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We implement a binary collision approximation to study pulse propagation in a chain of o-rings. In particu-
lar, we arrive at analytic results from which the pulse velocity is obtained by simple quadrature. The predicted
pulse velocity is compared to the velocity obtained from the far more resource-intensive numerical integration
of the equations of motion. We study chains without precompression, chains precompressed by a constant force
at the chain ends �constant precompression�, and chains precompressed by gravity �variable precompression�.
The application of the binary collision approximation to precompressed chains provides an important gener-
alization of a successful theory that had up to this point only been implemented to chains without precom-
pression, that is, to chains in a sonic vacuum.
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I. INTRODUCTION

The dynamics of pulse propagation in granular chains
continues to be of keen interest to physicists and engineers
both because of the theoretical challenges that it poses, and
because of the prospect of related technological applications.
Among other applications, it has been argued that under-
standing of pulse propagation in granular media may lead to
the development of new shock absorbers and of instruments
for detection of buried objects �1�. Most recently, a new non-
linear acoustic lens consisting of ordered arrays of granular
chains has been shown to be capable of generating high-
energy acoustic pulses and may point the way to improved
capability in a variety of devices �2�. While these applica-
tions involve propagation in higher dimensional granular
realms, a thorough understanding of the dynamics in one
dimension is often pursued as a way to lay the groundwork
for the problem, or even because the systems are actually
composed of arrays of granular chains. Theoretically, a
granular chain appears simple, and yet its discrete nonlinear
character immediately imposes severe difficulties on the de-
velopment of analytic methods to explain and predict the
behavior of energy pulses in even these simplest granular
environments. As a result, the available information is ob-
tained mostly from numerical �3–8� and occasionally from
experimental �9,10� results. The numerical approaches are
notoriously resource intensive, and the experiments are con-
strained by the particular experimental setup.

The numerical and experimental results have been supple-
mented with some analytic results that have proven ex-
tremely helpful and accurate. The accuracy is particularly
interesting in view of the fact that the two most successful

theories approach the problem from two essentially orthogo-
nal points of view, both of which have provided excellent
results. Historically, the first was based on a long-wavelength
approximation �11,12� that assumes that a chain can be
treated as a continuum augmented with first-order correc-
tions due to the discreteness of the system. This approach
was applied to granular chains in which the granules just
touch, so that there are no intergranular gaps but also no
initial precompression. The long-wavelength solution to this
problem brought to light the existence of solitary waves in
granular chains. This purely nonlinear scenario was dubbed a
“sonic vacuum” because it supports no sound waves. The
continuum approach has been applied in the absence �11–13�
as well as in the presence of dissipation �14�. The success of
the continuum approach is particularly noteworthy because it
presumes a pulse width that is large compared to the size of
the granules, and yet the observed pulse as well as the soli-
tary wave solution that emerges from this approach extends
over only a few granules. Further merits of this approxima-
tion include the fact that it allows an estimation of omitted
terms, it subsumes the weakly nonlinear and even linear
cases, and it in fact successfully predicts not only solitary
waves but also periodic waves and shock waves. By its very
nature, the continuum methodology is most easily applicable
to monodisperse or nearly monodisperse chains. While it has
been applied to a variety of chains with different granular
configurations and initial conditions �13�, the mathematics
becomes quite cumbersome.

A second alternative approach developed more recently is
particularly useful when the continuum approximation be-
comes more difficult to implement. It is based on a binary
collision approximation that presumes that intergranular col-
lisions involve only two granules at a time. This extremely-
short-wavelength approach has in fact been shown to yield
results that are even closer to numerical simulation results
for the “canonical” case of a chain of spherical granules with*arosas@fisica.ufpb.br
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initially no gaps and no precompression �15�. Not only does
this method yield highly accurate results for that case, but it
has been successfully applied to a number of other configu-
rations that are not easily accessible to the continuum ap-
proach, namely, to tapered �16�, decorated �17�, and ran-
domly decorated chains �18� and to one-dimensional
granular gases �19�. However, it has not yet been applied to
any kind of precompressed chain.

In this contribution, we study pulse propagation in a
granular chain of toroidal rings �o-rings� placed between
rigid cylinders that act as nonlinear springs. For such gran-
ules, the purely repulsive force characteristic of dry granular
materials is modified by the topological properties of the
o-rings, leading to a hard potential proportional to the sev-
enth power of the compression in addition to the usual softer
Hertz potential proportional to the compression to power 5/2.
We are directed to this particular system because it has been
studied both numerically and experimentally �5�. Here, we
make use of the binary collision approximation to study the
pulse velocity in such chains of o-rings, extending the ap-
proximation not only to a new geometry but also beyond the
case of a sonic vacuum to precompressed chains. The exten-
sion of the binary collision approximation to precompressed
chains provides an important generalization of a successful
theory that had up to this point only been implemented for
chains without precompression.

The paper is organized as follows. In Sec. II, we present
the equations of motion for the granular chain of o-rings and
we describe the binary collision approximation. Next, we
compare the results of this approach with those of the nu-
merical integration of the equations of motion in Sec. III.
Finally, in Sec. IV, we briefly summarize our results.

II. MODEL

Consider a chain of N equal o-rings, hereafter also called
the “granules.” The double power-law character of the elastic
interaction of the o-rings leads to the following equation of
motion for granule k in the interior of the chain,

dyk
2

d�2 = A��yk−1 − yk�3/2 − �yk − yk+1�3/2�

+ B��yk−1 − yk�6 − �yk − yk+1�6� + Fk/m , �1�

where yk is the displacement of the kth granule at time �
from its equilibrium position. Granule k is subject to the
external force Fk, and m is the mass of the cylinders sep-
arating the o-rings �which is much larger than the mass
of the o-rings�. The constants A=1.25�DE /md1/2 and B
=50�DE /md5 are constants that characterize the elastic
properties of the material �5�, where d and D are, respec-
tively, the cross-section and mean diameter of the o-ring, and
E is the Young’s modulus of the o-rings. For comparison
with experiments, we present the values for these constants
for the teflon o-rings used in �5�: E=1.46 GPa, D
=7.12 mm, d=1.76 mm, and m=3.276 g.

The granules at the ends of the chain must be considered
separately. While the leftmost granule does not have any
granule pushing it to the right, a constant force F1 may be

applied in this direction in the case of precompression.
Therefore, its equation of motion reads

dy1
2

d�2 = F1/m − A�y1 − y2�3/2 − B�y1 − y2�6. �2�

Similarly, the rightmost granule moves according to

dyN
2

d�2 = − FN/m + A�yN−1 − yN�3/2 + B�yN−1 − yN�6. �3�

Without precompression, Fk=0 for all granules, while for a
constant precompression, F1=−FN=F, and Fk=0 for all
other granules. In the case of a vertical chain subject to grav-
ity with labels running downward, Fk=kmg for k
=1,2 , . . . ,N−1 and FN=−Nmg, g being the acceleration due
to gravity. Since we are interested in pulse propagation, ini-
tially all the granules are at rest except for the leftmost or top
granule, which has an initial velocity v0. In the case of pre-
compression, either by an external constant driving force or
by gravity, the initial positions of the granules are the equi-
librium positions. For a chain in a sonic vacuum �that is,
without precompression�, initially the granules just touch
each other.

We proceed by defining the scaled variables �20�

yk = �v0
2

A
�2/5

xk, � =
1

v0
�v0

2

A
�2/5

t , �4�

in terms of which the equations of motion are written as

ẍ1 = f1 − �x1 − x2�3/2 − b�x1 − x2�6,

ẍk = fk + ��xk−1 − xk�3/2 − �xk − xk+1�3/2�

+ b��xk−1 − xk�6 − �xk − xk+1�6� ,

ẍN = − fN + �xN−1 − xN�3/2 + b�xN−1 − xN�6, �5�

where a dot denotes a derivative with respect to t and where
we have defined

b =
B

A
�v0

2

A
�9/5

, fk =
Fk

mv0
2�v0

2

A
�2/5

. �6�

Consequently, the parameter b measures the relative strength
of the two power-law terms vs the initial velocity, and fk
plays the role of the external force.

Binary collision approximation

The binary collision approximation is based on the as-
sumption that the pulse propagates through the chain by a
sequence of binary collisions. Since this is not exactly the
case, we must also specify the moment of passage of the
pulse from one granule to the next. We say that the pulse
moves from granule k to granule k+1 when the velocity of
the latter surpasses the velocity of the former. With this ap-
proximation, instead of having to take into account all the
equations of motion at once, we can focus on the interaction
of just two granules at a time. Since the granules in the
original chain are initially in equilibrium, so are the two
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granules in the binary collision approximation. Conse-
quently, the equations of motion of these two particles during
the collision may be written as

ẍk = f − �xk − xk+1�3/2 − b�xk − xk+1�6, �7�

ẍk+1 = − f + �xk − xk+1�3/2 + b�xk − xk+1�6, �8�

where f is the force causing the compression of the two
granules at the beginning of the collision. In the case of a
sonic vacuum, this force is zero. When a constant external
compression force is applied at the ends of the chain, the
force is positive and f equals this external force for each pair
of granules. In the presence of a gravitational force it equals
kG, the scaled gravitational constant G being related to the
unscaled gravitational constant g by

G =
g

v0
2�v0

2

A
�2/5

. �9�

We define z=xk−xk+1 and, for simplicity of notation, for
now we drop the k subscripts on z and f . Subtracting the two
equations, we have

z̈ = 2f − 2z3/2 − 2bz6, �10�

which describes the motion of a fictitious particle of unit
mass whose displacement is z and which is moving in the
potential

V�z� = − 2fz +
4

5
z5/2 +

2

7
bz7. �11�

Next we make use of conservation of energy to write

1

2
ż2 + V�z� =

1

2
ż0

2 + V�z0� , �12�

where ż0=1 is the velocity of the incoming granule at the
beginning of the collision, and z0 is obtained from the equi-
librium condition

f = z0
3/2 + bz0

6. �13�

As discussed above, the pulse is said to reside on granule k
until the velocities of the two granules become equal. At that
moment ż=0, the pulse is said to move onto the next granule,
and the compression is maximum. Hence, the maximum
compression zm is obtained from the energy conservation
condition Eq. �12� as the solution of

8

5
�zm

5/2 − z0
5/2� +

4

7
b�zm

7 − z0
7� − 4f�zm − z0� = 1. �14�

Once we know the initial and maximum compression, the
residence time, i.e., the time spent by the pulse on a given
granule, may be obtained as

Tk = �
z0,k

zm,k dz

ż
= �

z0,k

zm,k dz
�1 + V�z0,k� − V�z�

, �15�

where we have made use of Eq. �12� and reinstated the sub-
script k.

In summary, in order to calculate the pulse velocity as it
passes through granule k, we need to find the solutions z0 and

zm of Eqs. �13� and �14�, respectively, and then we must
numerically integrate Eq. �15� �since analytic integration ap-
pears impossible� to find the residence time. The pulse ve-
locity is the inverse of the residence time,

ck = 1/Tk. �16�

III. NUMERICAL RESULTS

In this section, we compare the pulse velocity predicted
by the binary collision approximation, Eq. �16�, with the re-
sults of the numerical integration of the equations of motion,
Eqs. �5�. We consider three cases: chains without precom-
pression, chains with precompression caused by a constant
force at the edges of the chain, and chains with precompres-
sion caused by gravity.

A. Chains without precompression

This is the simplest case. In the absence of precompres-
sion, z0 and f vanish. The k-independent potential then be-
comes

V�z� =
4

5
z5/2 +

2

7
bz7, �17�

and the equation for the maximum compression is simplified
to

8

5
zm

5/2 +
4

7
bzm

7 = 1. �18�

These simplifications lead to the residence time

T = �
0

zm dz

�1 −
8

5
z5/2 −

4

7
bz7

. �19�

In the limit of small and large b, one or the other of the two
terms in the potential may be neglected. In these limits zm
can be calculated exactly from Eq. �18�. Furthermore, the
integral �Eq. �19�� can then be performed exactly �15�, lead-
ing to the low-b pulse velocity

c =
21/553/5��9/10�

����2/5�
	 0.820, �20�

and the large-b velocity

c =
22/776/7b1/7��9/14�

����1/7�
	 0.779b1/7. �21�

In Fig. 1 we show the pulse velocity as a function of the
parameter b. This parameter measures the relative weight of
the two terms in the granular interaction. For small values of
b, the interaction is almost Hertzian while for large values
the z6 force is dominant. This behavior is clearly illustrated
by the solid and dashed lines, which are the plots of Eqs.
�20� and �21�, respectively. The excellent agreement of the
prediction of the binary collision approximation is evident
over the entire range of values of b. In the inset we show the
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relative error �= 
�cb−cn� /cb
 between the pulse velocity pre-
dicted by the binary collision approximation, which we call
cb, and the value obtained from the numerical integration of
the equations of motion, which we call cn. The plot shows
that � is always smaller than 3%. Furthermore, as b increases
the error decreases because the harder potential becomes
more important and the associated pulse is narrower. Conse-
quently the binary collision approximation turns out to be
increasingly more precise, that is, the idea that only two
granules participate in each collision becomes increasingly
more correct �15�.

We end our discussion of uncompressed chains with a
comparison of our results with the experiments of Herbold
and Nesterenko �5�. In their work, the pulse was generated
by the impact of a stainless steel sphere �not part of the
chain� of 0.455 g of mass with velocities ranging from 1 to
800 m/s. In our model the pulse is generated by the first
granule of the chain, whose mass is 3.276 g in their experi-
ment. We adjust our initial momentum transferred to the
chain to theirs by choosing the parameter b appropriately, in
the range �10−10,5�. At the lower limit the dominant potential
term is the Hertzian, and the pulse velocity is c=0.82 �see
Fig. 1�, which translates to a pulse velocity in physical units
of around 250 m/s. The difference between our results and
the experimental ones in this regime is about 172 m/s and is
primarily due to the difference in the impulse generating
method. However, it is reassuring that our results are within
a factor of 2 of the experimental results. Experimental results
were not shown for the large b limit so we are not able to
compare with our theory. Our binary collision approximation
predicts that the pulse velocity in this regime should be
around 1100 m/s.

B. Constant precompression

When we apply a constant force at the ends of the chain,
thus pressing the granules together, the precompression of
any pair of granules is the same, z0=�, as is the force f on
each granule. Therefore, the pulse again travels with a con-
stant �k-independent� velocity along the chain. Figure 2
shows that this constant pulse speed increases as the precom-

pression �or, alternatively, the force� increases. The inset
shows the relative error, which increases with increasing pre-
compression. This error increase is a reflection of the fact
that as precompression increases, more than two granules
become actively engaged in any collision event. The force
caused by granule k+2 on granule k+1 for a power-law po-
tential proportional to zn is �n−1���0 /�z�, where �0 is the
precompression between granules k+1 and k+2 and �z is the
additional compression between them caused by the travel-
ing pulse. Hence, for large �0, this interaction is enhanced
and the binary collision approximation is less effective. The
inset also shows that for larger values of b, the relative error
� is initially smaller, as discussed in the previous section, but
as �=�0+�z increases, the increase in the relative error is
more prominent. Further, the increase in � is even faster for
b=20 than for b=4. Nevertheless, the relative error stays
below 7% even for large precompressions, so our approxi-
mation is still useful.

Finally, we point out that the values we have chosen for
the precompression �up to 0.9� correspond at most �b=20� to
0.9 mm for the case studied in �5� �about 13% of the diam-
eter of the o-rings�. Therefore, Fig. 2 probably encompasses
most of the experimentally feasible cases. Above this value,
the elastic limit of the granular interaction would not hold.

C. Gravitational precompression

For a vertical chain of granules, gravity causes an ever
increasing downward compression of the chain. That is, for
the pair of granules k and k+1, the scaled force is f =kG,
where the scaled gravitational constant G was defined in Eq.
�9�. We again rename the initial and maximum compression
as z0,k and zm,k to indicate explicitly that these quantities now
vary along the chain and hence depend on grain number k.
These compressions are now, respectively, the roots of the
equations

kG = z0,k
3/2 + bz0,k

6 , �22�

4kG�zm,k − z0,k� =
8

5
�zm,k

5/2 − z0,k
5/2� +

4

7
b�z0,k

7 − zm,k
7 � − 1.

�23�
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FIG. 1. Pulse velocity as a function of the parameter b in the
absence of precompression. In the main figure, the plus signs refer
to the numerical simulation results and the open squares to the
binary collision approximation. The solid line is the plot of Eq. �20�
and the dashed line is the plot of Eq. �21�. The inset shows the
relative error �.
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FIG. 2. Pulse velocity as a function of the compression. In the
main figure, the plus signs �open squares�, crosses �open circles�,
and stars �triangles� refer to the numerical simulations �binary col-
lision approximation� for b=10−5, 4, and 20, respectively. The inset
shows the relative error � for the same values of b.
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Furthermore, the full potential also becomes k-dependent,

V�k;z� = − 2kGz +
4

5
z5/2 +

2

7
bz7. �24�

Therefore, the residence time Eq. �15�, and consequently
the pulse velocity, both become k-dependent as well. In Fig.
3 we plot the pulse velocity as a function of the granule
index. This dependence shows yet again the good agreement
between the binary collision approximation and the numeri-
cal integration of the equations of motion. For this figure, we
chose G=0.024. This value is too large when compared with
reasonable values for teflon o-rings. In fact, for teflon o-rings
the gravitational effects are negligible. However, it is inter-
esting to understand the effects of gravity since the theory is
also applicable to other materials. The inset shows that the
error increases along the chain. This is not surprising since
the precompression also increases along the chain. The ve-
locity of granules along the chain increases because of the
increasing compression, and the binary collision approxima-
tion fails to fully capture this increase. Nevertheless, the ef-
fect of this failure is not very strong for the experimental
situations that have been tested, which tend to involve far
fewer than the 90 granules that we have followed in our
work. Even for chains of up to 90 granules and even with the
exaggerated gravitational effects assumed here, the relative
error hardly exceeds 8% in the worst case scenario �small b�.

For single power-law materials, it has been shown that for
large k the pulse velocity scales as k�1−1/�n−1��/2 �3,21�. We
have verified that even for our relatively short chains �short
for the expectation of scaling behavior�, the pulse velocity is
indeed a power law of k. For b=10−5 , c�k0.13, while for
b=20, c�k0.36. These values are not far from the values
0.17 and 0.42, respectively, which correspond to the limits of

a Hertzian or a power 7 potential. Hence, we can see that the
binary collision approximation already approaches the
asymptotic behavior for chains of 90 granules.

IV. CONCLUSION

The binary collision approximation has been very suc-
cessful in predicting pulse propagation behavior in granular
chain, providing analytic results where only numerical ones
were previously available. In this paper we have accom-
plished two goals in the further application of the binary
collision approximation to granular chains. One goal has
been the extension of the method to chain in which toroidal
rings �o-rings� are placed between rigid cylinders that act as
nonlinear springs, resulting in potentials of interaction that
contain two contributions rather than a single Hertzian one.
This system is inspired by the availability of experimental
results with which we can compare our analytic outcomes.
The second, perhaps more important, goals is the extension
of the binary collision approximation methodology to chains
with precompression, that is, beyond the sonic vacuum cases
considered in our earlier work. This extension is a challeng-
ing test for the binary collision approximation because pre-
compression necessarily leads to situation in which more
than two granules participate substantially in each collision
event. When precompression is constant, the point of even-
tual failure of the binary collision approximation must occur
when the precompression force is sufficiently strong. In the
case of gravitational precompression, failure must occur
when the chain is sufficiently long. However, we find that for
parameters that expansively cover experimental regimes the
binary collision approximation errs by relatively little. The
errors are of at most a few percent when resulting pulse
velocities are compared with those obtained by numerical
integration of the equations of motion of the full granular
chain. Given the differences in the experimental and theoret-
ical initial setups, the velocities predicted by the binary col-
lision approximation are gratifyingly close to the experimen-
tal values where the latter are available. We thus conclude
that the binary collision approximation provides a powerful
analytic method for the study of pulse propagation in granu-
lar chain even in the presence of precompression. We con-
tinue to examine the limits of applicability of this powerful
methodology.
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