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We study the nonequilibrium aging dynamics in a system of quasihard spheres at large density by means of
computer simulations. We find that, after a sudden quench to large density, the relaxation time initially in-
creases exponentially with the age of the system. After a surprisingly large crossover time, the system enters
the asymptotic aging regime characterized by a nearly linear increase in the relaxation time with age. In this
aging regime, single-particle motion is strongly non-Fickian, with a mean-squared displacement increasing
subdiffusively, associated with broad non-Gaussian tails in the distribution of particle displacements. We find
that the system ages through temporally intermittent relaxation events, and a detailed finite-size analysis of
these collective dynamic fluctuations reveals that these events are not spanning the entire system, but remain
spatially localized.
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I. INTRODUCTION

Aging refers to the slow evolution with time of the physi-
cal properties of a disordered material suddenly quenched
into a glass phase �1,2�. This might refer to the evolution of
the density of a polymer glass, of the dielectric response in
an organic liquid, or of the height of a gently shaken sand-
pile. Aging is more easily detected by focusing on the dy-
namics of the system, for instance, by measuring correlation
or response functions. One can think of measuring the decay
of density fluctuations using light-scattering techniques in
colloidal glasses or the time-dependent magnetic response in
a spin glass. After several decades of aging studies in glassy
materials, these generic features are very well documented
�1–4�.

Much less is known, however, about the microscopic
mechanisms involved during aging and how these evolve
with time for two main reasons. First, the important theoret-
ical developments from the last decade about aging dynam-
ics mainly stemmed from “mean-field” types of approaches,
which provided detailed predictions about the behavior of
averaged dynamic quantities, but very little information
about microscopic motion �2�. Second, it is only relatively
recently that the microscopic dynamics of, say, molecules in
a supercooled liquid has been characterized in detail in equi-
librium conditions above the glass transition �5�; and, by
comparison, much less work has been done about the corre-
sponding aging regime at lower temperatures.

In this paper, we use numerical simulations to study the
aging dynamics of a model system designed to understand
the behavior of dense suspensions of colloidal hard spheres.
Hard spheres represent one of the simplest, and thus most
studied, models to study the glass transition. It is easily stud-
ied in simulations, and the model finds its experimental re-
alization using well-controlled colloidal suspensions �6,7�. In
contrast to molecular liquids, colloidal hard spheres can be
studied at the particle scale using microscopy techniques
�8,9�, while dynamic light scattering provides a convenient
way to characterize their dynamics in great detail �10,11�. It

should be noted that while a relatively small set of experi-
ments have been reported on the aging of colloidal hard
spheres �10–14�, much broader literature exists on the out-
of-equilibrium dynamics of a variety of more complex col-
loidal systems. Throughout this paper, we will in particular
make reference to findings for colloidal attractive gels
�15–17� and to systems with soft repulsive interactions, such
as closely packed soft spheres �18–21� or Laponite clay
platelets interacting via Coulomb repulsion �22–27�.

In this work, we will be concerned with three main ques-
tions:

�1� How does the structural relaxation slow down with the
aging time? While numerical simulations of model glasses
generically find that the structural relaxation time increases
roughly linearly �or sublinearly� with the sample age �28�,
some light-scattering experiments on gels and Laponite re-
port an unexpected exponential growth of the relaxation time
with sample age �15,22,23�, at least at short times.

�2� How do particles move during the aging regime? Con-
focal microscopy experiments report that colloidal particles
move very little in concentrated hard spheres to the point that
distinguishing thermal vibrations from genuine relaxation
becomes an experimental challenge �13,14�. In simulations
as well, particles move very little, leading to a very slow,
typically algebraic, decay of time correlation functions
�28–30�. This is in stark contrast with several experimental
reports of sharply decaying time correlation functions in ag-
ing molecular liquids seeded with colloidal particles or in
colloidal gels and Laponite, where compressed exponential
decay and ballistic particle motion over large distances were
reported �4,15,24,31,32�.

�3� How heterogeneous is the dynamics? Due to the key
role played by dynamic heterogeneity in equilibrium studies
of the glass transition �5�, similar signatures have been
sought in aging materials. Optical and confocal microscopy
studies revealed the existence of rare small-scale relaxation
events involving extended clusters of particles �8�, whose
size is modest and grows very little �18�, or not at all �13,14�,
during aging. This agrees with numerical simulations on
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model glasses, where four-point dynamic susceptibility ap-
pears to grow at a very slow rate with the sample age
�33,34�, suggesting that if collective displacements occur,
they are correlated over relatively short length scales. This
set of results is however in contrast with another series of
observations. Sudden relaxation events termed �rather dra-
matically� “earthquakes” �29� or “avalanches” �35,36� were
reported in numerical simulations of Lennard-Jones glasses,
and these were suggested to be spanning the entire system.
Similarly, highly intermittent dynamic fluctuations were ex-
perimentally recorded in several aging systems from polymer
glasses �37� to colloidal gels �15,16,26� and soft spheres
�19�, with the latter typically involving ballistic particle mo-
tions correlated over very large distances �16,17,19,20�.

The paper is organized as follows. In Sec. II, we present
the numerical model and techniques used in the present
study. In Sec. III, we describe the average aging dynamics
for the evolution of the energy and relaxation time scale. In
Sec. IV, we focus on the subdiffusive and heterogeneous dy-
namics at the single-particle level. In Sec. V we present re-
sults concerning the intermittent collective dynamics of the
system. In Sec. VI we discuss our results and conclude the
paper with some perspective for future research.

II. NUMERICAL MODEL AND TECHNIQUES

We perform molecular-dynamics simulation of dense sys-
tems of strongly repulsive particles interacting with a very
steep pair potential designed to model the behavior of colloi-
dal hard spheres �38�:

V�rij� = ���ij

rij
�36

, �1�

where � is an energy scale; rij = �ri−r j�, with ri being the
position of particle i; and �ij ���i+� j� /2, where �i repre-
sents the diameter of particle i. To prevent crystallization
occurring in dense systems of hard spheres, we introduce a
size polydispersity and draw the particle diameters from a
flat size distribution, �i /�� �0.8,1.2�, so that the average
diameter is �i=�, and the polydispersity � is given by

� =	�i
2

�2 − 1 
 11.5%. �2�

To study the dynamics of the system we solve Newton’s
equations for a system composed of N particles, using a ve-
locity Verlet algorithm �39� in a cubic box of linear size L.
We use periodic boundary conditions in the three directions
of space. We have studied two system sizes: N=4000 and
N=500. When dealing with averages, we shall report results
for the largest system size, while a comparison between the
two systems will allow us to perform a detailed comparison
of the dynamic fluctuations occurring during the aging dy-
namics as a function of system size.

We perform simulations in the NVT ensemble, and we
control the temperature by rescaling velocities every 100
molecular-dynamics time steps in order to maintain the ki-
netic energy to the desired constant value. Our choice for the
frequency of this rescaling results from a compromise: it was

chosen to be small enough not to introduce an additional
�spurious� slow time scale in the simulations and large
enough not to spoil computational efficiency. Note that this
technique does not suffer from the shortcomings of the crud-
est thermostat used in earlier work �28,29�, which introduced
a strong oscillatory behavior of correlation functions at short
times. Finally, we remark that our choice of Newtonian dy-
namics is not necessarily natural from the point of view of
colloidal physics, which would instead suggest the use of
Brownian dynamics. Recently, a detailed comparison of the
Brownian and Newtonian dynamics of concentrated hard
spheres in the aging regime detected no major physical dif-
ferences between the two approaches �30�, extending to the
nonequilibrium situations and numerical observations ob-
tained at thermal equilibrium �40,41�.

For the inverse power-law potential in Eq. �1�, density and
temperature cannot be controlled independently, as rescaling
the density by a factor � is equivalent to rescaling the tem-
perature by a factor �−1/12. Thus, we fix the temperature and
energy scales, kBT=�=1 /3, and simply vary the density �
=N /L3 of the system �38�. To ease the comparison with hard-
sphere experiments, we express our results using the volume
fraction, �, rather than density �, where

� =
��

6N
�

i

�i
3. �3�

In the following, we express length scales in units of � and
time scales in units of �0=�	m /�, where m is the mass of the
particles. We use a time discretization 	t=0.01�0, which en-
sures a proper integration of the equations of motion.

We shall study the aging dynamics of samples in the
range �=0.553–0.662. To obtain reproducible results, we
need to produce fully disordered initial states. To this end,
we first equilibrate the system at a very low volume fraction
�=0.14. We then compress the system very rapidly to the
desired final volume fraction. The compression is done in
small successive steps in order to avoid large overlaps lead-
ing to very large repulsive forces. The age tw of the system is
counted from the time when the system reaches the final
volume fraction. To increase the statistical significance of our
results, we have performed five independent runs at each
volume fraction with N=4000 particles, starting from inde-
pendent configurations compressed from the fluid at �
=0.14. During the course of the simulations we found no
sign of incipient crystallization in the system, while crystal-
lization was a major obstacle in an initial set of studies using
a smaller polydispersity, �
6%, for which we do not
present results.

We have previously studied the equilibrium dynamics of
this system �11�. We found that the dynamics slows down
considerably when � increases above �
0.50. Fitting the
increase in the relaxation to a power-law divergence at some
critical volume fraction �c, we obtained �c
0.592. This fit
then locates the �apparent� mode-coupling singularity for this
system �42�, which should serve as a reference volume frac-
tion for the aging studies below since it becomes very diffi-
cult to reach thermal equilibrium within the accessible nu-
merical time scales when � increases beyond �c.
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III. TOWARD THE ASYMPTOTIC AGING REGIME

We now present the results of our study, starting from the
time evolution of the simplest quantity we can monitor, the
potential-energy density, defined as

ep�tw� =� 1

N
�
i=1

N

�
j
i

V�rij�
 , �4�

where the angular brackets stand for an average over inde-
pendent initial configurations. We present representative re-
sults for the time evolution of ep�tw� at large densities in Fig.
1.

The central observation from this figure is that, at these
large densities, the potential energy keeps evolving over the
6 decades of simulation time and never reaches an
asymptotic plateau. This simply confirms that thermal equi-
librium cannot be reached at these volume fractions, because
the equilibrium relaxation time is much larger than the maxi-
mum time accessible to our simulations. More in detail, we
also observe that the energy evolves initially quite rapidly,
decreasing by a factor of about 2 when time increases from
tw=1 to tw=102, while it evolves only by a few percent when
time further increases by two additional decades. Thus, we
clearly see the effect of “aging” since dynamical evolution
slows down considerably as the age of the system increases,
as is well known from decades of experimental aging studies
in many different materials.

To describe the slow evolution of the potential energy, we
fitted our data to both a power-law decay, ep�tw�=A1tw

−a+B1,
and a logarithmically slow evolution, ep�tw�=A2�ln tw�b+B2.
We find that both fits give an equally good description of the
final slow evolution of the potential energy. The fit param-
eters, a
0.2–0.3 and b
0.1, confirm that the evolution of
the energy is indeed extremely slow.

We also find that the fits only hold when tw is very large:
the first few decades of the simulation, corresponding to a
faster evolution of ep�tw�, are not well described by this
asymptotic slow decay. This implies that a relatively long
time is needed for the system to enter the asymptotic aging
regime. Moreover, we find that the time �a required to enter
the asymptotic regime increases when density increases, and
the system is quenched deeper into the glassy state. This
implies that considerable care must be taken when perform-
ing data analysis of the aging regime since it already takes a
large part of the simulation simply to enter the final regime,
indicated by the arrows in Fig. 1. It is likely that the first
regime corresponds to faster processes where the largest
overlaps created during the compression are reduced, pro-
ducing heat which is then removed by the thermostat. Thus,
no “universal” characteristics are to be expected in this time
regime, which might well depend quite strongly on the de-
tails of the preparation procedure or on the chosen thermo-
stat. Note that �a
102��0 for the data presented in Fig. 1,
meaning that scaling behavior might only be observed in the
demanding limit of

tw � �a � �0. �5�

It is crucial to recognize the existence of two distinct aging
regimes in order to analyze properly the scaling properties of
dynamic functions in the asymptotic aging regime, as we
find that these two distinct regimes in fact affect most of the
measurements we made in our simulations. In Fig. 2 we
show the behavior of the self-intermediate scattering func-
tion following a quench at �=0.647. This two-time quantity
is defined as

fs�tw,�� =� 1

N
�
j=1

N

eiq·�rj�tw+��−rj�tw��
 , �6�

and we perform measurements at q=7.8, close to the first
peak in the static structure factor. As is well known, two-time

FIG. 1. Aging of the potential-energy density �Eq. �4�� for �
=0.647 and �=0.662. Data are equally well fitted with algebraic,
A1tw

−a+B1, or logarithmic, A2�ln tw�b+B2, time dependence for wait-
ing times larger than a surprisingly large crossover time scale �a

indicated by arrows.

FIG. 2. Self-intermediate scattering function �Eq. �6�� for �
=0.647 in a log-log representation. The long-time decay is fitted
with two power-law decays for tw��a
50, a single one for tw


�a, as shown with full lines. The exponent for the latter is nearly
constant, 
−0.15. The horizontal dashed line indicates fs=1 /e.
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quantities reveal the nonstationary evolution of the system in
a very direct manner. In agreement with previous work
�28–30�, we find that the decay with the delay time � of
fs�tw,�� occurs in a two-step manner, with the slow decay
being a strong function of the waiting time tw. The faster
initial decay is much less sensitive to the waiting time and
corresponds physically to particle vibrations in a nearly fro-
zen amorphous structure. Notice that our choice of a thermo-
stat removes the strong short-time oscillations reported in
earlier work �28,29�.

The existence of two distinct aging regimes is obvious
from these data since the slow decay of fs clearly shows a
crossover for time delay � such that �+ tw
�a
50, as
shown in Fig. 2, while the data become simpler to describe
when tw
�a as the entire decay then takes place in the
asymptotic long-time regime defined by Eq. �5�. As found in
other systems �29�, we find that the long-time decay of the
self-intermediate scattering function is well described, in the
aging regime, by a power law fs�tw,����−
, as indicated in
Fig. 2 by the full lines. As noted before, such an algebraic
decay contrasts with equilibrium measurements at lower vol-
ume fraction, which typically display stretched exponential
relaxations. Stretched exponential decays are only seen for
shallow quenches when a crossover toward thermal equilib-
rium is possible. The small value of the exponent 

0.15
means that relaxation occurs over a very broad time window,
and that it is not possible to define a “typical” relaxation time
for the system.

Nevertheless, to quantify further the aging of the dy-
namics, we follow the common practice and define an

-relaxation time �
�tw� from the time decay of fs as
fs�tw,�
�=1 /e, as indicated by the horizontal dashed line
in Fig. 2. In Fig. 3, we report the evolution of �
�tw�
with waiting time for all volume fractions investigated in
this work, from �=0.553 to �=0.662. Again, we observe
two distinct regimes for the evolution of �
�tw�. While

for tw��a, �
 seems to increase exponentially with waiting
time,

�
 � exp�ctw�, tw � �a, �7�

with c being a numerical constant; its growth is better de-
scribed by an algebraic law at long times, tw
�a, which is
well compatible with a so-called “simple aging” behavior
�2�,

�
 � tw, tw � �a. �8�

This simple aging behavior is shown with full lines in Fig. 3,
which describes reasonably well, within statistical accuracy,
our data from �=0.605 up to �=0.647. Of course, longer
simulations would be required to establish whether Eq. �8�
remains true over a wide range of time scales and volume
fractions.

In agreement with the observations in Fig. 1, we find that
it takes an increasingly long time for the system to enter the
asymptotic �simple� aging regime when � increases. For the
larger � studied, �=0.662, the simple aging regime is not
reached during the course of our simulations, and the system
appears to be in a crossover between Eqs. �7� and �8�, and
thus it undergoes an effective “superaging” dynamics, i.e., its
relaxation time increases faster than its age. Finally, the op-
posite “subaging” behavior is found when volume fraction is
not very large, for instance, �=0.592, because the system is
crossing over at large time toward thermal equilibrium, so
that �
 saturates at long waiting times to its equilibrium
value. This behavior is in good agreement with the observa-
tion of a similar subaging behavior in Ref. �30�, where a
single volume fraction was studied.

All these observations show that a complex behavior of
�
, as often reported in numerical works �28,43� and experi-
ments on colloidal gels and Laponite �15,22,23,44�, may be
due to the occurrence of multiple crossovers which are
highly sensitive to volume fraction. These observations are
also in agreement with the common observation of subaging
behavior in aging molecular liquids, for which experiments
are traditionally performed not very far below the glass tem-
perature �1,2�. Exponential growth of the relaxation time
sometimes �but not always� followed by algebraic growth
has been reported in a few experiments on colloidal glasses
or gels as well �15,22,23�. Our results thus suggest that this
exponential growth might well be a transient behavior, which
can persist, however, over a very large time window, in par-
ticular for very deep quenches. Our results also highlight
the difficulty of analyzing the scaling properties of two-
time dynamic quantities in numerical simulations, since the
asymptotic aging regime is only accessed after a time �a,
which can be very large, thus decreasing the window where
universal aging properties can be probed. This might well
explain some conflicting results and analyses reported in the
literature regarding, e.g., the proper scaling behavior of the
self-intermediate scattering function in Lennard-Jones
glasses �45,46�.

IV. SUBDIFFUSIVE AND HETEROGENEOUS DYNAMICS

The above findings that the energy decays very slowly
while time correlation functions decay in an algebraic man-

FIG. 3. Evolution of the relaxation time �
�tw� for different vol-
ume fractions. The system at �=0.553 reaches equilibrium �hori-
zontal line�. A simple aging regime �
� tw, indicated by the full
lines, is reached for larger densities, after a transient regime where
�
 grows exponentially with tw, indicated with a dashed line which
ends for tw
�a.

EL MASRI, BERTHIER, AND CIPELLETTI PHYSICAL REVIEW E 82, 031503 �2010�

031503-4



ner indicate that there is actually very little dynamics taking
place in the system. To confirm this notion, we measured the
averaged mean-squared displacement,

	r2�tw,�� =� 1

N
�
i=1

N

�ri�tw + �� − ri�tw��2
 . �9�

In Fig. 4, we present the time evolution of the mean-squared
displacements at volume fraction �=0.647 measured at dif-
ferent waiting times, using both a standard log-log represen-
tation �inset� and a linear-logarithmic representation �main
plot�. As found in Fig. 2, for the self-intermediate scattering
function, the dynamics proceeds again in a two-step fashion
with a rapid ballistic regime at short time, followed by vi-
brations of the particles in a frozen amorphous structure re-
sponsible for the plateau behavior at intermediate times ob-
served in Fig. 4. Eventually a much slower waiting-time-
dependent structural relaxation occurs, which becomes
slower when tw increases. This implies that the aging of the
system corresponds, at the microscopic scale, to a dramatic
slowing down of single-particle displacements, as found in
experiments �12,13,18�.

It is significant that in order to represent graphically the
behavior of the mean-squared displacements, we had to use a
linear scale for its amplitude, with a range which remains
smaller than 	r2=0.5. This implies that over the entire dura-
tion of the simulation, particles—on average—move a dis-
tance which is smaller than the mean particle diameter: de-
spite the nontrivial aging dynamics we discussed, it should
be clear that the structure of the material remains in fact
almost frozen as soon as the system is quenched in the glassy
phase, with essentially no large-scale dynamics taking place.

The linear representation in Fig. 4 also confirms the
existence of the two distinct aging regimes discussed above,
thus directly revealing the influence of the time scale �a
on the dynamics at the particle scale. Again, the data ob-
tained for tw��a present a crossover for a delay � given by

�+ tw
�a
50, as seen in Fig. 4. Thus, in the following we
again focus on waiting times that are larger than �a, which
we believe to reflect better the universal quench-independent
nature of the aging regime in concentrated hard spheres.

In the long-time regime, the dashed line in Fig. 4, which
corresponds to a diffusive growth, 	r2��, is obviously an
incorrect description of our data since the displacements
seem to increase much more slowly than diffusively. As
shown in the inset, a subdiffusive law describes our results
very satisfactorily,

	r2�tw,�� � ��, tw � �a, �10�

where ��1 is an exponent characterizing the subdiffusion.
We have measured � over a broad range of waiting times

and volume fractions, and we present its evolution in Fig. 5.
Apart from the low volume fractions where �diffusive� ther-
mal equilibrium is reached rapidly, we systematically find
that the system obeys subdiffusive rather than diffusive be-
havior. At a given volume fraction, the system gets closer to
equilibrium for larger tw, and correspondingly we find that
the exponent � increases with the age of the system, although
it always remains very far from its equilibrium diffusive
value �=1. Note that an increasing � does not imply that
particles move faster at large waiting times, as the prefactor
in the power law �10� is itself a decreasing function of tw,
which implies that the total amplitude of the particle dis-
placements indeed decreases with the age of the system.

As volume fraction increases, the system is quenched
deeper and deeper into its glass phase, and deviations from
diffusive behavior are correspondingly larger, which trans-
lates into a subdiffusive exponent � which gets smaller when
� increases �see Fig. 5�. This simply means that particles
move less and less when � becomes larger, which is physi-
cally expected.

While the mean-squared displacement quantifies the aver-
age dynamical behavior of the system, it does not convey
much information on dynamic fluctuations, which are recog-
nized as an important feature of the single-particle dynamics
in glassy materials. To quantify this “dynamical heterogene-

FIG. 4. Mean-squared displacements �Eq. �9�� at �=0.647 with
symbols as in Fig. 2. The dashed line indicates diffusive behavior.
Inset: log-log plot of the data for tw
�a
50 and large � with
subdiffusive fits �Eq. �10��, indicated with full lines.

FIG. 5. Evolution of the subdiffusive exponent � for various tw’s
and �’s. The exponent deviates further from its equilibrium diffu-
sive limit �=1 for smaller tw and larger �.
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ity” during aging, we measure the probability distribution
function of the single-particle displacement, also known as
the self-part of the Van Hove correlation function:

Gs�x,tw,�� =� 1

N
�
i=1

N

��x − �xi�tw + �� − xi�tw���
 , �11�

where xi�t� represents the projection of ri�t� along the x axis.
To improve the statistics, we use the isotropy of the system
and further average Gs�x , tw,�� along the three directions of
space. For simplicity, we keep the notation Gs�x , tw,�� for
the Van Hove function averaged over the x, y, and z direc-
tions.

To gain deeper insight into the subdiffusive behavior de-
scribed above, we present in Fig. 6 the typical shape and
evolution of the Van Hove function measured for �=0.647,
for a large waiting time tw=2451, in the asymptotic aging
regime, and a delay � within the long-time subdiffusive re-
gime. The data are presented in a linear-logarithmic scale,
where Fickian behavior leading to a Gaussian shape of the
particle distribution would appear as an inverted parabola, as
shown by the dashed lines. These data are highly reminiscent
of the equilibrium findings that Van Hove functions are well
described at short displacements by a Gaussian form, with
tails that are much broader than the Gaussian prediction
�8,9�. This implies that a small fraction of the particles move
significantly farther than what is expected from a purely dif-
fusive and homogeneous process. This is the most basic ob-
servation revealing that the system is dynamically heteroge-
neous and can be described, in a first approximation, as
being composed of distinct families of “slow” and “fast”
particles. This is a well-established distinctive feature of
many disordered glassy materials �5�.

How should we describe the functional form of the tails of
these distributions? At thermal equilibrium, it is now under-
stood that the tails are well described by an exponential
�rather than Gaussian� decay, Gs�x ,���exp�−�x� /��, for �

corresponding to the 
-relaxation time scale �47�. The physi-
cal origin of the exponential, detailed in Refs. �47–49�, is
due to the stochastic nature of the diffusion process in disor-
dered materials, which is well described by the formalism of
continuous time random walks �CTRWs� �50�. In this de-
scription, particles in a dense supercooled liquid undergo a
succession of long periods of vibrations within the cages
formed by their neighbors, followed by rapid “jumps.” Both
the size of the jumps and, more importantly, the time scale
separating them are statistically distributed quantities. The
existence of these statistical distributions directly accounts
for the exponential form of the tails in the Van Hove func-
tions �47�.

The natural extension of these considerations to the non-
equilibrium aging regime studied in the present work is the
aging continuous time random-walk �ACTRW� formalism
�51�, whose main features are those of the CTRW recalled
above. The only difference lies in the functional form used
for the distribution of times separating the jumps, which ac-
quires “fat” non-normalizable tails in the aging regime, in
direct analogy with the trap model introduced by Bouchaud
to describe aging dynamics in glasses �52�. In this approach,
the tails of the jump time distribution decay as ��t�� t−1−�,
where ��1 is the subdiffusion exponent introduced in Eq.
�10�, while the tails of the self-part of the Van Hove function
are not exponential anymore, but are instead asymptotically
described by �53�

Gs�x,tw,�� � �x�−�exp�− ��x�/���� , �12�

where the exponents � and � are related to the subdiffusion
exponent �; in particular,

� = 2/�2 − �� , �13�

so that �=2 �Gaussian� is recovered when �=1 �Fickian dif-
fusion�. For subdiffusive processes, 0���1, one expects
instead 1���2.

To test in detail the ACTRW picture, one should measure
the distribution of jump times ��t� and use it to directly
predict the mean-squared displacements and Van Hove func-
tions �54�. This is an interesting project, but it lies beyond
the scope of the present study. Instead, we more simply use
Eq. �12� as a theoretically motivated fitting formula for the
tails of the Gs distributions. As shown in Fig. 6, such a fit
describes the tails very well. We find a similarly good de-
scription for a broad range of volume fractions and time
scales. Unfortunately, our data are not accurate enough to
allow for a very precise determination of all the fitting pa-
rameters. Thus, the following results should be discussed at a
qualitative, rather than quantitative, level.

In Fig. 7 we present the evolution of the exponent � de-
scribing the tails of the Van Hove functions in the asymptotic
subdiffusive aging regime. We remark that these data have
considerably more scatters than the data for the subdiffusive
exponent �, confirming our difficulties to obtain a reliable
determination of � from the numerical data. Regardless of
the noise, we note that � values are in the interval �
� �1,2�, as expected from Eq. �13�, suggesting that our de-
scription is physically sound. Moreover, the data at large
density present a systematic evolution of �, which increases

FIG. 6. Distribution of single-particle displacements �Eq. �11��
for �=0.647, tw=2451, and various �’s indicated in the figure.
While a Gaussian �dashed lines� fits the center of the distribution,
the tails are broader and well described by Eq. �12�, as shown by
the full lines.
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toward 2 with tw. Assuming that Eq. �13� is correct, this
would imply that � increases toward unity with tw, as indeed
is observed in Fig. 5. The data at moderate volume fractions,
��0.60, are more difficult to interpret as � seems to de-
crease with tw in this regime, while � was found to increase.
This could be due to the fact that, for �=0.592
�c, the
subdiffusive aging regime is crossing over toward equilib-
rium during the simulation, and so the results could be a
subtle combination of the exponential tail reported at inter-
mediate times for equilibrium dynamics �47� and the subdif-
fusive regime found deeper in the glass and described in the
present study.

V. INTERMITTENT DYNAMIC FLUCTUATIONS

Our study of single-particle dynamics suggests that par-
ticles undergo very little dynamics, leading to a subdiffusive
growth of mean-squared displacements, associated with a
broad distribution of particle displacements. The picture of
ACTRW which we used to describe our data is very similar
in spirit to Bouchaud’s trap model, and both suggest that the
aging dynamics of concentrated hard spheres is a temporally
intermittent process �55�. It is the aim of this section to es-
tablish whether this picture is indeed correct.

To this end, we must turn to collective dynamic observ-
ables. We resolve the aging dynamics in space and time and

focus on f̃ s, the instantaneous �unaveraged� value of fs. We
present in Fig. 8�a� the results of independent realizations of
the dynamics at a given waiting time tw=2451 and volume
fraction �=0.637. For this system, containing N=4000 par-
ticles, we observe small run-to-run fluctuations, which show
that resolving the temporal evolution of the dynamics in a
system of linear size L�15� is not sufficient to reveal sig-
nificant dynamic fluctuations.

Thus, we improve our spatial resolution and repeat this
analysis for a smaller system with L�7.5� which contains
N=500 particles �see Fig. 8�b��. The data in Fig. 8 show that

run-to-run fluctuations of f̃ s become larger when N is

smaller, as expected. However, we emphasize that the nature
of the dynamic fluctuations seems to change qualitatively
when the size is reduced. For a single realization of a quench
with a small enough number of particles, the decay of the
self-intermediate scattering function in the long-time regime

is highly intermittent, as shown by sudden “drops” of f̃ s �29�.
From one run to another, both the temporal location and the
amplitude of these drops vary considerably, indicating that in
each run the dynamics proceeds via temporally intermittent
relaxation events that mobilize a finite fraction of the whole
system. However, the comparison with the fluctuations ob-
tained with N=4000 suggests that the spatial extension of
these intermittent events does not increase with the system
size �at least not very rapidly�, but instead they tend to re-
main spatially localized.

Note that this finding could be due to a spurious finite-size
effect since an alternative interpretation of the data shown in
Fig. 8 could be that sudden decorrelations in the system only
occur when the system is too small, and these events are not
observed in a bigger system because they disappear alto-
gether. To disprove this interpretation, we reanalyze a single

FIG. 7. Evolution of the exponent � obtained by fitting the tails
of the distribution of particle displacements to Eq. �12�, for tw

=2451 and several �’s and �’s.

FIG. 8. Instantaneous �unaveraged� intermediate scattering func-

tion f̃ s�tw=2451,�� for the system at �=0.637 and five independent
quenches, measured in systems with �a� N=4000 and �b� N=500.
While small run-to-run fluctuations are observed in �a�, several sud-
den decorrelation events are observed in �b�.
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quench with N=4000 particles and further decompose the
computation of the correlation function in eight distinct sub-
systems, each comprising 500 particles and corresponding to
a cubic sub-box of linear size L /2. In Fig. 9, we present the
result of this analysis. Remarkably, we find that in a single
quench, some parts of the system might indeed undergo the
type of sudden rearrangement seen in N=500 particles runs,
but in some other parts decorrelation events are not neces-
sarily seen. This is clearly visible in the top graph, where

representative f̃ s’s for various sub-boxes are shown: some
have large decorrelations while others do not decay. Note
moreover the existence of important subsystem-to-subsystem
fluctuations, indicating a large degree of independence of the

relaxation dynamics within different subsystems of the same
sample.

To further illustrate this feature, we highlight in the bot-
tom panel of Fig. 9 those particles that have contributed most
to the dynamics between the two times shown by the arrows
in top panel. To this end we select particles that have moved
by the largest amount, and thus contribute to the non-
Gaussian tails of the Van Hove distributions shown in
Fig. 6. Although the threshold between fast and slow par-
ticles is not very sharp, we find that fast particles represent a
small fraction of about 4–5 % of all particles, in agreement
with previous findings �56�. In the snapshot of Fig. 9, we
highlight the 5% most mobile particles. Clearly, individual
rearrangement events are confined to a fraction of the total
volume �in that case a corner of the box�, thus affecting
significantly only the correlation function of the correspond-
ing sub-box. We conclude that in a large system the aging
dynamics occurs through an intermittent succession of spa-
tially localized decorrelation events, with no obvious “con-
finement” effect imposed by the use of a too small system
size, at least for the two system sizes used in this study.

Although suggestive, the above finite-size analysis re-
mains qualitative. Therefore, to confirm quantitatively both
the absence of serious finite-size effects and the spatially
localized nature of decorrelation events, we need to quantify
more precisely how extended is the collective aging dynam-
ics in our simulations. To this end, we have measured the
variance of the spontaneous fluctuations of the self-
intermediate scattering function, also known as a four-point
dynamic susceptibility �33,34�:

�4�tw,�� = N�� f̂ s
2�tw,��� − � f̂ s�tw,���2� , �14�

where f̂ s represents the instantaneous value of fs. With this
definition, �4 becomes independent of the system size in the
thermodynamic limit, with an amplitude that gives direct ac-
cess to the typical number of particles relaxing in a corre-
lated manner during aging �57,58�. In the presence of finite-
size effects, the amplitude of �4 saturates to a system-size-
dependent value �59�. The data for N=500 and N=4000
shown in Fig. 10 are essentially the same, within our statis-
tical accuracy, for both system sizes, and �4 reaches a value
near �4
10 for time scales corresponding to the slow relax-
ation of the correlation function, thus confirming the absence
of finite-size effects in our data, which physically implies
that the relevant relaxation events are spatially localized in
our system. It is interesting to note that �4 peaks at a modest
value of about 10–20. A possible interpretation is that inter-
mittent relaxation events involving a larger �but finite� num-
ber of particles, as depicted in the snapshot in Fig. 9, are also
rather sparse and sporadic.

VI. DISCUSSION

We studied numerically the aging dynamics of a concen-
trated system of nearly hard spheres over a broad range of
volume fractions and a large time window. We addressed the
three central questions presented in the introduction, con-
cerning the evolution of the dynamics, single-particle mo-
tion, and the heterogeneous nature of the dynamics.

FIG. 9. �Color online� Top: intermediate scattering functions

f̃ s�tw=2451,�� measured in subsystems containing N=500 particles
within a larger N=4000 system. The variability between subsystems
in a single realization demonstrates that intermittent decorrelation
events are spatially localized. Bottom: snapshot of the N=4000 sys-
tem showing the 5% most mobile particles over the time interval
shown by the two arrows in the top panel ��=1174 and 2789, re-
spectively�. These most mobile particles, drawn with a larger size,
are essentially confined to a corner of the simulation box.
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We found that over the 6 decades of aging time covered
by our simulations, the structural relaxation continuously
slows down, as expected for any aging system, but we
showed that an asymptotic aging regime is only accessed
after a time scale �a, which can become quite large for dense
systems. Interestingly, we found that the relaxation time
�
�tw� first increases exponentially, as observed in some ex-
periments on colloidal gels and repulsive Laponite platelets
�15,22,23�, before crossing over to a form compatible with
simple aging, �
� tw, at large times tw��a. In the initial
regime, we also found that the energy density decays very
quickly, suggesting that the system evolves rapidly from its
highly disordered initial state to form a nearly frozen struc-
ture, which then ages more slowly. Thus, this initial regime
is likely quite sensitive to the detailed initialization proce-
dure of the system both in simulations and experiments. The
universal features of the aging dynamics of concentrated
hard spheres should be discussed for the second regime only,
and our simulations suggest that, once care has been taken of
the above-mentioned crossovers, concentrated hard spheres
follow a simple aging form, as indeed found for very many
glassy materials �1,2�. At lower volume fractions, subaging
behavior can be observed because the dynamics eventually
crosses over toward equilibrium.

In the aging regime, we found that particle motions are
very restrained, with particles moving on average less than
their own diameters over the entire duration of the simula-
tions. In the aging regime, tw��a, we found that the self-
intermediate functions decay algebraically at long times, in
agreement with several simulations of soft and hard particle
systems �28–30�. This is also in agreement with recent ex-
periments performed on colloidal suspensions that are dense
enough, so that the aging regime does not cross over at long
times toward equilibrium behavior �10,11�.

We also found that single-particle motion is subdiffusive,
	r2�tw,�����, with ��1. This behavior is actually quite
consistent with the results obtained by optical and confocal

microscopy on hard and soft colloids, where diffusive behav-
ior is not reached in the experimental time window
�13,14,18�. This result is also in broad agreement with earlier
numerical work �28�, although subdiffusion was never de-
scribed in detail before. We have suggested that a natural
theoretical framework to analyze our results should be the
ACTRW, i.e., the nonequilibrium extension of the random-
walk picture used to describe single-particle motion at ther-
mal equilibrium near the glass transition �47,48�. This for-
malism makes a number of detailed predictions for the aging
regime �51,55�. Here, because of a lack of statistics, we were
only able to show that our data are in qualitative agreement
with this picture, which can link the shape of the distribution
of particle displacements to the subdiffusion exponent. It
would be extremely interesting to extend this analysis in fu-
ture work and check in more detail how far the ACTRW
picture can be pushed to describe the aging dynamics of
concentrated hard spheres.

Finally, by resolving the measurement of time correlation
functions in space and time, we showed that the aging dy-
namics of concentrated hard spheres is highly intermittent,
with very sudden relaxation events separating at long periods
of time where very little dynamics occurs. Similar dynamic
events have been observed in numerical work before and
were coined earthquakes �29� or avalanches �36�. Although
these names and additional numerical evidence suggested
that these events could well be system spanning �36�, we
showed by using much larger system sizes that these events
remained actually spatially localized and do not grow with
system size. This is in fact quite consistent with the experi-
mental report of dynamic clusters that grow rather modestly
in aging colloidal samples �14,18�, and with numerical work
reporting a slow growth of four-point dynamic susceptibili-
ties in aging Lennard-Jones glasses �34�.

Thus, we find that in concentrated hard spheres the dy-
namics are intermittent as it occurs in several more complex
colloidal materials, but this leads neither to anomalous com-
pressed exponential relaxation for time correlation functions
�15� nor to ballistic motion over large distances
�15,17,19,20,60�, whose origin thus remains largely mysteri-
ous. This means that model systems such as hard spheres or
Lennard-Jones glasses are not good starting points to gain
insight into the nature of these intriguing aging dynamics. It
is not clear what ingredient these models are missing since
similar anomalous aging dynamics was recently reported in
simple hard molecular glasses approaching the glass transi-
tion �31,32�. It would be very interesting to discover a model
system displaying the same type of anomalous aging dynam-
ics, with a particle-scale dynamics that can be followed in
the simulations in the way similar to what we did in the
present paper for hard spheres.
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FIG. 10. The four-point susceptibility �4 �Eq. �14�� for tw

=2541, �=0.637, and two system sizes shows no system size de-
pendence, and its modest peak value, �4
10, confirms the local-
ized nature of decorrelation events.
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