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In its common implementation, the mode-coupling theory of the glass transition predicts the time evolution
of the intermediate scattering functions in viscous liquids on the sole basis of the structural information
encoded in two-point density correlations. We provide a critical test of this property and show that the theory
fails to describe the strong differences of dynamical behavior seen in two model liquids characterized by very
similar pair-correlation functions. Because we use “exact” static information provided by numerical simula-
tions, our results are a direct indication that some important information about the dynamics of viscous liquids
is not captured by pair correlations and is thus not described by the mode-coupling theory, even in the
temperature regime where the theory is usually applied.
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I. INTRODUCTION

Near the glass transition, the viscosity of a supercooled
liquid is very sensitive to small temperature changes, and
structural relaxation is likely a thermally activated process
over an effective free-energy barrier E, which grows upon
cooling, ��T���� exp�E�T� /kBT�. From a theoretical per-
spective, one wishes to understand and provide accurate pre-
dictions for E�T� in terms of the microscopic interactions
between particles in the liquid. However, even for the simple
case of spherical particles with short-ranged pairwise inter-
actions, establishing a link between microscopic interactions
and structural relaxation remains an open theoretical chal-
lenge �1�.

In this paper, we assess one of the theoretical approaches
of the glass transition, the mode-coupling theory �MCT�. The
theory emerged in the mid-1980s in the context of the theory
of simple liquids and provided predictions for the time evo-
lution of density autocorrelation functions from the knowl-
edge of the interaction between the particles �2�. These de-
tailed predictions come at the expense of a number of
approximations. First, density fluctuations are selected as the
relevant slow variables. Then, all forces are projected onto
density fluctuations as well. This is the step of interest for us
here, because it follows that microscopic interactions enter
the dynamical equations of motion in the form of pair and
triplet correlations, with the latter having little influence for
the Lennard-Jones �LJ� interactions studied in the present
work �3� and being routinely neglected. Finally, a Gaussian
factorization of four-point dynamic correlators is performed
to close the dynamical equations onto two-body correlators.
It is presumably this final step which is responsible for the
appearance of a power-law singularity of the relaxation time
and the well-known failure of MCT to describe “activated
processes” in deeply supercooled liquids �4–6�.

It is obvious that the evolution of the pair-correlation
function must have at least some influence on the dynamics.
Accordingly, some of the predictions that are obtained within
MCT compare reasonably well to numerical or experimental
work. For instance, MCT provides guiding information in
those cases where the changes in the static pair-correlation

functions brought about by adding every short-range attrac-
tions �7�, asphericity �8�, or particle softness �9� to a dense
system of hard spheres appear mostly responsible for the
changes in dynamics reported for these systems.

There are however also indications in the literature that
there may be relevant structural information which is not
captured by two-point functions. For instance, extreme cases
have been devised in which the slowdown of relaxation takes
place in the complete absence of pair correlations among
particles �10–12�. Broadly speaking, it is often stated that
some form of “local order” grows upon decreasing the tem-
perature in supercooled liquids �1�. This order can be, for
instance, �frustrated� icosahedral order �13� or the less well
characterized “amorphous order” encoded in high-order
“point-to-set” correlation functions �14�. In both cases, g�r�
is essentially blind to this growing static order, and the effect
of the latter on the dynamics �if any� would be completely
missed by MCT. Similarly, it is by now understood that
structural relaxation near the glass transition occurs in a spa-
tially correlated manner, with a dynamic length scale that
grows upon cooling, with again no corresponding change in
the pair-correlation function �15�.

Recently, we found that two model liquids with very simi-
lar structure at the level of pair-correlation functions display
distinct behavior upon cooling �16�. More specifically, we
studied a binary LJ mixture �17� and the corresponding re-
pulsive “Weeks-Chandler-Andersen �WCA� mixture” in
which attractive forces are truncated beyond the minimum of
the pair potential �18�, and we showed that the presence or
absence of the attractive forces determines to a great extent
the apparent energy barrier to structural relaxation and its
evolution with temperature and density. Therefore, these two
model systems represent a benchmark on which the above
ideas can be tested in much detail.

In a previous work, Voigtmann used liquid-state theory to
obtain the pair-correlation function of the Lennard-Jones and
the associated repulsive WCA models in the monatomic case
�19�. He then introduced the results in the MCT equations
and found that the two liquids were essentially sharing the
same dynamics, with nearly identical MCT critical tempera-
tures. In our simulations, on the other hand, we use a binary
mixture, and we detect small differences between the struc-
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tures of the two models. Thus, we directly insert the exact
�numerically determined� structure factors into the MCT
equations to test with a greater sensitivity the response pre-
dicted by MCT to small structural changes. Our main con-
clusion is that MCT fails to describe the difference in the
dynamical behavior of the two liquids. More generally, this
conclusion also suggests that microscopic theories of the
glass transition based on pair-correlation functions cannot
accurately predict the evolution of the structural relaxation
time.

In Sec. II we describe our models and method of analysis.
In Sec. III we present our results for the dynamics. Section
IV concludes the paper.

II. MODELS, METHODS, AND STATIC RESULTS

A. Static structure

We consider the binary mixture of Lennard-Jones par-
ticles introduced by Kob and Andersen �17�, as well as its
WCA truncation �18�. The system is a 80:20 mixture of A :B
particles interacting with the following interatomic pair po-
tential between species � and �, with � ,�=A ,B:

v���r� = 4��������

r
�12

− ����

r
�6

+ C��	, r � r��
c ,

�1�

and v���r	r��
c �=0. In this expression, the cutoff distance

r��
c is equal to the position of the minimum of v���r� for the

WCA potential and to a conventional cutoff of 2.5��� for the
standard LJ model; C�� is a constant such that v���r��

c �=0.
The value of the parameters ��� and ��� were designed to
obtain good glass-forming ability �17�.

We perform molecular-dynamics simulations of both sys-
tems in the NVE ensemble after proper equilibration at a
chosen state point characterized by a density 
 and a tem-
perature T. We use N=900–1300 particles �depending on the
density� and work with periodic boundary conditions. A
broad range of densities has been considered with 
 varying
from 1.2 to 1.6. Lengths, temperatures, and times are given
in units of �AA, �AA /kB, and �m�AA

2 /48�AA�1/2, respectively. In
line with the WCA theory �18�, the two liquid models are
compared at the same �
 ,T� state points. Their pressures then
differ, with the attractive interaction roughly providing a
temperature-independent negative shift. This also explains
why we perform comparisons at constant density instead of
the constant pressure conditions that would be more natu-
rally expected from experimental considerations.

From the numerical simulations we obtain both static and
dynamic properties. We use static information as input for
the MCT analysis described below, while the dynamical data
are used to test the accuracy of the theoretical results. For the
dynamics, we record the evolution of the time dependence of
the self-part of the intermediate scattering function,

Fs
��q,t� =

1

N�

�

j=1

N�

eiq·�rj
��t�−rj

��0��� , �2�

with q�AA
7.2, which corresponds to the position of the
peak of the total static structure factor at 
=1.2 �see Fig. 1�.

In this expression, N� denotes the number of particles of
species �, and r j

��t� is the position of particle j belonging to
species � at time t. From the decay of Fs

��q , t� for the ma-
jority species �=A, we obtain the relaxation time ��
 ,T�,
which we conventionally define as Fs

A�q ,��=1 /e. Some of
the data for ��
 ,T� were presented in Ref. �16�.

At the structural level, we measure the partial structure
factors S���q� which are needed as input for the MCT calcu-
lations. They are defined as

S���q� =
1

�N�N�
�
m=1

N�

�
n=1

N�

eiq·�rm
�−rn

��, �3�

which can be written in a more compact form as a 2�2
matrix S�q� whose matrix elements are the partial structure
factors S���q�.

We present a set of representative results for the partial
structure factors in Fig. 1 for 
=1.2 and in Fig. 2 for 

=1.6. The former corresponds to the canonical density at
which the Kob-Andersen mixture is usually studied �17�. For
each density, we present the data at two temperatures, corre-
sponding to the location of the MCT transition determined
either theoretically or by fitting the simulation data. Generi-
cally, the latter is lower than the former.
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FIG. 1. Partial static structure factors SBB�q�, SAA�q�, and SAB�q�
�from top to bottom at small q� at 
=1.2 near the theoretically
determined Tc of MCT �top� and close to the Tc obtained from
fitting the simulation data �bottom�. The pair structures of the LJ
and WCA liquids are very close, and the small deviations seem to
increase somewhat when T decreases.
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These data confirm the well-known fact that the LJ and
WCA models have a pair structure which is very similar,
even in the case of a binary mixture. This supports the idea
that the contribution of the attractive forces at the level of the
two-point structure can be considered as a small perturbation
and treated as such in theoretical liquid-state calculations
�18�. Looking more closely, we can nevertheless detect some
small differences between the two systems. These differ-
ences increase slightly when one lowers the temperatures at
constant density, as can be concluded, for instance, by com-
paring the two panels in Fig. 1. The agreement between the
pair structures of the two liquids becomes excellent when
density increases �see Fig. 2�. This is physically reasonable
since the steep repulsive core of the pair potential in Eq. �1�,
which is the same for both models, should play a more domi-
nant role at larger densities.

We have obtained S�q� for a large number of state points
at the densities 
=1.2, 1.4, and 1.6. We have then proceeded
in two steps. First, we have directly inserted those data into
the MCT dynamical equations presented below to obtain a
rough determination of the location of the MCT transition.
Then, we have used a smooth interpolation procedure to ob-
tain the partial structure factors in a small temperature win-
dow near the transition, because it is not possible to resolve
the structure directly from simulations with the accuracy
needed to characterize the MCT transition. This interpolation
procedure is however quite innocuous, as the structure
evolves in a mild and continuous manner in the temperature
regime where the interpolation has to be performed.

B. Mode-coupling theory

The mode-coupling theory of the glass transition �2� was
originally derived to describe the dynamics of Newtonian
systems �20�. A somewhat different derivation was also pro-
vided in the framework of the nonlinear fluctuating hydrody-
namics �21�. An analogous theory was later derived for
Brownian systems �22�. Here, we briefly present the latter
version of MCT which, for convenience, we use in the fol-
lowing.

The starting point of the theory is an exact equation for
the time evolution of the intermediate scattering functions
F�q , t� in terms of the so-called irreducible memory function,

�

�t
F�q,t� = − D0q2S−1�q�F�q,t�

− �
0

t

dt�M�q,t − t��
�

�t�
F�q,t�� . �4�

In this equation, D0 is the diffusion coefficient of an isolated
Brownian particle, and F�q , t� is a matrix whose elements are
the intermediate scattering functions F���q , t� defined as

F���q,t� =
1

�N�N�
�
m=1

N�

�
n=1

N�

eiq·�rm
� �t�−rn

��0��, �5�

and is such that F�q , t=0�=S�q�. The matrix of memory
functions, M�q , t�, can be expressed, in the mode-coupling
approximation, in terms of the intermediate scattering func-
tions F and structure factors S. The corresponding �lengthy�
expression can be found in Ref. �24�.

Equation �4� allows us to evaluate the time dependence of
the intermediate scattering functions. The only input required
is the static structure factor S�q�. It is easy to see that the
natural time unit for our system is �2 /D0. In the following,
all times are given in terms of this unit.

The numerical resolution of Eq. �4� is difficult because
one needs to describe the evolution of the intermediate scat-
tering function on very widely separated time scales. The
commonly used algorithm was first described in Ref. �23�;
here, we use the implementation described in great detail in
Ref. �24�. Briefly, the basic steps of the algorithm are as
follows. The integro-differential equation is discretized and
solved numerically for 2Ns steps with a finite time step of 
t.
After 2Ns steps are completed, the time step is doubled, and
the results from the initial 2Ns steps are mapped onto a new
equally spaced set of Ns values for the quantities needed to
continue the numerical algorithm. This mapping includes the
integrals as well as the intermediate scattering functions.
Then, the numerical algorithm is restarted with the new time
step and proceeds for another Ns time steps, and the mapping
is performed again. This procedure is followed until a con-
vergence condition is satisfied. In the present work we used
200 equally spaced wave vectors with spacing 
=0.2, with
the first wave vector being at kmin=
 /2 and the largest wave
vector being at kmax=39.9.
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FIG. 2. Same as Fig. 1 for 
=1.6. Here, the agreement between
LJ and WCA mixtures is nearly perfect at all temperatures.
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III. DYNAMICAL BEHAVIOR

A. Intermediate scattering functions

The solution of the MCT dynamical equations provides
the time evolution of the intermediate scattering functions
F���q , t�. We present a selection of data for the majority
component, �=�=A, at density 
=1.2 in Fig. 3. These data
have the standard shape obtained within MCT, whereby the
time decay stretches over many decades of time when ap-
proaching the MCT singularity and occurs in two widely
separated time scales. From now on, we focus on the slower
of these, corresponding to the structural �alpha� relaxation of
the system. Its time dependence is empirically well described
by a stretched exponential form,

F�q,t� � exp�− �t/���� , �6�

as commonly found in supercooled liquids. The data in Fig. 3
suggest that the stretching exponent � is essentially the same
at all temperatures �and so MCT data obey a time-
temperature superposition property� and is very close for
both LJ and WCA liquids, with ��0.87. We find similar
values and agreement for all densities up to 
=1.6. For 

=1.2 and q=7.25, Kob and Andersen reported a similar
value, �=0.85 �25�.

The intermediate scattering functions of the two models
superimpose at very high temperatures, T=3.0, when the
structure factors also show very good agreement. However,
when temperature is decreased, the dynamics of the WCA
model becomes faster than that of the LJ model; see the data
for T=1.0 in Fig. 3. The difference becomes more dramatic
as the mode-coupling singularity is approached and long re-
laxation times are obtained. Although this is reminiscent of
our numerical findings on the role of attractive forces in su-
percooled liquids �16�, we shall see below that MCT only
marginally accounts for this effect.

As in numerical simulations, we determine the struc-
tural relaxation time ��T ,
� through the relaxation
F���q ,�� /S���q�=1 /e. This relaxation time depends on the
wave vector q, the chosen species � and �. It is a priori
different from the time extracted from simulations where
only the incoherent part of the intermediate scattering func-
tion is considered. However, a simplifying feature of MCT
calculations is that the evolution of � is the same for all
observables near the transition. Thus, it does make sense to
focus on a given wave vector �provided it roughly corre-
sponds to typical interatomic distances: here, we choose the
maximum of the first diffraction peak�, to focus on the ma-
jority component of the liquid ��=�=A�, and to compare
these results to the simulation data for which the incoherent
scattering function is measured.

The only difference between the two sets of data shown in
Fig. 3 lies in the temperature regimes they cover since the
MCT transition of the WCA model occurs at a slightly lower
temperature than that of the full LJ model including the at-
tractive component of the potential. We now turn to a more
precise discussion of this difference.

B. Relaxation times

We now enter the core of our analysis and study in detail
the evolution with T and 
 of the structural relaxation time,
as predicted by MCT, and compare these theoretical results
to those from computer simulations. We first present in Fig. 4
our results in an Arrhenius plot, showing the evolution of
��T ,
� on a logarithmic scale against the inverse temperature
1 /T, for both the LJ and the WCA models, as measured in
MCT calculations and in simulations. We show results for

=1.2 and 
=1.6.

In this Arrhenius representation, the results of MCT cal-
culations appear almost “vertical,” because MCT predicts the
existence of a critical singularity Tc at which the relaxation
time diverges algebraically �2�. This divergence is not seen
in computer simulations, and so the simulation data look
qualitatively different.

A second striking observation from Fig. 4 is that MCT
clearly overestimates the temperature regime where slow dy-
namics sets in by about 100%. Thus, there is no range of
temperature where the theoretical calculations follow the
simulation results, even if a vertical shift �corresponding to a
trivial rescaling of the microscopic time scale� is allowed.

At high temperatures, a good empirical representation of
both MCT and simulation results is obtained by introducing
an Arrhenius-like temperature dependence,

� � �� exp�E�

T
� . �7�

Although there is no specific theoretical foundation for such
a fit, it often accounts quite well for high-temperature results,
even in experiments �26�. When fitting the data to Eq. �7�, we
obtain the values E��5.5 and E��4.2 for the LJ and WCA
systems within MCT, while the corresponding simulation
data are characterized by E��2.55 and E��2.0. The differ-
ent values found for the two models in the high-temperature
regime reflect the fact that attractive forces already play an
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FIG. 3. Normalized intermediate scattering function for the ma-
jority component for 
=1.2 and q=7.1, for both LJ �full lines� and
WCA �dashed lines� models obtained from the numerical solution
of Eq. �4�. The temperature decreases from left to right. LJ: T
=3.0,1.0,0.908,0.899,0.8975,0.8972,0.8971. WCA: T
=3.0,1.0,0.77,0.746,0.7425,0.7421,0.74198. Note that the two
sets of temperatures are not identical. The lower temperatures in
each set provide a good estimate of the Tc values for each model.
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important quantitative role in this regime, despite the very
little changes observed in static quantities. This effect was
reported before in the case of simple liquids �27–29�.

The role of attractive forces at high temperatures is par-
tially captured by our MCT calculations since we find theo-
retically a 25% change in E� between the two models. How-
ever, given that the predicted values are off by a factor of 2,
this agreement could well be fortuitous. At a density 
=1.6,
we find E��12 from simulations of the two systems, while
MCT again overestimates this value and predicts E��22.5
for both models. So, at high temperatures and large densities,
the difference between LJ and WCA mixtures vanishes both
in simulations and MCT calculations, but the activation en-
ergy predicted by the latter is still in error by a factor close to
2. It is interesting to note that there is nearly the same factor
of 2 in error for E� and for Tc �see below�, which suggests
that MCT does not merely “break down” at low T but is in
fact always quite inaccurate in its quantitative predictions for
the temperature evolution of the structural relaxation time,
even in the high-temperature liquid �30�.

The strong disagreement between MCT results and simu-
lations is well known �2� and is twofold: �i� MCT overesti-

mates the temperature regime where slow dynamics takes
place and �ii� the predicted algebraic divergence of the relax-
ation time is not observed. When fitting data to MCT predic-
tions, one can thus only find a modest temperature regime
where an algebraic divergence describes the data, and one
must simultaneously resort to some sort of rescaling or shift
of the control parameters. Since this gives considerable free-
dom in the data treatment, we adopt the following procedure,
shown in Fig. 4. At a given density, we first concentrate on
the LJ model. We then rescale � and T by adjustable time and
temperature scales in order to obtain the “best” collapse of
theory and simulations. We obtain temperature scaling fac-
tors of 2 for 
=1.2 and 1.9 for 
=1.6, which mirror the
factor of 2 in E� found above at high temperatures. Once this
rescaling is performed for the LJ model, we use the same
scaling factor for temperature in the WCA model. The results
are presented in Fig. 4. While the rescaling works well if T is
not too low in the LJ system, it performs very poorly for
WCA, even when density is as large as 
=1.6. This implies
that the different dynamical behaviors observed in simula-
tions for LJ and WCA models �16� are only qualitatively
reproduced by MCT and are considerably underestimated by
the theory at a quantitative level.

This last statement can be made more precise by deter-
mining the location of the MCT singularity. We first deter-
mine Tc within the theory by following the growth of � near
the transition, which is well described by an algebraic diver-
gence:

� � �T − Tc�−�. �8�

The value of the critical exponent � depends in principle on
the studied model. In Fig. 5, we show however that the value
�=2.4 actually describes both the LJ and the WCA models
for densities 
=1.2, 1.4, and 1.6. The values of the critical
temperatures are reported in Table I: Tc increases by a factor
of �4 when density increases from 1.2 to 1.6. As density
increases, the difference in critical temperatures between the
LJ and WCA models becomes smaller, decreasing from 17%
at 
=1.2 to 1% at 
=1.6 within the theory.

While the determination of Tc is unambiguous in MCT
calculations, this is not the case in simulations where the
MCT power law cannot be followed for arbitrarily large re-
laxation times. In practice, this means that the fitted values of
Tc and � obtained from simulation data are strongly corre-
lated and therefore depend on the chosen temperature range
for fitting. Thus, we decided to constrain our data analysis by
imposing the value of the exponent � obtained in the theo-
retical calculations. We then determined the value of Tc that
fits the data best with the exponent �=2.4. The quality of the
fits can be judged in Fig. 5, where the data for ��T ,
� are
plotted as a function of the reduced variable �T−Tc� /Tc in a
log-log representation where Eq. �8� should appear as a
straight line. The fit holds over about 2–3 decades in relax-
ation time, as commonly found in the analysis of numerical
and experimental data �2�, and deviations at low tempera-
tures occur similarly for both models at all densities. As
noted before �24�, it should be remarked that the algebraic fit
to simulation data is obtained in a range of �T−Tc� /Tc where
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FIG. 4. Comparison of the relaxation times obtained by MCT
�open symbols� and simulations �filled symbols� at 
=1.2 �upper
panel� and 
=1.6 �lower panel�. We both show the bare MCT data
and the data rescaled to provide the best collapse of the LJ data. The
rescaling factors for the temperature are 2 for 
=1.2 and 1.9 for

=1.6. These same factors are then applied with no further changes
to the WCA model and the obtained curve does not describe the
WCA data well.
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the theoretical predictions have not yet entered the critical
regime, which casts some doubts on the consistency of the
fitting procedure.

The values of the critical temperatures obtained by fitting
the simulation data are also reported in Table I. The values
for the LJ model are very close to those used in Fig. 4 for
rescaling the simulation data. �The rescaled MCT plots in
Fig. 4 and the fits shown in the lower panel of Fig. 5 are thus
fully compatible for the LJ model; on the other hand, we

have in purpose not used Tc of the WCA model in Fig. 4 in
order to illustrate the ability of MCT to capture the differ-
ence of dynamical behavior between LJ and WCA models.�
As found theoretically, the difference between the LJ and
WCA models is smaller at larger density, when the structure
factors become more similar �see Fig. 2�. However, the dif-
ference in critical temperatures decreases from 36% at 

=1.2 to 4% at 
=1.6 and is much larger than the MCT the-
oretical predictions at all densities �respectively, 17% and
1%�. Thus, the difference in the dynamical behavior of the
two models is only marginally captured by MCT calculations
and is quantitatively considerably underestimated.

IV. DISCUSSION

The structure of simple liquids is usually described in
terms of pair-correlation functions, and the development of
analytical theories to predict their evolution with density or
temperature from the knowledge of the interaction between
particles has been a major theoretical achievement �31�.
Whether knowledge of g�r� is enough to characterize the
structure and predict the dynamics of viscous liquids has
however been an open question in the field of the glass tran-
sition. This is a central issue for mode-coupling theory
which, in its common implementation, makes dynamical pre-
dictions from the sole knowledge of two-point density corre-
lations.

To address this issue we have used the pair-correlation
functions taken from molecular-dynamics simulations to ob-
tain MCT predictions for the relaxation time of two model
liquids characterized by similar pair structures, but very dis-
tinct dynamics �16�. We have found that MCT is unable to
account for these dynamical changes in any quantitative way.
In this case at least, the necessary structural input for the
dynamics of the viscous liquids is not merely encoded in
two-point density correlation functions. Accordingly, MCT is
bound to yield quantitatively inaccurate predictions. We note
that some small predicted changes are qualitatively correct,
such as the relative evolution of the high-temperature effec-
tive activation energy E� or the location of the mode-
coupling transition Tc, but they superimpose on MCT predic-
tions that are wrong by a factor of 2 in absolute values. As
mentioned in the introduction, there still remains a room for
applying MCT, as there exists physically relevant glassy phe-
nomena associated with important changes in the structure
that are captured by two-body correlations.

In a similar vein, the present work has been an opportu-
nity to test the idea, popularized in particular in the context
of MCT, that even small changes in the pair structure may
have dramatic consequences in the dynamics. For the case
under study, we have found that the small differences seen
between the structure factors of the two liquid models only
produce, within MCT, minor dynamical differences, thus
confirming Voigtmann’s results �19�. As already stated, these
MCT predictions dramatically underestimate the dynamical
changes observed in the simulations. An additional factor
explaining this discrepancy is the fact that MCT overesti-
mates by a large amount the location of the putative singu-
larity �empirically estimated by fitting simulation data�. As a
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(T − Tc)/Tc

τ
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,ρ
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Simulation

(T − Tc)/Tc

τ
(T

,ρ
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10110010−110−210−1

101
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105
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FIG. 5. MCT plot of the relaxation times for T	Tc in which the
algebraic divergence in Eq. �8� appears as a straight line. Top: the-
oretical curves fitted with the same �=2.4 for 
=1.2, 1.4, and 1.6
�from bottom to top�. Bottom: same for numerical simulations, but
note the difference in scales and the deviations occurring at low
temperatures. Data at different densities are vertically shifted, for
clarity. Shift factors are 1, 10, and 100 for LJ, and 0.4, 6, and 100
for WCA. Note that contrary to Fig. 4 the simulation data for LJ and
WCA are now scaled to different values of Tc.

TABLE I. Theoretical critical temperatures Tc for the LJ and
WCA models at different densities, and comparison with estimates
from fits to the simulation data.

1.2 1.4 1.6

LJ-MCT 0.8971 1.8677 3.528

LJ simulation 0.435 0.93 1.76

WCA-MCT 0.7419 1.7707 3.489

WCA simulation 0.28 0.81 1.69
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result, MCT predictions are based on structure factors mea-
sured at relatively high temperatures where differences be-
tween the WCA and LJ models are even less pronounced
�compare both panels in Fig. 1�.

Finally, as mentioned in the introduction, our work does
not address whether the failure of “g�r� determines the dy-
namics” MCT motto that is shown here is connected to the
failure of MCT to describe activated dynamics at low tem-
peratures. For instance, in their attempt to incorporate acti-
vated processes in the MCT framework, Schweizer and co-
workers �32� managed to avoid the MCT algebraic
divergence of Eq. �8�. However, in their approach, it is still
the pair-correlation function which determines the amplitude
of the free-energy barriers that have to be crossed dynami-
cally. It would thus be interesting to check whether in this
formulation too, a g�r�-based theory misses the difference of
dynamical behavior between the LJ and WCA liquid models,
despite the presence of activated processes.

To conclude, our present and previous �16� works show
that structural information not incorporated in two-body

density correlations likely plays an important part in driving
the slowdown of dynamics in viscous liquids. This raises
serious doubts on the ability of a number of analytical ap-
proaches to make quantitative predictions in supercooled
liquids. In this paper, we have only focused on MCT, and we
leave for a future publication a more general discussion of
the consequences of this finding. Our results also motivate
further research to detect more complicated forms of “hid-
den,” “amorphous,” or “frustrated” order in liquids ap-
proaching the glass transition.
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