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Complexity in the temporal organization of neural systems may be a reflection of the diversity of their neural
constituents. These constituents, excitatory and inhibitory neurons, comprise a well-defined ratio in vivo and
form the substrate for rhythmic oscillatory activity. To begin to elucidate the dynamical implications that
underlie this balance, we construct neural circuits not ordinarily found in nature and study the resulting
temporal patterns. We culture several networks of neurons composed of varying fractions of excitatory and
inhibitory cells and use a multielectrode array to study their temporal dynamics as this balance is modulated.
We use the electrode burst as the temporal imprimatur to signify the presence of network activity. Burst
durations, interburst intervals, and the number of spikes participating within a burst are used to illustrate the
vivid differences in the temporal organization between the various cultured networks. When the network
consists largely of excitatory neurons, no network temporal structure is apparent. However, the addition of
inhibitory neurons evokes a temporal order. Calculation of the temporal autocorrelation shows that when the
number of inhibitory neurons is a major fraction of the network, a striking network pattern materializes when

none was previously present.
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I. INTRODUCTION

Pattern formation is ubiquitous in biological systems and
these patterns are often similar to those found in nonliving
systems [ 1-3]. This has piqued the interest of physicists lead-
ing them to investigate the relationship between the spatial
and temporal patterns and the biological constituents that
generate them. Significant inroads have been made in under-
standing the formation of bacterial colonies as well as char-
acterizing spontaneous and evoked activity in neural circuits
[4-6]. Complex activity patterns have been shown to emerge
from the self-organization of neurobiological networks and
can persist for hours [7,8]. Results from these studies dem-
onstrate that when biological systems interact with nature,
intricate and unexpected patterns can form.

In general, complex, i.e., nonperiodic, patterns form in
open systems that are driven out of equilibrium due to com-
petition over an existing resource [9]. In the brain, there are
two types of neurons, excitatory and inhibitory, and it has
been suggested that competition for excitatory and inhibitory
inputs received by a neuron is essential for healthy brain
activity [10]. The brain must operate within a range of activ-
ity for which external perturbations do not drive it into the
pathological state and it is the balance between excitation
and inhibition that maintains this dynamical state [11,12].
This balance is achieved in the cortex by an approximate
ratio of 70% excitatory and 30% inhibitory neurons. This
ratio appears to be present with minimal variation across a
large diversity of species such as rodents, felines, and hu-
mans [13-17]. Why does this ratio persist and how does it
influence pattern formation in neural circuits?

Temporal patterns produced from mixed excitatory and
inhibitory networks have been investigated using computa-
tional models [18—22]. Anderson e al. used a network of
single-compartment excitatory and inhibitory neurons, and

1539-3755/2010/82(3)/031907(8)

031907-1

PACS number(s): 87.18.—h

by varying the total level of excitation or inhibition, they
produced a wide range of dynamics from tonic firing to syn-
chronized bursting [23]. Network connectivity was sparse
and the connections were determined randomly. Other
groups have fixed the ratio of excitatory and/or inhibitory
cells and have focused on varying the excitatory and/or in-
hibitory synaptic connectivity strength as well as the external
inputs to each neuron. For example, by using a three-layered
network of spiking neurons that represents external input,
subcortex, and cortex, Xing and Gerstein showed that modu-
lating inhibition had a larger effect on neural receptive fields
than excitation [22]. Brunel described analytically the wide
range of synchronous as well as asynchronous states that
arise from two classes of neural networks: one that has iden-
tical characteristics for the excitatory and inhibitory neurons
and the other class in which physiological data have been
incorporated into the model to differentiate between the two
types of neurons [19]. Lastly, Vogels and Abbott used a net-
work of integrate and fire neurons to investigate how signals
can turn on in the case when excitatory and inhibitory path-
ways are imbalanced between the sender and receiver areas
of the network [24]. They produce an imbalance by differen-
tially modulating the excitatory and inhibitory pathways be-
tween these two regions.

This paper describes the intriguing temporal patterns
formed in an in vitro experiment using networks of cultured
neurons. Neural cultures are a simple reduced two-
dimensional system. They may provide insights into basic
dynamical network interactions not currently achievable in
complex in vivo brain preparations. While in vivo measure-
ments are clearly the more direct approach to studying physi-
ological dynamics, it is difficult to visualize individual neu-
rons and record single unit electrical activity from in vivo
three-dimensional networks of neurons. In addition, two-
dimensional in vitro networks are easily amenable to phar-

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.82.031907

XIN CHEN AND RHONDA DZAKPASU

macological, electrical, and genetic modification and they
retain many of the properties of in vivo networks, such as
rich connectivity and complex patterns of activity.

In this study we ask two questions: (i) what are some of
the complex dynamical network patterns formed by a mixed
excitatory and inhibitory culture and (ii) how do these pat-
terns change as the balance between excitatory and inhibi-
tory neurons is modulated? Exploiting the ease of manipula-
tion within cultured networks, we start with a single-cell
suspension of hippocampal neurons, which are approxi-
mately 80% excitatory [25]. To this suspension, we titrate
individual neurons from the striatum, which are nearly 100%
inhibitory [26,27]. We culture these networks onto an array
of electrodes and after a few days, excitatory and inhibitory
connections spontaneously form. Increasing the inhibitory
fraction in the network increases the heterogeneity of the
system. As a result, we suggest that there are more ways for
the network to spatially arrange itself. We show that increas-
ing the inhibitory fraction leads to a remarkable temporal
correlation pattern.

II. METHODS
A. Cell cultures

All experimental procedures were carried out in accor-
dance with the Georgetown University Animal Care and Use
Committee. Hippocampal and striatal tissue were extracted
from embryonic day 18 Sprague-Dawley rats using a proto-
col modified in Ref. [28]. Briefly, the neural tissue was finely
chopped and digested with 0.1% trypsin followed by me-
chanical trituration. Upon reaching a single-cell suspension,
three different concentrations of striatal cells were added to
single-cell suspensions of hippocampal cells resulting in the
following five different cultured networks with an approxi-
mate density of 1000 cells/mm?: 100% hippocampus, 80%
hippocampus—20% stratum, 67% hippocampus—33% stria-
tum, 55% hippocampus—45% striatum, and 100% striatum.
Each culture was plated onto a multielectrode array (MEA)
(Multi-channel Systems, Reutlingen, Germany) that was pre-
viously treated with poly-d-lysine and laminin (Sigma, St.
Louis, MO). Cultures were maintained in Neuralbasal A me-
dium with B27 (Invitrogen, Carlsbad, CA) with biweekly
changes and kept in a humidified 5% CO, and 95% O, in-
cubator at 37 °C.

B. Electrophysiological recordings

The MEA is composed of 59 titanium nitride electrodes, 1
reference electrode, and 4 auxiliary analog channels each of
which is 30 um in diameter, arranged on an 8 X 8 square
array. The interelectrode spacing is 200 um. Upon plating,
the cells in suspension adhere to the silicon nitride substrate
of the MEA and after three days electrical activity becomes
apparent. We use the MEA1060 preamplifier and sample
electrical activity at a 25 kHz acquisition rate to allow the
detection of multiunit spikes. The data were digitized and
stored on a Dell personal computer (Round Rock, TX). Pos-
sible exposure to contaminants was significantly reduced
during the experiments by the use of an MEA cover made of
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a hydrophobic membrane [29]. This membrane provides a
tight seal and is permeable to CO, and O, and largely im-
permeable to water vapor. Experiments from at least ten dif-
ferent networks plated onto MEAs were performed on a
heated microscope stage at 37 °C for 20 min at 18 days in
vitro, a time point during development in which the network
displayed vigorous electrical activity and for which network
connectivity is established [30-32].

C. Data analysis
1. Spike detection

We remove low-frequency components by high-pass fil-
tering all traces at 25 Hz. Extracellularly recorded spikes
were detected using a threshold algorithm from Offline
Sorter (Plexon Inc., Dallas, TX). The threshold is calculated
as a multiple of the standard deviation (3.5¢) of the biologi-
cal noise. No attempt was made to discriminate and sort
spikes by electrode because the shape of a spike changes
significantly during a burst due to changes in membrane ex-
citability. In addition, for this study we concentrate on net-
work activity and the signal from each electrode suitably
reflects these dynamics.

2. Burst parameters

We have written proprietary software using MATLAB
(Mathworks, Natick, MA) to calculate all of our network
data analyses. We chose a common temporal feature found in
cultured networks in order to study how network dynamics
change as the fraction of inhibitory cells is altered. This
dominant temporal motif in cultured neural networks is the
burst and it represents a collective neural response. In our
experiments, we analyze bursts from each individual elec-
trode. After the spike detection process described above each
electrode has a resulting spike train, 7,(), expressed as

N
(1) =2 St—-1,),

n=1

where N is defined to be the total number of spikes, 7, is the
time of the nth spike, and &(¢) is a delta function that indi-
cates a spike taking place at time ¢=z,. The interspike inter-
val between spike n and spike n—1 (n>1) is

SI
751 =l =Ty

We define a burst from each electrode to consist of no less
than six spikes with a maximum interspike interval of 60 ms.
As will be described below in Fig. 3 and in the associated
text, bursts from networks with greater than a 20% inhibitory
cell contribution terminated with a tail of small clusters of
(less than six) spikes. Setting the “spike-count floor” to be
six ensures that these clusters are not erroneously counted as
independent episodes. Additionally, defining the maximum
interspike interval of 60 ms allows us to include the spike
clusters as part of the complete episode without including the
next episode. This burst identification process results in an
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M X N matrix where M corresponds to the electrode number
and the N’s are the time stamps of the bursts.

Using this burst criterion we calculated burst durations for
the different cultured networks. In addition, to obtain a finer
differentiation between cultures we also calculated the frac-
tion of bursts that have durations of less than 100 ms as our
burst duration histograms displayed a significant drop off at
this value for the 67% H-33% S networks (see below). Next,
we calculated the number of spikes per burst for each of the
different cultures. We also calculated the fraction of bursts
containing 40 spikes or less as the spikes and/or burst histo-
grams displayed a significant drop off at this value for the
67% H-33% S networks (data not shown). In addition, there
were a considerable number of spikes that were not included
in these calculations because they were not part of any burst.
Despite the fact that the focus of this study is to measure
how network activity is modulated, it has been speculated
that whether or not a spike contributes to a burst may be
indicative of the information processing efficiency of the net-
work [33-35]. Therefore, we calculated the fraction of spikes
that did not participate within a burst for each network.
Lastly, to investigate changes in overall network rhythmicity,
we calculated the interburst intervals and the temporal auto-
correlation. For the temporal autocorrelation, we were solely
interested in correlations between and not within bursts. As a
result, to eliminate contributions to the autocorrelation from
intraburst dynamics, we constructed model bursts to repre-
sent each burst that occurred within an electrode. To do this,
we define the burst train, 7,,(¢), with a total number of M
bursts as

u t—t
n0=3 T1(=").
m=1

dpy

where 1, specifies the starting time of the mth burst in the
7,(t) and I1(¢/d) is a rectangular function that specifies the
onset of a burst at time t=1,, lasting for duration d,,. Using
this modified time series, the temporal autocorrelation I was
calculated for each electrode within each network.

III. RESULTS

All but one of the mixed hippocampal and/or striatal cul-
tures exhibited robust bursting activity at 18 days in vitro.
Recordings from all four of the 100% striatal MEAs never
displayed electrical activity. These networks are composed
solely of inhibitory neurons and we believe that the lack of
activity is due to the absence of excitatory input. Therefore,
results presented will be for the following cultured networks:
(i) 100% hippocampus, (ii) 80% hippocampus—20% stria-
tum, (iii) 67% hippocampus—-33% striatum, and (iv) 55%
hippocampus—45% striatum. Lastly, the addition of striatal
cells is solely to vary the inhibitory neuron fraction and we
will henceforth report our results based on the estimated E/I
cell ratio, assuming that the 100% hippocampal networks
consist of 80% excitatory (E) and 20% inhibitory (I) neu-
rons.

In Fig. 1, left panel, a phase contrast image of the MEA
plated with 80% E-20% I neurons is presented. The right
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FIG. 1. (Color online) 80% E-20% I cultures at 18 days in vitro
on a multielectrode array. (Left) Phase contrast image of the cells
plated on a MEA. (Right) Screen shot of spontaneous recordings
from the MEA. Each box represents 1 s of recording from one
electrode.

panel is a screenshot of spontaneous activity as recorded by
the MEA. Each box corresponds to 1 s of activity from one
electrode. Each electrode records activity from the neurons
in its vicinity and several of these electrodes reveal bursting
dynamics. Note the highly synchronous nature from a major-
ity of the electrodes.

A. Raster plots: An overview of network activity

We created raster plots to highlight how strongly inhibi-
tory cells impact spiking activity on the network level. Fig-
ure 2 presents raster plots of spike trains from 70 s of spon-
taneous activity at 18 days in vitro for each cultured network.
One row in each panel corresponds to an electrode and in
this row each small vertical tick mark is a detected spike. All
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FIG. 2. Raster plots of 70 s of spontaneous activity at 18 days in
vitro. Each panel depicts a different E/I ratio. (A) 80% E-20% 1.
There is a high degree of activity with each electrode displaying
bursting activity. (B) 64% E-36% 1. The activity is very similar to
the 80% E-20% 1 networks. (C) 54% E-46% 1. The activity is
beginning to cluster and organize into large burst structures. (D)
44% E-56% 1. The activity has changed to bursts of long duration
followed by tails of shorter minibursts. Note that the electrode with
no activity is the reference electrode in all cultures and therefore
has no signal.
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FIG. 3. Expanded time scale of raster plot of spontaneous re-
cordings at 18 days in vitro. Each panel refers to a different E/I
ratio. (A) 80% E-20% 1. The bursts are largely uniform in their
length. Also, there are many spikes that are not part of the burst. (B)
64% E-36% 1. The bursts are beginning to lengthen in time. (C)
54% E-46% 1. The bursts are now quite long and will become
several small bursts. (D) 44% E-56% 1. The burst is breaking up
and the long tail of multiple short bursts is now apparent. Note that
the electrode with no activity is the reference electrode in all cul-
tures and therefore has no signal.

of the networks display clear evidence of widespread burst-
ing activity albeit with significant differences. The 80%
E-20% I network shows a large degree of activity on every
electrode throughout the recording. The bursts seem to have
similar durations. As the fraction of inhibitory cells increases
within the network, the network organizes into regions of
longer duration bursts, with increasingly longer quiescent in-
tervals of separation.

On a shorter time scale, the differences in network activ-
ity within each culture are more visible. Figure 3 is a raster
plot of 2.5 s of spontaneous activity from each cultured net-
work. The bursts for the 80% E-20% I networks continue to
look uniform in length and there are many spikes that are not
part of a burst. As the fraction of inhibitory cells increases,
the bursts begin to broaden in time. However, as we will see
below the interspike intervals also increase and these
“stretched bursts” are no longer one burst but one long-
duration burst with several bursts of short duration that are
clustered together: a “superburst.” The constituent spikes of
these bursts lose their temporal coherence resulting in the
breakup of a burst into multiple “minibursts.”
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FIG. 4. Normalized burst duration histograms for spontaneous
activity for the MEAs of each E/I ratio. (A) 80% E-20% 1. The
distribution appears to be logarithmic normal. (B) 64% E-36% I.
The distribution is similar to panel A with some broadening. (C)
54% E—-46% 1. There is a transition to an exponential-like distribu-
tion with a marked shift toward shorter durations, less than 100 ms.
(D) 44% E-56% 1. Most of the bursts are of short duration.

B. Burst calculations

We quantified how the bursts were changed as the number
of inhibitory cells was increased. The distributions of the
burst duration change as the number of inhibitory neurons
increases as seen in Fig. 4 and Table I. Initially, the distribu-
tion appears to be logarithmic normal [Fig. 4(A)] and as the
number of inhibitory cells increases, the distribution expands
and the standard deviation increases by a factor of 3 [Fig.
4(B)]. The profile for the 64% E-36% 1 cultures is not dis-
similar from the 80% E-20% 1 network. However, when the
fraction of inhibitory cells increases to 46%, the shape of the
distribution as well as the standard deviation changes signifi-
cantly [Fig. 4(C)]. This difference is amplified in the 44%
E-56% 1 network as this distribution appears to be exponen-
tial [Fig. 4(D)]. Additionally, in the 44% E network, there is
a tail of long durations that is not present in the other net-
works (Fig. 5). Lastly, despite the fact that there is a 30%
increase in the mean burst duration from the 80% E to 44%
E cultures, the median burst duration decreases by 40% sug-
gesting that there are more bursts of short duration present in
the 44% E neural cultures.

To study this further, we calculated the ratio of bursts that
were 100 ms or shorter for each of the networks (Fig. 6).
This ratio increases as the number of inhibitory cells in-
creases with a twofold increase from the 80% E to 44% E
cultures.

TABLE 1. Burst duration statistics.

Network composition (Number of MEAs) Mean (ms) Median (ms) Standard deviation
80% E-20% 1 (2) 170.2 168 87.7
64% E-36% 1 (3) 165.4 159.9 95.5
54% E-46% 1 (3) 190.4 110.2 171.0
44% E-56% 1 (4) 225.6 102.3 256.3
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FIG. 5. Normalized long burst duration histogram for 44%
E-56% 1 cultures. Extending the durations in Fig. 4(D) there is a
fraction of this cultured network having long burst durations as
compared to the 80% E-20% I networks. There are more super-
bursts with long durations as the increased number of inhibitory
cells appears to break apart the bursts.

Next, we calculated the number of spikes per burst for all
of the networks [Fig. 7(A)]. For all of the cultures, the inter-
quartile distributions are tightly clustered. However, while
the average number of spikes per burst increased 36% from
the 80% E-20% I cultures to the 44% E-56% 1 cultures the
median dropped by 22% and there was a 1.5-fold increase in
the standard deviation (Table II). As observed in Fig. 4, the
44% E-56% 1 cultures displayed an increase in bursts of
short durations, suggesting that there may be bursts with low
numbers of spikes. Therefore, we calculated the fraction of
bursts that contain 40 or less spikes [Fig. 7(B)]. There was a
30% increase in the bursts with 40 or less spikes from the
80% E-20% I cultures to the 44% E-56% I cultures.

We are studying the network response to changes in in-
hibitory cell populations and therefore only those spikes that
participate within a burst are considered in these analyses.
However, it is evident from the raster plots of Fig. 3 that
there are large numbers of spikes that occur outside of bursts.
A proposed role for bursting in neural circuits is that a tight
barrage of spikes may be more efficient to propagate infor-
mation with a diminished role in information transmission
for individual spikes [33-35].
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FIG. 6. Short burst duration fraction. The fraction of burst du-
rations that are less than 100 ms with respect to all burst durations.
The fraction of short bursts increases nearly linearly as the number
of inhibitory cells increase. There are approximately twice as many
short bursts in the 44% E networks than in the 80% E networks.
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FIG. 7. Number of spikes per burst. (A) The boundaries of the
box define the interquartile region, i.e., 25th to 75th percentile (av-
erage spikes/burst for each MEA within each E/I ratio: one-way
ANOVA, p<0.05). Within each box the line is the median and the
square signifies the mean. Outside the box, each dash defines the
maximum burst duration and below the dash, the duration marked
by the boldface x is the 95th percentile point. The width of the
distributions increases as the number of inhibitory cells increase.
The variability also increases dramatically. There is also an inverse
relationship between the mean and the median implying that the
44% E networks have a considerable number of bursts containing
small numbers of spikes. (B) Bursts with 40 or less spikes. The
number of spikes within a burst is greatly reduced when the amount
of inhibitory cells is increased.

We calculated the fraction of spikes that do not participate
within a burst for the different cultures in Fig. 8. As the
inhibitory cell contribution increases, more spikes get re-
cruited in bursts. There is a 50% decrease in the number of
spikes that do not participate in a burst for the 44% E-56% 1
cultures as compared to the 80% E-20% I cultures. Despite
the fact that the burst durations are shorter in the 44%
E-56% 1 cultures, more spikes are engaged in bursting ac-
tivity.

C. Network periodicities

Interburst intervals were calculated for each of the differ-
ent networks (Fig. 9). The majority of the interburst intervals

TABLE II. Spikes per burst statistics.

Network composition Mean Median Standard deviation
80% E-20% 1 38.5 23 335
64% E-36% 1 36.2 21 35.0
54% E-46% 1 50.1 24 50.1
44% E-56% 1 52.7 18 77.9
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FIG. 8. Extra-burst spikes. We calculated the fraction of spikes
that do not participate in a burst for each of the E/I cultures. The
fraction of nonbursting spikes decreases by a factor of 2 as the
number of inhibitory neurons increases. This suggests that inhibi-
tory neurons may improve the efficiency of information transfer by
recruiting more spikes in bursts and leaving less errant spikes.

for the 80% E-20% I networks are distributed between 0 and
2 s with a mean near 1-1.5 s [Fig. 9(A)]. This distribution
begins to shift toward shorter interburst intervals when the
fraction of inhibitory cells increases to 36% [Fig. 9(B)]. Ad-
ditionally, a second distribution begins to populate intervals
from 2 to 10 s. When the concentration of inhibitory neurons
reaches 46%, there is a contraction in the distribution of
short intervals with virtually all intervals occurring between
0 and 500 ms [Fig. 9(C)]. The long interval region is clus-
tered with intervals ranging from 2 to 4 s. A bimodal distri-
bution is now well established; 50% of the interburst inter-
vals are clustered between 0 and 500 ms and the other half is
clustered within 2—4 s. This effect is also evident in the raster
plots of Figs. 3(C) and 4(C). As the bursts are lengthening
in duration, short bursts form and break away from the origi-
nating, but now elongated, bursts with short interburst inter-
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vals. This superburst,” i.e., the elongated burst and collection
of minibursts, has the longer interburst interval. Increasing
the inhibitory contribution to 56% amplifies this effect. One
very narrow range of interburst intervals, corresponding to
the minibursts, is less than 1 s, with the majority of interburst
intervals ranging from 0 to 500 ms [Fig. 9(D)]. The super-
burst intervals span a range from 4 to 10 s. Note that in the
80% E-20% I network, only 5% of the interburst intervals
have intervals longer than 2 s [Fig. 9(A)]. As the percentage
of inhibitory cells grows to 56% there is a fivefold increase
in the number of interburst intervals that are greater than 2 s
[Fig. 9(D)]. In the latter network there are more superbursts
with longer interburst intervals.

Lastly, we calculated the temporal autocorrelation I" for
all electrodes within each network to investigate the burst
temporal structure within each electrode of the different net-
works (Fig. 10). When there are relatively few inhibitory
neurons in both the 80% E and 64% E networks, no obvious
periodicities are present. As the number of inhibitory cells
increases, a temporal ordering begins to emerge within the
network. The numerous small peaks disappear and a periodic
temporal pattern is clearly apparent.

IV. DISCUSSION AND CONCLUSIONS

We describe spatiotemporal patterns that form from vary-
ing the number of inhibitory neurons in an in vitro network
of cultured neurons. These results are exciting and thought
provoking as they clearly demonstrate that the profound ef-
fect inhibitory cells have on spontaneous network activity.
Our analyses suggest that since the presence of inhibitory
neurons greatly influences all aspects of burst dynamics, they
undoubtedly play an influential role in the overall transmis-
sion of information in neural networks. As their numbers
increase in the network, the burst durations shorten, however
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FIG. 9. Normalized interburst intervals for each E/I neural ratio. Intervals span two ranges: 0-2 and 2-10 s. (A) 80% E-20% 1. The
interburst intervals peak between 1 and 1.5 s. Very few intervals are between 2 and 10 s. (B) 64% E-36% 1. The interburst intervals begin
to shift toward shorter intervals that are less than 1 s. There are more intervals in the 2—10 s range. (C) 54% E-46% 1. There is a marked shift
with a cluster of interburst intervals between 0 and 500 ms. A bimodal distribution begins to appear. There is a considerable fraction of
intervals in the 2-10 s region. (D) 44% E-56% 1. This shift is very striking as there are essentially no interburst intervals between 0.5 and
2 s. The bimodal distribution is now well established and there is a spread of intervals between 2 and 10 s. These long intervals represent

the long superbursts that are seen in the raster plots of Figs. 2 and 3.
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FIG. 10. (Color online) Temporal autocorrelation. Normalized
autocorrelations were calculated from all active bursting electrodes
from each different network. Each graph depicts a different E/I
ratio. Within each graph is the temporal autocorrelation of each
active electrode. For the 80% E-20% I networks, there are no clear
periodicities, however, as the number of inhibitory cells increases, a
clearly defined temporal structure appears.

more spikes are recruited into bursting activity. While the
role of bursts in neural circuits is still an open question,
previously published reports have suggested that they may
facilitate efficiency of information propagation [33-35].
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Based on these works, we postulate that the “extra-burst”
spikes may be thought of as noise in the system and the
increase of inhibitory neurons increases the signal-to-noise
ratio, i.e., more bursts. In addition, the number of spikes per
bursts decreases as the number of inhibitory cells increases.

This suggests that initially, in the 80% E-20% I networks,
there is a tightly correlated cluster of neurons whose activity
can be considered to be a single functional module. As the
number of inhibitory neurons increases, the size of this func-
tional cluster decreases—there are simply fewer spikes
within a burst as the inhibitory fraction increases—but this
smaller cluster utilizes more of the available spikes. There
are fewer “errant” spikes, suggesting that the increase in in-
hibitory neurons may enhance the propagation of informa-
tion.

The process of culturing networks of neurons results in
the random formation of excitatory and inhibitory connec-
tions. We start with neuronal solutions that contain different
numbers of inhibitory neurons. When we pour each mixture
onto the MEA, the inhibitory neurons randomly distribute on
the substrate; we do not influence their spatial positions.
Therefore, we speculate that the addition of the inhibitory
neurons results in more ways for the network to self-
organize. While further studies are needed to elucidate the
dynamical mechanisms due to the inhibitory neuron influ-
ence, our results strongly suggest that their presence has dra-
matic effects on network temporal patterning. We show in
the temporal autocorrelation that when there is excessive ex-
citation, as in the case of the 80% E-20% I networks, no
periodic structure is present. However, at a critical inhibitory
concentration, periodicities or temporal order appears. A new
dynamical pattern emerges when spatial disorder and system
heterogeneity increase.
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