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Torsional effect on the wrapping transition of a semiflexible polymer
around a core as a model of nucleosome
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We investigated the effect of the torsional rigidity of a semiflexible chain on the wrapping transition around
a spherical core, as a model of a nucleosome, the fundamental unit of chromatin. Through molecular dynamics
simulation, we show that the torsional effect has a crucial effect on the chain wrapping around the core under
the topological constraints. In particular, the torsional stress (i) induces the wrapping/unwrapping transition,
and (ii) leads to a unique complex structure with an antagonistic wrapping direction which never appears
without the topological constraints. We further examine the effect of the stretching stress for the nucleosome
model in relation to the unique characteristic effect of the torsional stress on the manner of wrapping.
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I. INTRODUCTION

The structure of DNA wrapping around a cationic protein
is called nucleosome, which is a basic unit of chromatin in
living cells [1]. In physics, a spherical or cylindrical core and
a semiflexible chain are adopted as a model of the nucleo-
some structure [2-9]. In contrast to a flexible chain, a semi-
flexible chain wraps the core in an ordered manner [10].
Under usual aqueous conditions, the persistence length [,
=50 nm of DNA is large compared to its molecular thick-
ness d=2 nm. Therefore, DNA with contour length L
>1 um is characterized as a typical semiflexible chain: for
example, the contour length of eukaryote DNA is longer than
500 wm. DNA wraps a histone core, which has a diameter
of 11 nm, in an ordered manner 1.75 times. To reveal the
structures and mechanisms of a nucleosome, some groups
have conducted studies that involve the pulling of nucleo-
somes [10-15]. These studies have shown that unwrapping is
generated in a stepwise manner, i.e., the chain unwraps the
core from twice to once, then from once to zero as the chain
is pulled. These wrapping transitions are controlled by sev-
eral factors, which are an interaction between the chain and
the core, the chain stiffness, and the sphere size. Recently, it
is revealed that other factors are also important in determin-
ing nucleosome structures and mechanisms. Yanao et al. [5]
showed that DNA wraps around a protein core in a left-
handed manner based on the coupling between bending and
twisting rigidities due to the chirality of the right-handed
double helix structure of DNA. In the system of a chain
wrapping around a core, topology is an important factor that
determines the mechanism and the structure of a nucleo-
some.
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In a prokaryote cell, DNA is a circular chain that is topo-
logically constrained. In this case, the topological number
Lk=Wr+Tw is conserved [16]. Wr is calculated through the
chain conformation. Tw is the total twisting of the chain. The
effects of topological constraints and torsional rigidity on the
conformation have been studied in a circular polymer
[17-20]. In a eukaryote cell, DNA is stored compactly by
forming a hierarchical structure. At the lowest level, nucleo-
somes are packed into a 30 nm chromatin fiber. In an inter-
phase cell, this fiber is further organized into Lampbrush
chromosomes, which consist of highly condensed chromatin
parts and extended chromatin loop parts emanating from the
condensed parts. Most parts of DNA are generally not ex-
pressed and these are highly condensed. On the other hand,
the chromatin loops are expressed actively [21]. The chro-
matin loop is fixed at both ends and topologically con-
strained. In a eukaryote, the structure of DNA is also influ-
enced by the torsional rigidity. Some previous studies have
examined how topological constraints influence the confor-
mation of nucleosomes or chromatin fiber [22-24]. Torsional
stress on a nucleosome and a single chromatin are also stud-
ied by using a magnetic bead [25,26]. However, it is still
unclear how torsional stress under topological constraints af-
fects the wrapping manner of a nucleosome. In this study, we
examine the relation between torsional effects and the stabil-
ity of the wrapping manner of a nucleosome. We use a
coarse-grained torsional model [17] to reveal the simple re-
lation. We use a semiflexible chain and a spherical core
model inspired by a nucleosome.

We report the nontrivial relation between a torsional effect
and the wrapping transition of a semiflexible polymer based
on a systematic molecular dynamics simulation. This paper
is organized as follows: In Sec. II, we introduce the model of
a core and a semiflexible chain that is used in the simulation.
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In Sec. III, we present the results of simulation. In Sec. IV,
we discuss the wrapping transition in terms of free energy.
Further results are interpreted in terms of free energy. Fi-
nally, we conclude in Sec. V.

II. METHODS

To investigate the wrapping and unwrapping transition of
semiflexible polymers, we carried out off-lattice molecular
dynamics simulations in three-dimensional space. The model
of one polymer and one core is essentially the same as that
studied previously in Refs. [4,10]. Torsional potential is in-
troduced according to methods proposed in Ref. [17]. The
polymer is described as a beads-spring with positions r;;
bond vectors w,=(r;,;—r,;)/|r;,;—1;]. The position of the
spherical core is denoted by r.. To account for the material
twisting, two normal vectors f; and v; are set at the center of
gravity of monomers r; and obey v,=u; Xf; and f;-u;=0. The
potential energy of the system is represented by the follow-
ing five terms:
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where 6; is the angle between adjacent bond vectors, and
a;+y; is the twist angle, which satisfies sin(a;+ ;) =(v;- £,
—fi-vi)/(1+u;-u,,) and cos(a;+y)=(f;-fi +v;-viuy) /(1
+u;-u;,;). The monomer size o and kT are chosen as the
unit length and energy, respectively. We set the spring con-
stant k,,,,,=500, the bending elasticity k,=60, which corre-
sponds to a persistence length /,~ 100, and torsional energy
k,,,=60. The excluded-volume effect is included in the
Lennard-Jones potential U;;, and we set €=0.20. For the
attractive energy and excluded-volume effect between a
polymer and a core, we set €,,=5.0. The size of the core
0.=2.00 and o' =(0.+0)/2. We set N=60 polymer beads
and one core. In this paper, we use a simplified model of a
nucleosome, which consists of a semiflexible chain and a
spherical core: o, [,, and o, roughly correspond to 5, 50, and
10 nm.

Even though a tightly wrapped complex is formed, the
core slides along the chain and prefers positioning at the
chain end [4]. To eliminate possible end effects of the chain
and to achieve clear-cut configuration, we fix the center of
the core as in Ref. [10].

PHYSICAL REVIEW E 82, 031909 (2010)

The force f and the torque ¢ are calculated from Eqgs.
(1)-(5) and Eq. (4), respectively. The monomers obey the
stochastic dynamics described by the Langevin equation
without a momentum term

dr

7 =5+ & (6)
av,;
WET#%#, (7)

where W, is the Euler angle of pure rotation, # is the drag
coefficient for drift, and 7y is the drag coefficient for rota-
tion. The constant 7= 5o/ kT is chosen to be the unit for the
time scale. We set the time step as dr=2.5X1077. The
Brownian force &; and torque §l‘/’ satisfy the fluctuation dissi-
pation theorem,

(&(0)&(1")) = 6kpT7o;0(1 1), (8)

(§(E (1)) = 2kpT b0t —1'). )

We set 7=1.0 and 7,=0.213 [27].
Let us introduce the following order parameter:

N
P=2 p(i), (10)
i=1

where p(i) is an indicator of the pair contact: p(i)=1 if the
number of monomers which satisfy |r;—r.|<r;, and other-
wise p; ;=0. In the following discussion we set r,=2.50. This
quantity represents the degree of contact between the poly-
mer and the core. As we shall see later, P is directly related
to the wrapping number Ny, which measures how many
times the chain wraps the core.

In this study, we examine the chain conformation under
three different types of constraints; (i) one end is twisted (the
other end is fixed), (ii) both ends are fixed, and (iii) one end
is pulled (the other end is fixed). In each case, positions of
five monomers at the end (ry_4 to ry) are fixed and their W
values are also fixed. The positions of the monomers at the
other end (r; to rs) are fixed in cases of (i) and (ii). In case
(iii), the positions of the monomers are fixed in the y and z
directions and pulled in the x direction. ¥, to W5 are twisted
in (i) and fixed in (ii) and (iii). We set ry=(60,0,0), ry_;
=(59,0,0), ry_,=(58,0,0), ry_3=(57,0,0), and ry_4
=(56,0,0). The monomers of r, to rs are set at (y,z)
=(0,0). The core is set at r,=(45,2,0). We manipulate five
monomers at both ends to prevent the chain crossing over the
chain end and for convenience to twist and fix.

We introduce the topological number Lk, Wr, and Tw
[16]. Lk is topologically invariant in the case of the circle
chain or the case that the both ends of linear polymer are
fixed and any part of the chain is forbidden to pass through at
the end of the chain. In this paper, Lk is conserved in cases
of (ii) and (iii). In the case of (i), we decrease or increase Lk
linearly. Lk is defined as follows:

Lk = Wr + Tw, (11)

Wr is defined as follows:
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FIG. 1. (Color online) Quasistatic time evolution of the topo-
logical numbers and the chain conformation. (A) Changes in Wr
(red) and Tw (green) numbers accompanied by a linear decrease in
Lk=2 to O versus time steps. The data represent averages of 10
processes. (B) Typical snapshots of the chain (red) and the core
(yellow). The wrapping number Ny, changes Ny =2 (a) to Ny =1
(b), and then changes to Nyy=2 (c): (a) Lk=2, Wr=2, Tw=0 at
t=0, (b) Lk=1, Wr=1, Tw=0 at t=2.5 X 10*7, (c) Lk=0, Wr=0,
Tw=0 at r=5X 10*.

477Wr=f f (dry X dr,) - 1'1,2/|1'1,2|3 (12)
cJtc

where r;| and r, are points that pass along the closed curve C,
ri,=r,—r;. In the calculation, we use the method of Ref.
[16]. To make closed curve, we add flat semicircle (virtual
loop) to the two ends of the chain. In this paper, the virtual
loop is fixed and the radius is 300. Wr completely depends
on the conformation of the linear part because Wr is scale
invariant and dimensionless. Lk is invariant if the chain does
not cross the loop. This method is similar to the method in
Ref. [28]. There is no twist in this virtual loop: Tw exists
only in the linear part. Tw is defined as follows:
N
277Tw=2(a,-+ 7). (13)

i=1

We checked Lk every 100 steps to look out the unphysical
topological breaking.
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FIG. 2. (Color online) The wrapping number Ny, versus Lk;
Ny=2(P=22.5) and Ny=1(P=15) are shown by solid and dotted
lines, respectively. The chain is twisted from Lk=2 to O linearly
with time. The red (dark gray) line and green line (light gray) are
the result of 1 process and the average of 10 processes, respectively.

III. RESULTS

We first examine how the chain wraps the core with twist-
ing; Lk (control parameter) is decreased linearly from Lk
=2 to Lk=0 in t=5X 10*7 (2 X 10° steps) without topologi-
cal breaking. The end-to-end distance is 33.5¢0. Figure 1
shows (A) the evolution of topological numbers Lk, Wr, and
Tw versus time and (B) snapshots of typical complex struc-
tures at 7=0, 2.5 X 10%, and 5 X 10*7, respectively. The initial
linking number Lk=2 indicates that the chain accommodates
itself to the state with no twisting penalty by wrapping
around the core twice in a right-handed fashion (Wr=2)
[Fig. 1(B), (a)]. When the linking number is decreased, the
complex first responds by the negative twisting while the
writhing number remains almost fixed. This linear response
regime is terminated at Lk= 1.5, at about which the complex
exhibits a global structural change, i.e., unwrapping transi-
tion from Wr=2 to Wr=1, and releases the torsional stress.
Due to the small size of the system, the transition is not very
sharp, but there is a finite range for the control parameter
(Lk), where the bimodal distribution is realized. The state
with Wr=1 and Tw=0 is stable around Lk=1 [Fig. 1(B),
(b)]. With a further decrease in Lk, the complex exhibits a
second global structural transition at Lk=0.5 to the state
with Wr=0. However, this does not correspond to the un-
wrapping, but rather to the wrapping transition. Figure 2
plots the order parameter P as a function of Lk, which
clearly demonstrates that the second structural transition is
wrapping. Examination of the snapshot indicates that each of
the two turns is characterized by the opposite handedness,
and this antagonistic wrapping results in Wr=0. To realize
such an antagonistic wrapping, there must be a “loop” in
which the chain segment is not attached to the core [desig-
nated by an arrow in Fig. 1(B), (c)]. We have confirmed that
its energetic stability is almost the same as that of the natural
wrapped state; the total energy and the elastic bending en-
ergy of the chain in the case of Lk=0 are almost the same as
(a little less than) the energy in the case of Lk=2. The mean
total internal energy u=U/(N-10) [U is the summation of
Egs. (1)-(5)], the mean elastic bending energy .,
=Upena/ (N—10), and the mean adsorption energy u,,
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FIG. 3. Distribution of the wrapping number with Lk: (a) With-
out torsional stress. (b) At Lk=0, 0.25, 0.5, 0.75, and 1. (c) At Lk
=1, 1.25, 1.5, 1.75, and 2.

=U,,/(N-10) are given as u=1.264, up,,;=1.066, u,,
=-0.981 in the case of Lk=0 and u=1.269, u,,,,=1.086,
u,g=—1.024 in the case of Lk=2. Interestingly, although the
presence of such a loop is an unnatural form, i.e., never
observed in the system without topological constraint, the
fluctuation of P is suppressed more in the antagonistic wrap-
ping state (Ny=2 and Wr=0) than in the regular wrapping
state (Nyy=2 and Wr=2). This structural stability of the
complex is probably due to steric hindrance of the chain
segments which cannot cross one another (topological effect
of the chain).

We examine how the chain wraps the core with Lk. Both
ends of the chain are fixed. The end-to-end distance is 33.50.
Figure 3 shows the distribution of wrapping number versus
Lk. For k,,=0 (no torsional effect), the peak is at Ny=2,
which indicates that the chain wraps the core twice. For Lk
=0, Lk=0.25, and Lk=0.5, the peak is at Nyy=2. These re-
sults are almost the same as the result in Fig. 2. For Lk
=0.75, there are two peaks at Ny=1 and Ny,>2, which in-
dicates that the chain wraps the core once and more than
twice. For Lk=0.75, the chain wraps and unwraps the core
(see Fig. 2). For Lk=1, the peak is at Ny=1. The chain
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wrapping the core once is more favorable than wrapping the
core twice although the chain loses adsorption energy. For
Lk=1.25, there are no large peaks; the probability is wide
from Ny=1 to Ny=2. For Lk=1.5, Lk=1.75, and Lk=2, the
peak is at Ny =2. These results are also the same as those in
Fig. 2.

These results indicate that Lk determines the stable wrap-
ping number, i.e., how many times the chain wraps the core.
For Lk=0 to Lk=1, the peak shifts from wrapping the core
twice to wrapping the core once. Then, for Lk=1 to Lk=2,
the peak shifts from wrapping the core once to wrapping the
core twice.

IV. DISCUSSION
A. Internal energy

A stiff circular DNA molecule exhibits a buckling transi-
tion to a supercoiled state with an increase in Lk [29]. This
instability is caused by the balance between the twisting and
bending energies. In our case with the twisting of a wrapped
complex, similar competition would be conceivable, but with
the important difference that the effective bending modulus
can be regarded “negative,” i.e., the chain favors wrapping
aided by the adsorption energy, in the wrapping state (see
discussion below). With this point in mind, we now present a
phenomenological theory to describe the properties of the
core-chain complex with a torsional effect. We refer to the
internal energy in Refs. [10,14]. The internal energy in this
case can be written as a sum of the adsorption, bending, and
torsional energy terms.

E(l) = Ead + Ebend + Emr’ (14)

where [/ is the chain length around the core. The energetic
gain due to the chain adsorption E,; is written as E, ;=¢€l,
where € is the adsorption energy density (e<<0). The bending
energy E,,,, 1S written as

1
Ebend: Kl/2R2 + 8\/K_f<1 - TE)|SIHA s (15)

AY

where « is chain rigidity, R is the radius of the core (radius
curvature), f is a extensional force at the end of the chain,
and A is described by A=2ml/4mR. The second term in Eq.
(15), which appears only in the case that both ends of the
chain are fixed by pulling, represents the penalty in the bend-
ing energy near the core (see Ref. [14]). It has peaks at [
=mR, 37R, which makes the half-hearted wrapped state with
noninteger Ny, unfavorable. The torsional energy E,,, is writ-
ten as

Leg Tw\> &k Tw?
E,, ~ f ﬂ(zw)Z(—W) =S 0@ (16)
o 2 Le 2 Lo

where L. is the contour length of the chain associated with
the wrapping. Wr is related to the wrapping number Ny, We
can write Tw=Lk—Wr=Lk-Ny, in the regular wrapping
state. Ny is roughly estimated as Ny=[/27R. In the antago-
nistic wrapping state, 1 <Ny, <2 and |Lk|=1, we use simu-
lation results that the chain wraps the core twice but Wr=0;
Wr=|[-47R|/27R. Finally, we get
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FIG. 4. (Color online) Dependence of internal energy E [Eq.
(14)] on the wrapping number Ny, and Lk based on the theoretical
results. (a) in the case of k=0 (without a torsional effect). (b)
Lk=0, Lk=0.5, Lk=1, Lk=1.5, and Lk=2 are shown in black,
green, blue, dashed red, and dashed yellow, respectively. (c) The
value of internal energy at Ny=0 (black), Nyy=1 (red), and Ny=2
(green) versus Lk.
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We set e=-5.2, R=1.0, k=10, k,,,=10, f=0.5, and L-=50.
Figure 4 shows the internal energy; (a) without a torsional
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effect, (b) with a torsional effect as a function of Ny, and (¢)
the value of the internal energy at Nyy=0, 1, and 2 versus Lk.
In this discussion, we define that the wrapping number Ny
increases from O to 2 linearly with a increase of / from 0 to
47R. Without a torsional effect (see Fig. 4(a)), the most
stable state is Ny =2 and the stable state is Ny=1; E(l)NW:2
<E()y,=1<E()y,=. For Lk=0 to Lk=1, the internal en-
ergy at Ny =2 increases [see Figs. 4(b) and 4(c)]. For Lk
=1 to Lk=2, the free energy at Njy=2 decreases. The internal
energy at Ny =1 decreases for Lk=0 to Lk=1 and increases
for Lk=1 to Lk=2. These results indicate that the chain
wrapping the core twice Ny=2 is the most stable state for
Lk=0 and 2 but not for Lk= 1. On the other hand, the chain
wrapping the core once Ny=1 is the most stable state for
Lk=1. Both terms E,; and E,,,,; in Eq. (14) have a linear
dependence on «I/(2R?)+€el=€'l, so the wrapping transition
takes place when € <0 k/(2R?) <|€ in the absence of a
torsional effect. Therefore, the torsional effect, if included, is
a dominant factor in the total free energy of the system. The
stable states are determined by decreasing torsional energy.
We present an example here. For Lk =0, while wrapping the
core twice is the most stable state, wrapping the core once is
less stable. When the chain wraps the core twice, the gain in
adsorption energy is high and the torsional energy is low
because |Tw|=0 (Lk=0, Tw=0, and Wr=0). When the
chain wraps the core once, the gain in adsorption energy is
low and the torsional energy is high because |Tw|=1 (Lk
=0, Tw= 1, and Wr* 1). For Lk=0 to Lk=1, the stable state
shifts from wrapping the core twice to wrapping the core
once. For Lk=1 to Lk=2, the stable state shifts from wrap-
ping the core once to wrapping the core twice. These discus-
sions are consistent with the results in Fig. 3.

We discuss the internal energy because the entropy in this
case should be almost zero: the free energy of this system is
estimated as the internal energy. In contrast, fluctuations and
entropy are important factors in the case of polynucleosome.

B. Force responses

We examine the stability of the wrapping around the core
versus the stretching. Figure 5(a) shows the tensional forces
of the pulled end (at rs) versus L=|rs—ry_4 (like the end-
to-end distance). Figure 5(b) shows the number of monomers
around the core P versus L with and without a torsional
effect. For k,,,=0 (without a torsional effect), there are two
peaks at L= 30, 40; this is the same result as in Ref. [10]. At
L=30, the chain unwraps the core from twice to once; Ny
=2 changes to 1. At L=40, the chain unwraps the core from
once to zero; Ny, changes to 0. For Lk=0, there is a large
extensional force at /=30 because the chain wrapping the
core twice is stable; E(l)N“F2<E(l)NMF1. On the other hand,
there is a small peak at /=37 because the potential barrier
between E(Z)NW=1 and E(l)Nw:O is small. The chain unwraps
the core easily. For Lk=0.5, there are two peaks at L==30,
40. Ny shows almost the same behavior as in the case of
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FIG. 5. (Color online) Unwrapping process by stretching. The data are averages of 10 processes: k;,.=0 (without a torsional effect),
Lk=0, Lk=0.5, Lk=1, and Lk=2 are shown in black (left), red (center), green (center), blue (right), and dashed red (right), respectively. (a)
Extensional force versus the distance of L (end-to-end distance). (b) Ny, versus L. The wrapping numbers Ny,=2 (solid line), 1 (dotted line),

0 (dashed line) are defined by P=22.5, 15, 6, respectively.

kioy=0; free energy is E(Dy, -2 <E(l)y,-1 <E(l)y,=. For
Lk=1, there is a large extensional force at L =37 because the
chain wrapping the core once is stable. There is no peak
upon unwrapping the core from twice to once because the
chain unwraps the core easily: the potential barrier between
E(l)y = and E(l)y,-; is small and the chain wrapping the
core twice is metastable [E(l)y,—>E()y, -1 <E()y, ol
For Lk=2, there is a large extensional force at L==34 be-
cause the chain wrapping the core twice is stable. These is a
very large extensional force at L==42 because the chain not
wrapping the core is much more unstable than the chain
wrapping the core once; E()y, - <E(l)y, -1 <E()y,=- In
the case of |Lk|>0, E(I)y, - is large, since Ny =0 implies
Wr=0 in the present condition, thus the free energy in-
creases quadratically with Lk; E(])=E,,=(Tw)>=(Lk)?
[see Fig. 4(c)]. Although the actual shape of the real histone
core is close to a cylinder, our spherical core model should
capture the essential features in the wrapping-unwrapping
transition.

In this manipulation, we fixed five monomers at both ends
to prevent topological breaking. This corresponds to the case
of adsorbing an end of DNA onto a tip of AFM, a microbead,
and the surface of a glass. In contrast to the manipulate of a
single monomer (DNA fixed at one point), a stronger force is
needed to pull monomers (DNA fixed at several points).
There is a kink between a free monomer and a fixed mono-
mer, and this causes extra bending energy, which is estimated
to be about 4kzT in this calculation.

V. CONCLUSIONS

In this study, we used a model inspired by a nucleosome;
a single semiflexible chain wraps around a spherical core.

The stable wrapping number, how many times the chain
wraps the core, was studied under topological constraints.
With twisting once (quasistatic process), an increase in Lk
(topological number) from O to 1, the stable states are shifted
from the wrapping around the core twice to once. With an
additional twist, an increase in Lk from 1 to 2, the stable
states are shifted from the wrapping around the core once to
twice. The internal energy of the system including the tor-
sional rigidity were the same as the results of the simulation.
The torsional energy is dominant when the bending energy
and the adsorption energy cancel each other; they linearly
depend on the length around the core. This restrains the
wrapping conformation of the chain. The wrapping number,
which is related to Wr, and the torsional stress, which is
related to Tw, are coupled as Lk=Wr+Tw. To decrease tor-
sional stress, the wrapping number needs to change. The sta-
bility of the wrapping number is dependent on Lk through
torsional stress.

Finally, we mention the process of unwrapping by stretch-
ing. In the case of increased torsional stress after unwrap-
ping, there is a large extensional force because the chain
changes to less stable states. On the other hand, there is a
small peak with a decrease in torsional stress after unwrap-
ping because the chain easily unwraps from the core; the
chain is in a metastable state and the potential barrier is
small. These results are easily verified by experiments. Suit-
able experimental techniques have recently been developed
and it is possible to control torsion. For example, there is a
study on the twisting and pulling of DNA [25,26,30]. We
expect that it may be possible to apply this experiment to
pulling nucleosomes with torsional constraints. We hope that
our study will stimulate further experimental and theoretical
developments regarding the mechanical stability of chroma-
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tin and its association with biological functions.
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