Vertical lines indicate the
frequencies at which Gfb���=1 �Eq. �19��. Parameters: ks=10, �w

=10, �v=10, �x=1, �=10, �=1, and K=0.5	w
. For positive feed-
back: n=1 and �=150. For negative feedback n=5 and �=3300.
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the output signal depends on the power spectrum of the input
signal, the frequency-dependent gain, and the frequency-
dependent noise. Only the latter two quantities are intrinsic
properties of the network, provided that the network detects
the input via biochemical reactions that do not affect the
statistics of the input signal �22�. Moreover, we have seen
that the power spectrum of the output signal may differ
qualitatively from that of the frequency-dependent gain-to-
noise ratio. A striking example is provided by the network
with negative feedback from the output component, which
shows a peak in the output signal �see Fig. 7�d��: while one
might be tempted to conclude that input signals at this fre-
quency are transduced most reliably, our analysis shows that
this peak in the output spectrum is simply the result of reso-
nant amplification of both the input signal and the noise in
the network.

Our analysis leads us to draw the following conclusions
on the effect of autoregulation and feedback on the transmis-
sion of time-varying signals: �1� autoregulation of the output
component does not affect the gain-to-noise ratio, and hence
does not affect information transmission �Fig. 4�c��; �2� posi-
tive autoregulation of an intermediate component increases
the gain-to-noise ratio over all frequencies, while negative
autoregulation tends to decrease it over all frequencies �Fig.
5�d��; �3� negative feedback from the output component onto
an upstream component may lead to a peak in the power
spectrum of the output, and those of the gain and the noise;
yet, even though the peaks of gain and the noise can be at
different frequencies, negative feedback from the output
component onto an upstream component can not lead to a
peak in the spectrum of the gain-to-noise ratio �Fig. 7�d��; �4�
positive feedback between upstream components enhances
the gain-to-noise ratio at low frequencies, while negative
feedback increases the gain-to-noise ratio at high frequencies
�Fig. 10�. Further, we note that it is possible to achieve a
peak in the gain-to-noise ratio via negative feedback between
components that are upstream of the output component �Fig.
8�d��; however, this comes at the expense of a reduction in
the gain-to-noise ratio for all frequencies. We also note here
that stronger bandpass filtering of information can be ob-
tained with networks employing integral feedback in a side
branch �16�, as found in the networks of osmo adaptation �2�
or bacterial chemotaxis �15�. Alternatively, bandpass filters
for information transmission can be obtained via feedforward
loops, which we will discuss in a forthcoming publication.

Taken together these results reveal the following design
principles for the use of feedback and autoregulation in sig-
nal transduction cascades �see the schematic drawing Fig. 1�.
First, feedback and autoregulation can improve information
transmission, but only if they occur upstream of the domi-
nant source of noise in the cascade. Feedback or autoregula-
tion downstream of the dominant noise source affects the
gain and the noise similarly. Second, if signals over the full
frequency range have to be transmitted reliably, positive au-
toregulation is advantageous, while if the cell is concerned
only with low- or high-frequency signals, then positive or
negative feedback can be employed.

The approach employed here has a number of limitations.
First, we have used the linear-noise approximation, and the
power spectra calculated using this approximation may devi-

ate from those of the full nonlinear system. We argue that
this effect does not significantly affect our results, since we
find excellent agreement between the power spectra calcu-
lated analytically using the linear-noise approximation and
those obtained from stochastic simulations of the full system
�see figures in Appendix: Figs. 11–15�. Second, we stress
that the expressions for the information transmission rate,
Eqs. �5� and �10�, are exact only for linear Gaussian systems;
yet, the information rate calculated in this approximation
provides a lower bound on the information transmission rate
of the full system �38�. In �16�, we showed how the informa-
tion transmission rate R can depend on the variance of the
input signal. Here, we do not provide such an analysis, be-
cause R indeed depends on the statistics of the input signal,
while we focus here on the processing network, which is
characterized by the gain-to-noise ratio.

Another limitation of our analysis is that to reduce the
complexity of the problem, we have assumed that the net-
works obey the spectral-addition rule �22�, meaning that re-
actants are not consumed during reaction events. However,
irreversible modifications of a substrate molecule are com-
mon in biochemical networks, and reactions of this type can
significantly change the correlations between different net-
work components. For instance, in a cascade of the type
X0→X1→ . . .Xn−1→Xn, where in each reaction step
the reactant is consumed, correlations of the form 	�i�i+1

=−k	Xi
 appear between different noise terms. As a result,
for this cascade the covariance between different compo-
nents 	xixj�i
=0 �22,39�, and hence the mutual information
between instantaneous levels of components Xi and Xj�i is
zero �16�. This may suggest that these cascades cannot effec-
tively transmit information. Yet, the analysis of �16� indicates
that this motif can, in fact, reliably transmit time-varying
signals. It would therefore be of interest to study the effect of
cross-correlations in the noise on the information transmis-
sion in the motifs studied here. We leave this for future work.

Lastly, how could our predictions be tested experimen-
tally? It is increasingly being recognized that stimulating
biochemical networks with time-varying signals provides a
wealth of information on the dynamics of these networks
�2,3,40–43�. These experiments can also be used to study the
reliability by which biochemical networks can transmit time-
varying signals. By measuring not only the power spectra of
the in- and output signals, Pss��� and Pxx���, but also their
cross-power spectrum Psx���, one can obtain the frequency-
dependent gain g2�����Psx����2 / Pss���2 and the frequency-
dependent noise N��� �see Eq. �8��, and hence the gain-to-
noise ratio. Stimulating synthetic gene circuits or existing
signal transduction pathways and gene regulation networks
of known architecture with time-varying signals, for example
using microfluidic devices, would make it possible to test our
predictions on the effect of feedback and autoregulation on
information transmission.
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APPENDIX A

All cascades have the following simple �linear� birth-
death process for the signal

ds

dt
= ks − �ss + ��t� �A1�

APPENDIX B: GILLESPIE SIMULATIONS

The linearization used in the derivation can change the
characteristics of the frequency response. A linearized system
does not change the frequency of the transmitted signal.
However, this may not be the case for a nonlinear system. To
study this, we performed Gillespie simulations of the full
system. The positive and negative regulation in our networks
arises from Hill-like interactions between components. In the
Gillespie simulation we calculated the propensities for every
reaction with identical expressions. For example, in the net-
work with negative feedback from w to v, we model reac-
tions like Eq. �28� in Fig. 8�b� as

S→
r

S + V �B1�

where r is

r =
�Kns

Kn + wn . �B2�

In these equations the actual copy number w is used, and not
	w
, as in the linearized expressions �Eqs. �29a� and �29b� in
Fig. 8�c��.

The power spectra are calculated using 211 �2048� expo-
nentially distributed frequencies from �=10−3 to �=103 and
averaged over 24 neighboring frequencies to obtain a single
data point. In total we have 27 datapoints. The length of the
simulation is 106 seconds, or a maximum of 109 events. For
every run 50 blocks are averaged.

The positive feedback loops considered here display bi-
stability. For the positive feedback loops a constant low level
production is added to drive the system to the stable state
with high copy numbers, instead of the stable state where the
copy number equals zero. For the positively autoregulated
component this is described by that

dv
dt

= − �vv + �v + �
�vs

K + v
if v � 0

1

1000
if v = 0� �B3�

Linearizing this we find that the fluctuations follow

dṽ
dt

= − �vṽ + �v −
�K	s


K + 	v

ṽ +

�K

K + 	v

s̃ �B4�

which is equivalent to the linearization of Eq. �22� in Fig.
5�a�. The addition of the basal expression therefore drives the

system to a specific steady state, but does not change the
dynamic behavior around this steady state �Figs. 12�a��.

For positive feedback within the cascade, the motif is de-
scribed by

dw

dt
= a + kwv − �ww + �w. �B5�

Taking different values for a=0.1,1 ,10 does not lead to
qualitatively different answers �see Fig. 14�. Again, the basal
production changes the steady state, but not the dynamical
behavior around the steady state. All results are shown in
Figs. 11–15.

APPENDIX C: SIMPLE CASCADE

The one step simple cascade is described by

dx

dt
= kxs − mxx + �x�t� �C1�

with the following characteristic equations:

g2��� =
kx

2

�2 + mx
2 �C2a�

N��� =
	��x�2


�2 + mx
2 �C2b�

g2

N
=

kx
2

	��x�2

�C2c�

Here, 	��x�2
=kx	s
+mx	x
=2kx	s
. The three-component
simple cascade is described by �compare Eq. �11��

dv
dt

= kvs − mvv + �v�t� , �C3a�

dx

dt
= kxv − mxx + �x�t� , �C3b�

with the following characteristic equations

g2��� =
kv

2kx
2

��2 + mx
2���2 + mv

2�
�C4a�
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FIG. 11. �Color online� The results �symbols� of the Gillespie
simulations for the linear cascade �Eq. �11��, together with the re-
sults of the linear-noise approximation �lines� as employed in the
main text. Kinetic rates as in Fig. 3.
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N��� =
kx

2	��v�2
 + ��2 + mv
2�	��x�2


��2 + mx
2���2 + mv

2�
�C4b�

g2

N
=

kv
2kx

2

kx
2	��v�2
 + ��2 + mv

2�	��x�2

�C4c�

The simple cascade is used as a reference. For the kinetic
rates of the simple cascade we use roman symbol �k and m�.
For the kinetic rates of the cascades with feedback regulation
we use greek symbols.

APPENDIX D: AUTOREGULATION

1. Autoregulation by x

An elementary network for autoregulation by x onto itself
is

dx

dt
= f�x�s − �xx + �x�t�, where �D1a�

f�x�s =
��

K + x
s�� = K , negative regulation

� = x , positive regulation
� . �D1b�

The gain, noise and gain-to-noise for this network are

g2��� =
Jxs

2

�2 + Jxx
2 =

1

�2 + ��x −
� f�	x
�

�	x

	s
�2 f�	x
�2,

�D2a�

N��� =
	��x�2


�2 + Jxx
2 , �D2b�

g2

N
=

Jxs
2

	��x�2

=
� � f�	s
,	x
�

�	s
 �2

	��x�2

. �D2c�

For equal average production, as the simple three-component
cascade, �production rate kx�, we chose

	f�x�s
 � f�	x
�	s
 = kx	s
 , �D3�

where the first equation expresses the fact that we assume
that the average rates can be expressed by the rates at the
deterministic steady state, thus ignoring fluctuations. Thus

kx = Jxs =
� f�	s
,	x
�

�	s

=

��

�K + 	x
�
�D4�

and 	��x�2
=2kx	s
. Expressed in terms of the kinetic rates of
the simple cascade, the autoregulated cascade has the follow-
ing form:

g2

N
=

kx
2

2kx	s

=

kx

2	s

, �D5�

which is identical to Eq. �C2c�. The power spectrum of x for
the autoregulated cascade is
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FIG. 12. �Color online� �a�� The results �symbols� of the Gillespie simulations for the network with positive autoregulation of v �Eq. 22
in Fig. 5�b�� �kinetic rates as in Fig. 5�c� with positive autoregulation�, together with the results of the linear-noise approximation �lines� as
employed in the main text. To drive the system to the nonzero steady state, basal production of v is present �Eq. �B3��. The steady state of
the full nonlinear Gillespie simulation is slightly different from the steady state derived from the mathematical expressions for s, v, and x.
This causes the slight difference between the results of the linearization and the simulations. �b� The results �symbols� of the Gillespie
simulations for a network with negative autoregulation on v �Eq. 22 in Fig. 5�b��. Together with the results of the linear-noise approximation
�lines� as employed in the main text. Kinetic rates as in Fig. 5�d� with negative autoregulation.
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FIG. 13. �Color online� The results �symbols� of the Gillespie
simulations for a network with negative feedback from x to v �Eq.
25 in Fig. 7�b��, together with the results of the linear-noise ap-
proximation �lines� as employed in the main text. Kinetic rates as in
Fig. 7�d�.
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PXX��� =
Jxs

2 	���2
 + ��2 + �s
2�	��x�2


��2 + �s
2���2 + ��x −

� f�	s
,	x
�
�	x
 �2� �D6�

Following a rescaling of the kinetic degradation rate �x, such
that �x

new=�x−Jxx, we observe that the power spectrum of
the simple cascade and the autoregulated cascade agree. This
is because the noise term �x depends on the mean rate of the
production and degradation events. In steady state the aver-
age number of production events equals the average number
of degradation events. Since by the rescaling the production
is not changed, the noise �x is constant. The change in
�x→�x

new will lead to a new steady state value 	x
, but not to
a different number of degradation events.

2. Autoregulation by v

For autoregulation of one of the intermediate components
the network is

dv
dt

= f�v�s − �vv + �v�t� �D7a�

dx

dt
= �v − �xx + �x�t�, where �D7b�

f�v�s =
��

K + v
s�� = K , negative regulation

� = v , positive regulation
� . �D7c�

The gain and noise for this network are

g2��� =
�JxvJvs�2

��2 + �x
2���2 + Jvv

2 �
, �D8a�

N��� =
�2	��v�2
 + ��2 + Jvv

2 �	��x�2

��2 + �x

2���2 + Jvv
2 �

, �D8b�

where Jvs= f�	v
�. We equalize the production for v between
the autoregulated cascade and the three-component simple
cascade �with rates kv and kx� to obtain

kv = Jvs =
��

�K + 	v
�
�D9�

and the gain-to-noise ratio for the autoregulated cascade ex-
pressed in terms of the kinetic rates of the simple cascade
�thus using kv ,kx and mv ,mx where applicable� is
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FIG. 14. �Color online� The results �symbols� of the Gillespie simulations for a network with positive feedback from w to v �Eq. 28 in
Fig. 8�b��, together with the results of the linear-noise approximation �lines� as employed in the main text. Kinetic rates as in Fig. 8�d� with
positive feedback. To drive the system to the nonzero steady state, basal production of w is present �Eq. �B5��, �a�� with a=0.1, �b�� with
a=1, �c�� with a=10
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FIG. 15. �Color online� The results �symbols� of the Gillespie
simulations for a network with negative feedback from w to v �Eq.
28 in Fig. 8�b��, together with the results of the linear-noise ap-
proximation �lines� as employed in the main text. Kinetic rates as in
Fig. 8�d� with negative feedback.
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g2

N
=

�JvsJxv�2

�2	��v�2
 + ��2 + Jvv
2 �	��x�2


=
kv

2�2

�2	��v�2
 + ��2 + ��v −
� f�	s
,	v
�

�	v
 �2�	��x�2

.

�D10�

We keep all kinetic rates equal in the autoregulated and
simple cascade that do not influence the constraint condition
�Eq. �D9�� �thus �v=mv and �=kx�. We then obtain

g2

N
=

kv
2kx

2

kx
2	��v�2
 + ��2 + �mv −

� f�	s
,	v
�
�	v
 �2�	��x�2


.

�D11�

We note that for positive autoregulation �Jvv���v while for
negative autoregulation �Jvv���v. Thus the GNR is larger
for the positively autoregulated than the three-component
cascade, especially for ��Jvv. For the negatively autoregu-
lated cascade the opposite holds.

The constraint does not lead to a unique relation between
autoregulated and nonautoregulated cascade. An alternative
choice would be a simple three-component cascade for
which the degradation rate �v is equivalent to the “effective”
degradation rate in the autoregulated cascade. Thus mv=Jvv

ar .
The production of x is then

�
kv

�v

autoregulated

= kx
kv

mv

three component cascade

�D12�

Equalizing this leads to

�
kv

�v
= kx

kv

mv
�D13�

→kx = �
mv

�v
, �D14�

which leads to

g2

N
=

��
�v

casc

�v
kv�2

��
mv

�v
�2

	��v�2
 + ��2 + mv
2�	��x�2


=
��kv�2

�2	��v�2
 + ��v

mv
�2

��2 + mv
2�	��x�2


�D15�

for the GNR of the three-component simple cascade. Since
for positive feedback mv��v, the GNR of the positively
autoregulated cascade is larger than that of the simple cas-
cade, especially if ��mv or �2��2	��v�2
.

If we allow for even more differences between the kinetic
rates, but require equal production, we obtain the following
equations �we still assume the signal to be identical in both
cases�

�v = Cmv and � = Ckx, �D16�

where C is an arbitrary constant. We note that the mean level
of v differs between the autoregulated and the simple cas-
cade

	v
ar =
1

C
	v
simple �D17�

As a result we derive for the gain-to-noise ratio for the regu-
lated cascade �using Eqs. �D10�, �D16�, and �D17��

g2

N
=

�Ckxkv�2

�Ckx�2	��v�2
 + ��2 + �C�v −
� f�	s
,	v
�

�	v
 �2�	��x�2


=
�kxkv�2

kx
2	��v�2
 + ��2

C2 + ��v −
1

C

� f�	s
,	v
�
�	v
 �2�	��x�2


�D18�

For small � the conclusions on positive and negative feed-
back are still valid, but for �→� the ratio of the GNR for
positive feedback and a three-component cascade is a func-
tion of C. Similar arguments can be made about comparing
negative and positive feedback for �→�, where again the
ratio of the gain-to-noise ratio’s depends on C.

APPENDIX E: FEEDBACK

1. Feedback from x to v

An elementary system with feedback from x to v is

dv
dt

= f�x�s − �vv + �v�t� �E1a�

dx

dt
= �v − �xx + �x�t� , �E1b�

where

f�x�s =
��ns

Kn + xn�� = K , negative feedback

� = x , positive feedback
� . �E2�

For the gain, noise and PXX��� we obtain

g2��� =
�Jvs��2

��2 + �v
2���2 + �x

2� + Jvx��Jvx� + 2��2 − �x�v��
,

�E3a�

N��� =
�2	��v�2
 + ��2 + �v

2�	��x�2

��2 + �v

2���2 + �x
2� + Jvx��Jvx� + 2��2 − �v�x��

,

�E3b�
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PXX��� =
�Jvs��2PSS��� + �2	��v�2
 + ��2 + �v

2�	��x�2

��2 + �v

2���2 + �x
2� + Jvx��Jvx� + 2��2 − �v�x��

,

�E3c�

where

Jvx =
�	f�x�s


�	x

=

�
�	�
n	s

Kn + 	x
n

�	x

. �E4�

We note that the GNR is independent of Jvx. The peak in PXX
only exist if Jvx�0, since

PXX =
�Jvs��2PSS

��2 + �v
2���2 + �x

2� + Jvx��Jvx� + 2��2 − �v�x��

+
�2	��v�2


��2 + �v
2���2 + �x

2� + Jvx��Jvx� + 2��2 − �v�x��

+
�v

2	��x�2

��2 + �v

2���2 + �x
2� + Jvx��Jvx� + 2��2 − �v�x��

+
�2	��x�2


��2 + �v
2���2 + �x

2� + Jvx��Jvx� + 2��2 − �v�x��
,

�E5�

which are four monotonic decreasing functions of � for Jvx
�0. So only for negative feedback a peak can exist in the
power spectrum, gain and noise �since the same argument
applies to gain and noise�.

The frequency of the maximum of the gain can easily be
obtained, since it coincides with the minimum of the de-
nominator D

D = ��2 + �v
2���2 + �x

2� + Jvx��Jvx� + 2��2 − �x�v�� .

�E6�

This frequency, where the gain has a maximum, is

�res
2 = −

1

2
��v

2 + �x
2 + 2Jxv�� , �E7�

such that we require �v
2 +�x

2+2Jxv��0. As a check we note
that D�0 for �res so divergence is not possible. The maxi-
mum frequency for the noise is not the minimum of D, due
to the �-dependence in the numerator. If �2	��v�2
� 	��x�2
,
the �-dependence in the noise is less strong, and the fre-
quency of the peak of the noise shifts to the frequency of the
peak in the gain. Although a peak in PXX can be derived
analytically �

dPXX

d� is 4th order in �2�, it is not insightful. We
note that PXX is the sum of the noise �N� and the signal ���,
such that if one of these two dominates in PXX the peak is
likely to coalesce with the peak of the dominating term. We
also note that the signal � depends on �s, so the peak in PXX
is not likely to coincide exactly with the peak in the gain,
since the gain is independent of �s.

Compared with a three-component cascade �rates kv ,kx�,
requiring equal production, we note that

kv =
��n

Kn + 	x
n �E8�

and the three-component cascade has an identical GNR as
the cascade with regulation.

2. Linear stability analysis and control theory

We now shift gears and use some methods from linear
stability analysis to study the biochemical network from a
slightly different perspective. After linearizing, the solution
to the linear differential equations for the perturbations is
�ignoring the added noise�

dỹ�t�
dt

= Jỹ , �E9a�

ỹ�t� = eJtỹ�0� = Re�tLỹ�0� . �E9b�

Where J is the Jacobian, with eigenvalues �i and right eigen-
vectors ri. The exponential matrix �eJt� describes the time
dependency, and can decomposed in a matrix with diagonal
entries e�i, R with the right eigenvectors �as columns� and L
with the left eigenvectors �as rows�. Alternatively, we could
write down the solution in terms of the right eigenvectors

ỹ�t� = c1e�1tr1 + . . . + cne�ntrn �E10�

where c1 . . .cn are weighing coefficients which are obtained
by solving for the initial condition. In both expressions we
note that the exponential exponent involves �. If � is com-
plex, we can rewrite the exponent as

e�t = e�R�+iI��t = eR�t�cos�I�t� + i sin�I�t�� �E11�

and the fluctutations decay �if R��0� with characteristic
frequency I�. For stability we require that �v�x−JxvJvx�0.

Yet another different method is control theory, which we
can use to describe our system. In control theory we describe
a linear system using the convolution of a response function
with the input to determine the output. In the fourier space
this becomes multiplication, such that we have �again ignor-
ing noise�

V��� = H1���S��� + Xfb��� �E12a�

Xfb��� = G1���X��� �E12b�

X��� = H2���V��� �E12c�

so that the total response function between input and output
is

X��� =
H1���H2���

1 − H2���G1���
S��� �E13�

which is, if we take as transfer functions

H1��� =
Jvs

i� + �v
, H2��� =

Jxv

i� + �x
, G1��� =

�

i� + �v

�E14�

equal to g���.
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The phase of the gain, which identifies the phase shift
between s and x is

�� = arctan� − ���v + �x�
− �2 − Jxv� + �v�x

� �E15�

We can now define ��

�� = ��v�x − Jxv� �E16�

which defines the frequency for which the phase difference
between x and s shifts by a factor 	. Since x is also the
feedback signal, this is the phase difference between the sig-
nals in the feedback loop. For negative feedback ���0� ��
moves from 0 to 	 for � changing from 0 to �.

3. Feedback from w to v

For the regulated four-component cascade, the network is

dv
dt

=
��ns

Kn + wn − �vv + �v�t� �E17a�

dw

dt
= �v − �ww + �w�t� �E17b�

dx

dt
= �w − �xx + �x�t� , �E17c�

with � as before �e.g., Eq. �E2��. We linearize and obtain

Jvs =
��n

Kn + 	w
n �E18a�

Jvw =
� f�	w
�

�	w

	s
 = −

�n	w
nKn	s

	w
�Kn + 	w
n�2 , �E18b�

where the Eq. �E18b� is for negative feedback �for positive
feedback the sign would be positive�. The gain and noise are

g2��� =
Jvs

2 �2�2

��2 + �x
2�F���

, �E19a�

N��� =
�2�2	��v�2
 + �2��2 + �v

2�	��w�2
 + F���	��x�2

��2 + �x

2�F���
,

�E19b�

and

F��� = �4 + ��v
2 + �w

2 + 2Jvw���2 + �Jvw� − �w�v�2,

�E20�

where F��� is a function of the parameters in the feedback
loop only. The GNR is described by C /a���, i.e., a constant
divided by a function of �. For this to have an extremum, the
denominator should have an extremum. We differentiate and
obtain

�peak
2 = −

1

2
��2 	��w�2


	��x�2

+ �v

2 + �w
2 + 2Jvw�� . �E21�

Since this expression is negative, to have �2�0 we require
negative feedback. Explicitly writing JwvJvw, we have for the
requirement that a peak exists

2JwvJvw = 2
�n	w
nKn	s


	w
�Kn + 	w
n�2� � ��2 	��w�2

	��x�2


+ �v
2 + �w

2�
�E22�

	w
 =
�	v

�w

=
�

�v�w

�Kn	s

Kn + 	w
n �E23�

which gives n solutions for 	w
 �of which only one is real
and positive�. If we constrain the production rate of v and w

to be constant- and we assume 	v
=
kv	s

mv

—then we obtain

�Kn

Kn + 	w
n = kv

and the following expression for Eq. �E22�

	w
 =
�	v

�w

=
kv�	s

�w�v

. �E24�

we rewrite the coupling strength Jvw

Jvw
pos =

�n	w
n−1Kn	s

�Kn + 	w
n�2 =

n	s
kv

	w

Kn

Kn + 	w
n

=
n	s
kv

	w

��w�vK�n

��w�vK�n + �kvkw	s
�n , �E25a�

Jvw
neg = −

�n	w
n−1Kn	s

�Kn + 	w
n�2 = −

n	s
kv

	w

	w
n

Kn + 	w
n =

−
n	s
kv

	w

�kvkw	s
�n

��w�vK�n + �kvkw	s
�n . �E25b�

For K� 	w
 positive regulation is maximized and Jvw
pos is

maximal, while negative regulation is greatly suppressed and
�Jvw

neg� is minimal. The limit n→� is more complicated. If
K� 	w
, Jvw

neg→−�, while Jvw
pos→� for 	w
�K. In the oppo-

site scenario’s the limits tend to zero. This is only valid if
while changing n, 	w
 remains constant, which is true due
the constraint.

With Eqs. �E25� we can study �peak in more detail and we
obtain

2
�n	w
nKn	s


	w
�Kn + 	w
n�2� � ���w + �v
2 + �w

2 �

2kv�n	s

	w


	w
n

Kn + 	w
n � ���w + �v
2 + �w

2 �

2
	w
n

Kn + 	w
n�v�wn � ���w + �v
2 + �w

2 � �E26�
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which, interestingly, only has a solution for n�1. The power spectrum of x is

PXX��� =
Jvs

2 �2�2PSS + �2�2	��v�2
 + �2��2 + �v
2�	��w�2
 + F���	��x�2


��2 + �x
2�F���

, �E27�

which depends on �s through PSS and therefore will have a peak for a different � than the GNR.
The GNR for the simple four-component cascade is

g2���
N���

=
�kvkwkx�2

kx
2�kw

2 	��v�2
 + ��2 + mv
2�	��w�2
� + ��2 + mv

2���2 + mw
2 �	��x�2


=
�kvkwkx�2

D
, �E28�

where we chose � such that

kv =
��n

Kn + 	w
n �E29�

to obtain equal production. We then obtain for the ratio of the
GNR of the feedback cascade and a simple cascade

G =
�g2

N


fb

�g2

N


simple

=
D

D + Jvw��Jvw� + 2��2 − �v�w��	��x�2

.

�E30�

So that the feedback is larger if Jvw��Jvw�+2��2

−�v�w��	��x�2
�0.
The result of this inequality is

Gpos��� � 1 if �2 � �v�w�1 −
n

2

Kn

Kn + 	w
n� ,

�E31�

Gneg��� � 1 if �2 � �v�w�1 +
n

2

	w
n

Kn + 	w
n� .

�E32�

which are Eqs. �19� from the paper. The peak for the nega-
tive feedback occurs at �peak �Eq. �E21��. The negative feed-
back cascade is larger than the four-component simple cas-
cade if ���switch �Eqs. �19��. Thus if �peak��switch the
GNR for the negative feedback at the peak is larger than the
four-component cascade

�peak
2 � �v�w�1 +

n

2

�kv�	s
�n

��v�wK�n + �kv�	s
�n ,

��2 	��w�2

	��x�2


+ �v
2 + �w

2 + 2Jvw��
� − �v�w�2 + n

�kv�	s
�n

��v�wK�n + �kv�	s
�n ,

n�v�wM � ��v + �w�2 + 2�2 	��w�2

	��x�2


, �E33�

which is possible for large n and large M = 	w
n

	w
n+Kn , which
indicates that K� 	w
, in both cases representing a strong
negative feedback.

APPENDIX F: COMMENTS ON FIG. 9

Here we list some additional explanation on Fig. 9. In this
figure, we keep the parameters �v, �w, �, ��=Jwv� and K
constant, since they dictate the feedback cycle �Eq. �28� in
Fig. 8�b��. We vary Jxw and �x, so that in this case, not the
average production rate of x is constrained, but the average
copy number 	x
.

To understand the dependence of the gain, noise and gain-
to-noise ratio on �=Jxw and �x,we note that
g2��2gs→w

2 / ��x
2+�2� and N��2 / ��x

2+�2�Nv���
+�2 / ��x

2+�2�Nw���+Nx���, where Nv��� and Nw��� are in-
dependent of � and �x and Nx���=2�	w
 / ��x

2+�2� �with
	w
 being independent of � and �x�.

For ���x, the contributions of v and w to N��� are
proportional to �2 /�x

2, while the contribution of x is given by
Nx����� /�x

2. Hence, for ���x, the contributions of v and
w to the noise are constant, while the contribution of x de-
creases with increasing � and �x, leading to a decrease of
N���. Since the gain is constant in this regime, the gain-to-
noise ratio increases with increasing � and � for ���x. For
���x, the gain, and the contributions of v and w to the
noise increase with �2 while the contribution of x to the noise
increases with �, meaning that also in this regime the gain-
to-noise ratio increases with � and �x.
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