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We investigate the dynamics of a disk shaped intruder sliding on a granular monolayer. The monolayer is on
an inclined transparent plane, tilted at an angle much smaller than the angle of avalanche. A high speed camera
allows us to measure the dynamics of both, the intruder �filming from top� and the grains �filming from below�.
We find a frictional force with a dependence on the speed of the intruder. Moreover, calculating a Reynolds-
like number, it is possible to highlight the influence of the density of the beads that form the monolayer on the
dynamics of the disk. We also find that the fluidization produced by the intruder’s action reduces substantially
the effective friction coefficient.
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I. INTRODUCTION

Although friction is an omnipresent force in nature, the
science in charge to understand it, tribology, is still full of
challenges. This is especially true in granular systems, where
friction emerges as a collective phenomenon. A granular
monolayer resting on a flat plane is a prime example where
the equilibrium condition of the system is indeed set by fric-
tion forces. Several groups have contributed to clarify this
subject. Dorbolo �1� and Scheller et al. �2� measured the
stability and critical angle of a monolayer of this kind lo-
cated on a flat rectangular surface, when tilted about one of
its sides. In their measurements a loose packed monolayer is
created, and they study the time and spatial evolution of the
heap. They found a behavior that can be modeled by stop-
and-go motions of separated areas of the heap. The influence
of the Jansen like friction, especially when the heap is nar-
row, indicates the arching in the bed. Other authors �3� stud-
ied the Pouiselle flow of a granular bed in an inclined chan-
nel, and found that it is related with the geometric
characteristics of the channel. They discovered two regimes,
one of them with high particle density, long range correlation
and local ordering, and a dilute one, with long mean free
path, and almost collision free. Candelier and Dauchot �4�
performed an experimental investigation of the movement of
a cylindrical object, dragged by a constant force, in a mono-
layer of cylinders of smaller radius vibrated horizontally in a
direction perpendicular to the object’s displacement. They
found some interesting features when the packing fraction is
close to the jamming transition, which separates two differ-
ent regimes of motion: below the transition, the rearrange-
ments in the cylinders dominates the intruder’s dynamic,

while above the transition the motion takes the form of
chainlike structures, suggesting the dominance of the stress
fluctuations.

In order to understand the dynamics of the movement of a
grain rolling on a pile, Quartier et al. �5� studied a model
system: a cylindrical intruder rolling over a heap formed by
an array of identical cylinders. In their work, an explanation
of fundamental characteristics of granular flow in piles �hys-
teresis between flow and statics, and the almost constant ve-
locity of the grains in the flowing regime� is based in the
potential energy landscape of the heap, and in the balance of
kinetics-potential energy.

Dry friction has also been studied in bi- and tridimen-
sional granular ensembles, �gases and solids� �6–10�. In a
recent work �11� Baldassarri and co-workers studied experi-
mentally a granular medium sheared in a Couette geometry
and showed that the statistical properties of the system can
be computed assuming that the resultant from the set of fric-
tion forces acting in the system performs a Brownian motion.

Our group has recently studied the movement of an in-
truder through a channel filled with expanded polystyrene
beads �12�. We were interested, above all, in understanding
the influence of the density, speed of the intruder, and also
the depth of the channel, in the final penetration distance. An
interesting feature of its kinematics is the fact that the effec-
tive frictional force acting on the intruder does not seem to
depend on its mass, as in the case of Coulomb friction of a
sliding object down an incline. It was suggested that this
could be related with the low density of the beads.

In the present paper we perform a systematic study of the
dry friction between a granular monolayer and a disk moving
on it. The beads we have used in this work are of three
different materials �glass, tapioca, and expanded polystyrene�
whose densities range from 2210 to 14 kg /m3. We found a
friction force that depends on the intruder’s speed and the
density of the beads. Since one normally takes for granted
that a monolayer of spherical beads performs very well as a
dry lubricant, our results imply that upon reducing the den-
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sity of the beads to a very low value, this lubrication perfor-
mance excels.

II. EXPERIMENTAL SETUP

Figure 1 is a sketch of our experimental apparatus: a
ramp, 1.20 m long�0.05 m wide, with a Plexiglas plate in
the bottom and aluminum side walls. In each experiment, the
plate is covered with a monolayer of beads of one of three
different materials previously named �see Table I for details�.
The monolayer is retained by a Plexiglas wall at the end of
the incline.

At the top of the granular monolayer a cylindrical intruder
�made of Plexiglas at the bottom, steel at the walls, and di-
ameter 2.56 cm� rests against a removable Plexiglas wall
�not shown in the figure�. When freed, the intruder slides
downhill above the monolayer. A charge coupled device
�CCD� fast speed camera, which can be located below or
above the ramp, records the pass of the intruder or the dis-
placement of the beads. All the results shown here were ob-
tained filming at 500 frames per second. When the camera is
located above the ramp, it can follow the pass of the intruder
almost in all the ramp extension, while when filming from
below, 9.1 cm of the ramp is filmed, enough to follow the
complete trajectory of individual beads as they move below
the intruder.

The angle between the ramp and horizon is determined by
a digital level. It can be changed in the range �0° ,45°�. Each
experiment was carried out in the following way: the incli-
nation of the ramp is fixed at a low angle and the beads are
placed, then the angle is increased, while the ramp is been
gently vibrated in order to obtain a dense packing. Each ex-
periment was repeated three times. In Table I, �m represents
the average packing of the unperturbed layer. �m is measured

using the Analyze/Measurement option of ImageJ in the first
frame of the videos recorded from bellow. The variation in
the initial filling factor among different experiments with the
same material is less than 2%. Once the angle is fixed, the
intruder is liberated, starts to move and its trajectory is re-
corded. In Table I � is the average packing below the in-
truder when moving down the incline, measured in the same
way as �m, but limiting the scan to the area covered by the
intruder. The area of the intruder is always the same and its
mass varies between 1 and 56 g, changing the pressure over
the beads. In this range of masses the expanded polystyrene
beads barely deform. In fact, with the heaviest intruder used
in this work �56 g� the measured deformation is 20 �m
�measured when only 4 beads support the intruder�, so the
deformation of the beads in our experiments is much less
than 0.4% of the diameter. The angle was varied between
2.1° and 15.6°. The static friction was measured in the fol-
lowing way: beads of the material under test �having radii
that do not differ more than 0.1%� were glued to a flat sur-
face and then placed on the empty ramp. Increasing the in-
clination of the ramp, the critical angle of sliding was mea-
sured. Measurements were repeated until the statistical
component of uncertainty was 0.4°. The coefficient of static
friction �s for the three materials is also shown in Table I.
During the experiments, the humidity in the laboratory area
was below 35%. To avoid static electricity �specially in the
expanded polystyrene beads� antistatic spray was applied to
the beads and the ramp between experiments.

III. RESULTS AND DISCUSSIONS

First, in order to obtain the acceleration of the intruder
while it moves downhill along the incline we plot its position
in the central axis of the ramp �x coordinate� as a function of
time �Fig. 2�. The data were taken at an angle of 13.7°. For
the polystyrene beads the curves follow a perfect parabolic
dependence for all the intruder masses, see Fig. 2�a�, from
which the acceleration can be calculated. However, for the
other two materials the kinematics of the sliding intruder
appreciably differ. While the more massive intruders follow
an almost parabolic behavior, the lighter ones do not �see
Figs. 2�b� and 2�c��, indicating a variable acceleration; its
average value is easily estimated by fitting the data to a para-
bolic dependence. In Fig. 2�d� we plot x vs t for a large
intruder mass �48.65 g� and the three materials. It is evident
the greater acceleration and speed for polystyrene, followed
by tapioca and then glass.

The above discussion is summarized in Fig. 3�a� where
we show the dependence of the acceleration with the mass of

FIG. 1. �Color online� Schematic view of the experimental
setup.

TABLE I. Characteristics of the materials.

Material
�

�kg /m3�
Rb

�cm�
�Rb /Rb

�%�
m
�g� �s � �m

����
�kg/m�

Polyst. 14 0.263 5.7 0.001 0.56 0.760 0.860 0.004�0.001

Tapioca 1180 0.156 5.1 0.019 0.42 0.507 0.745 0.042�0.003

Glass 2210 0.149 2.7 0.032 0.38 0.856 0.890 0.064�0.004
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the intruder for the three materials. It is very clear the re-
markable difference in their behavior. While for tapioca and
glass beads an approximately linear increase of acceleration
is obtained, for polystyrene beads the curve first increases
abruptly, then slows down a bit, saturates and finally shows a
moderate decrease.

We learn from these results that for polystyrene beads, in
some range of masses, the effective friction does not depend
on the mass of the intruder or on its speed, as in a classic
sliding experiment. Indeed, in this range of masses, the ef-
fective kinetic friction coefficient is �ef f =0.046�0.007, cal-
culated accordingly to the following equation:

�ef f = tan 	 −
a

g cos 	
. �1�

Note that this is one order of magnitude smaller than the
coefficient obtained in static friction experiments for the
same material, see Table I.

The dependence of the acceleration with the angle at a
constant mass �13.50 g� for polystyrene is shown in Fig.

3�b�. A change in the slope for angles greater than 4° could
be a fingerprint of the transition from pure rolling of the
beads to rolling and sliding �13,14�; this possibility will be
visited in a future work.

Figure 4�a� shows the velocity of the intruder �obtained
by numerical derivation of the data� as a function of time for
the three materials and for an intruder of low mass. Here, the
details of the intruder’s dynamics are clearly observed: while
for glass and tapioca the speed reaches a terminal value, for
polystyrene beads the intruder keeps an approximately con-
stant acceleration. More massive intruders also give the same
qualitative behavior, see Fig. 4�b�. So, the acceleration of the
intruder changes as it slides down the incline, and when we
calculate the average acceleration its value also changes de-
pending on the length of the incline considered.

The above results clearly imply that there is a friction
force that depends on the speed. In order to understand this
behavior we calculate the friction force fr that acts on the
intruder, considering that this is the sum of the interactions
with n identical beads of mass m that roll on the incline
below the intruder, but slide and roll between the intruder

FIG. 2. �Color online� Kinematics of the in-
truder representing the displacement along the
ramp vs time: �a� expanded polystyrene, �b� tapi-
oca, �c� glass, and �d� comparative of the kine-
matics of the intruder for the three beads �with
the mass of the intruder being 48.65 g�.
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and the beads. Calling fr1 to the friction force between the
intruder and one bead, it follows:

fr = nfr1. �2�

Taking into account this equation, and the theorem of
work and energy for the displacement of one bead �see Ap-
pendix for details� we can find that the frictional force acting
on the intruder is

fr =
7nm

20
R
v2 +

nm

2
g sin 	 . �3�

Here 
= R
x0

being R the radius of the intruder and x0 the
average distance that a bead travels while the intruder moves
along the plane a distance R, v the intruder’s speed, g the
acceleration of gravity and 	 the angle of inclination. From
Eq. �3� we find that

fr = �v2 + Mb, �4�

where

� =
7nm

20
R
�5�

or

� =
7nmx0

20R2 . �6�

Any of the last two equations allows us to determine the
drag coefficient �. Mb= nm

2 g sin 	 is half the tangential com-
ponent of the weight of the beads that are below the intruder.
This is a constant component of the friction, and is always
present. Its importance depends on the magnitude of �.

Taking into account these two facts, we propose a dy-
namic equation of the form:

M
dv
dt

+ �v2 = � , �7�

where �= �M − nm
2 �g sin 	 and M is the mass of the intruder.

The quadratic dependence on the speed has been widely used
in the analysis of data of the movement of intruders in granu-
lar media, for instance in �15� and references therein; here it
arises naturally from the interactions of the intruder and the
beads. The solution of Eq. �7� for intruders initially at rest is

v�t� =��

�
tanh����

M
t� . �8�

Using Eq. �8� to fit the experimental data �see for instance
the continuous lines in Figs. 4�a� and 4�b��, we found the
values of � and �. Although both of them can be calculated
using the above expressions, it is interesting to note that their
experimental values have a meaningful physical significance.
Indeed, � must depend only on the materials forming the

FIG. 3. �Color online� �a� Dependence of the mean acceleration
of the intruder with its mass for the three materials. The lines are a
representation of Eq. �11� �see text�. The horizontal line represents
the maximum attainable acceleration g sin 	. �b� Dependence of
acceleration with the angle of the ramp for polystyrene beads. A
change in the slope can be seen. Continuous lines are linear fits to
the data; one in the region of small angles, the other for the larger
angles. The dashed lines are a representation of Eq. �11�, �see text�.

FIG. 4. �Color online� The speed of the intruder versus time.
The full lines are a fit to Eq. �8�, see text. �a� Mass of the intruder
13.50 g and �b� mass of the intruder 41.20 g. The angle in both
cases is 13.7°.
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monolayer, so when determining it from different intruder
masses, the obtained values must be the same for each ma-
terial. In Table I the experimental values of � are fairly con-
stant. It is important to note that the value of � for the poly-
styrene beads is calculated for the experiments performed
with an angle of 13.7°; for the smaller angles �below 4°� the
value is around 0.22. Moreover, note that the coefficient for
the polystyrene beads at 13.7° is an order of magnitude
smaller than for the other two materials, so for such beads
the friction dependence on the speed is not so important, in
agreement with the findings of Fig. 4. We will later discuss
the dependence of � on the properties of the beads.

Let us try now to understand the general behavior seen in
the figures. In order to start moving for angles smaller than
the critical one, the intruder must move the beads lying be-
low. For the lighter particles this is easier, so the movement
starts at very small masses. At the same time, due to the size
of the incline, arching might be an important effect. Indeed,
if we compare the glass-glass and polystyrene-polystyrene
interactions, the coefficient of dynamic friction is smaller in
the second case, and being so small its density, it will be
easier to break the arching expelling the polystyrene beads
from the monolayer.

The movement of the beads starts as a pure rolling, and
the increase of the intruder’s mass implies the increase of the
acceleration. Once the sliding starts, the increasing of accel-
eration slows down, due to the friction, and eventually gets
constant. For the larger masses this has a reduction, probably
due to the deformation of the spheres. In the other two ma-
terials, on the other hand, the movement starts at bigger
masses, due to the mass of the beads �see Table I�, so the first
part of the corresponding curve for the polystyrene beads is
very hard to observe, and also the final saturation, which
could arise at masses above 400 g, unfeasible for the per-
formed experiments.

As it could be expected � varies linearly with the mass of
the intruder. In Fig. 5 this is clearly seen: the three curves �
vs M are almost parallel in the measurement interval.

The slope is in the three cases around 200 cm /s2, close to
the expected value of g sin 	=232 cm /s2. A closer look re-

veals another interesting fact: the three lines have a negative
intersection. These should be equal to − nm

2 g sin 	 and, in
fact, the dependence of the experimental values follows ap-
proximately the expectations. In Table II the values of the
slope, the intersection and their uncertainties, as well as the
calculated value of the intercept are shown.

In order to obtain a quantitative sight of this situation, let
us rewrite Eq. �7�, introducing explicitly the values of accel-
eration a,

Ma + �v2 = �M −
nm

2
�g sin 	 �9�

and combining this with the dependence of the final speed in
the trajectory of length s with the average acceleration,

v2 = 2as �10�

we obtain

a =

1 −
nm

2M

1 +
2�s

M

g sin 	 . �11�

Here, s is the length of the ramp used to calculate the average
acceleration, in this case 100 cm. In Fig. 3�a� the numerical
results obtained with this equation are depicted for the three
materials �continuous lines�. Retrospectively, this good
agreement supports the need of an average acceleration. A
result obtained from Eq. �11� is that the intruder’s accelera-
tion will be zero if M = nm

2 , i.e., when the intruder’s mass
equals half the mass of the beads below it.

The dependence of the intruder’s acceleration with the
angle, shown in Fig. 3�b�, is also correctly described �dashed
lines�, considering that there is a change in the value of �.
Equation �11� includes all the dynamics of interaction of the
intruder with the beads, the collision among beads and the
arching in the effective parameter �. This parameter is re-
lated with the characteristics of the beads through Eq. �6�.
Equation �11� also includes the dependence of the average
acceleration with the length of the ramp used to compute it.

The results described so far clarify the influence of the
dynamics of the beads on the intruder’s movement. However,
to better understand its dynamics, we perform a “micro-
scopic” study of the beads filming from below, see the movie
provided here �16�. In doing so, we digitalized the videos
using ImageJ, obtaining the positions of the individual beads
in each frame. In order to calculate x0 we considered only the
trajectories that fulfill the following two criteria: �a� the bead
starts to move when the front of the disk reaches it. �b� The

FIG. 5. �Color online� Dependence of � with the mass of the
intruder for the three materials. Continuous lines are a linear fit of
the data.

TABLE II. Linear fitting parameters of � vs M.

Material
Slope

�cm /s2�
Intercept

�N�
Theory

�N�

Polystyrene 193�11 0.0010�0.0012 0.00004

Tapioca 197�13 0.0090�0.0030 0.0015

Glass 210�15 0.0130�0.0060 0.00525
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bead moves bellow the disk during the time it moves a dis-
tance R. No other requirement is imposed. Two extreme situ-
ations arise: when a bead is jammed in a group of beads, or
when it freely moves in a fluidized region.

Clearly, uncertainties should be important in the above
measurements. To evaluate them, we proceed as follows: �a�
in the measurement of x0 for one bead, the uncertainty was
taken as the average distance a bead moves between two
consecutive frames. �b� Around 15 trajectories were taken in
each video, and the uncertainty in the average x0 is the linear
composition of its statistical uncertainty and the largest of
the uncertainties of all trajectories. �c� For each mass of the
disk, three videos were recorded, and we calculated the
weighted mean value of x0, being the statistical weight the
inverse of the uncertainty.

Surprisingly, in the range of intruder’s masses from 10 to
40 g, the values of x0 are constant �considering the experi-
mental uncertainty�. The values of x0 and its uncertainties for
the different materials are: x0,EP= �0.52�0.11� cm, x0,T
= �0.43�0.12� cm, x0,G= �0.36�0.10� cm. The values of �
calculated from the above numbers and Eq. �6�, are: �EP
= �0.0021�0.0007� kg /m, �T= �0.065�0.018� kg /m, and
�G= �0.12�0.05� kg /m.

The calculated values for expanded polystyrene and tapi-
oca beads are of the same order of magnitude of the values
found from the fitting to Eq. �8�, but for glass, the difference
is more important.

From these facts, several conclusions can be drawn. First,
as the values of x0 and n are relatively close for all materials,
the notorious difference of � for polystyrene when compared
with the other two materials must be related with the only
parameter that varies more than one order of magnitude: the
density. Second, the approximate coincidence of �exp and �th
for polystyrene and tapioca indicates that the suppositions of
the model are closer to reality for these two materials. Re-
garding glass, the difference is more significant, meaning
that our model is not appropriate for this material, where the
enduring contacts and impacts among beads are more impor-
tant.

The dependence of � with the radius of the beads in the
model is not considered explicitly. If there is rolling but no
sliding, the value of x0 is always R /2, independently of the
bead’s radius. Of course, the greater the radius, the smaller
the angle rotated by the bead. So, if friction among beads is
present, the smaller the radius, the greater will be the lost of
energy. It can be concluded that in the realistic case, beads of
smaller radius will have smaller acceleration. Supplementary
measurements performed in beads of expanded polystyrene
of smaller radius confirm this idea.

We also measured the linear mean speed of the beads in
the following way: the visual field of the camera is divided in
three separated areas, each of them larger than the diameter
of the intruder, and select five different trajectories in each
area. Then, the mean square speed is calculated. It is also
possible to determine the average number of beads n below
the disk while it slides down the incline. Considering the
relation of the mass of the intruder over the average number
of beads below it a measure of pressure, and the mean square
speed a “temperature” of the monolayer, a diagram can be
constructed. This is shown in Fig. 6�a�. Here we can also

observe different behaviors when comparing the three differ-
ent beads. Note, for instance, that although in the polystyrene
beads the transfer of energy from the disk to the beads is
very small, the average speed of the beads is large.

There is also another factor that influences the results de-
picted in Fig. 6�a�: the fluidization of the beads. In Table I
the values of the filling factors before and during the pass of
the intruder are shown. It is easy to see that for glass an
almost crystalline state is preserved, with an almost un-
changed particle density close to the maximum packing frac-
tion. But for tapioca and polystyrene beads, the filling factor
has a notorious reduction. This implies a greater average
distance between beads, an therefore a smaller number of
impacts among beads and longer free paths, which deter-
mines a very low lost of energy. This can be seen when
looking at the videos taken from bellow. If we return to Fig.
6�a�, it is easy to see that in order to obtain in glass or tapioca
beads a fluidization similar to that of polystyrene the pres-
sure must increase enormously. This means that either the
packing fraction of the beds must be lowered �keeping the
mass of the intruder constant� or the mass of the intruder
increase. It is important to note that in tapioca beads, al-
though there is an important fluidization, the density of the
beads is considerably higher than that of polystyrene, and, as
a result, the interaction of the intruder and the beads implies
the lost of energy and less acceleration.

FIG. 6. �Color online� �a� Dependence of the pressure, defined
as the ratio of the mass over the mean number of beads, with the
mean square speed of the beads below the intruder. �b� Dependence
of the pressure with the mean square speed, normalized to the mean
square speed of the intruder. Continuous line is a guide to the eyes.
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If we scale the mean square speed of the beads with the
square of the average speed of the intruder in the region of
observation, a good collapse of the data is found, see Fig.
6�b�. This surprising result might be expressed with the fol-
lowing motto: fluidize to lubricate. In fact, an intruder that
moves on a monolayer of beads does it fast if it employs
very low energy to fluidize the medium underneath. In other
words, the intruder must be able to disrupt, using a little of
its energy, the crystalline phase of the monolayer in order to
freely move. Again, the collapse of the points in Fig. 6�b�
means that a monolayer of denser beads �in this work tapioca
or glass beads� would be as good lubricant as a monolayer of
very light beads �in this work polystyrene beads� if somehow
an intruder sliding on it is able to fluidize it using a small
amount of its energy. It is important to remark the close
analogy this phenomenon has with the phenomenon of slid-
ing on ice, where surface melting �produced by pressure and
friction� is crucial to promote slipperiness �17�.

A quantitative description of this result can be done con-
sidering the dynamics of the intruder and the beads. Let us
consider that while moving below the intruder, the beads do
not interact among them. The system of equations that relates
the movement of one bead and the movement of the intruder
is

Mg sin 	 − fr = Ma , �12�

mg sin 	 + fr1 − fr2 = mab, �13�

fr1Rb + fr2Rb = I� . �14�

Here fr2 represents the friction of the bead with the incline,
ab is the acceleration of the bead, I and � the inertial moment
and angular acceleration, respectively. Using these equations,
and Eq. �2�, considering the possibility of rolling and sliding
in both interfaces �intruder and ramp�, and defining t=1
+ 2

5 , = a
�Rb

�1; p= M
n , it is possible to find that

p =
tm

4x0�g sin 	 − a�
�vb

2	 −
mg sin 	

2�g sin 	 − a�
, �15�

where �vb
2	 is the mean square speed of the beads. Denoting

by l the distance from the beginning of the ramp to the mean
position of the visual field of the camera in the experiment, it
is easy to see that a
 v2

2l , so Eq. �15� can be transformed into

p =
ltm

2x0� g sin 	
a − 1�

�vb
2	

v2 −
mg sin 	

2�g sin 	 − a�
. �16�

In the two equations above l, g, 	, and m are constants.
The magnitude of t and x0 vary, but in an approximately
equal amount: if sliding increases, both t and x0 diminish. So
the value of acceleration is the defining parameter in Eqs.
�15� and �16�. For the polystyrene beads, in the range of
masses depicted, the acceleration is almost constant, so it is
easy to understand the linear behavior obtained in Fig. 6�a�.
For tapioca, acceleration varies with the intruder’s mass, and
this affect the linearity, being the curve steeper with the in-
crease of acceleration. For glass we find a linear behavior,
which is counterintuitive, because also in this case the accel-
eration increases with the mass. But for these beads, due to

the value of the filling factor �see Table I� the friction and the
impacts among beads must be considered, and Eqs. �15� and
�16� lost applicability, though gives an approximate descrip-
tion of the energy transfer.

To understand the transfer of energy between the intruder
and the beads, a sliding Reynolds number Rs can be defined.
Following the general ideas about this kind of numbers, it
can be defined as the ratio between the inertial and the fric-
tional forces,

Rs =
Ec

Wfr
. �17�

In this equation Ec is the kinetic energy of the intruder and
Wfr is the work of the frictional force over the intruder,
which is calculated over a characteristic length of the system:
in this case the diameter of the intruder. Figure 7 depicts the
dependence of pressure with Rs. The fluidized state is char-
acterized by high Rs numbers, while highly dissipative states
by Rs�100.

Using Eqs. �12�–�14�, and an analysis similar to the one
used to obtain Eq. �15�, it is possible to find that

p =
md�ta − g sin 	�

2gh
Rs +

md�ta − g sin 	�
2gd sin 	

. �18�

Here h is the height descended by the intruder performing a
linear displacement l equal to the diameter of the intruder.
From the details of the intruder’s movement described
above, it is easy to state that in the polystyrene bed the ratio
has its greatest values, due to the fact that the dissipation of
energy is smaller. That is related with two main facts: first,
due to the small density of the beads, it is easier to push
some beads out and obtain the dilatation necessary for the
fluidization. Once the bed is fluidized, friction between
grains is almost eliminated, and the dissipation of energy
gets smaller. Second, all the experiments are performed for
angles smaller than the critical one, so for the intruder start to
moves �and, in general, to accelerate� it is necessary that part

FIG. 7. �Color online� Dependence of the pressure with the slid-
ing Reynolds number �see text for definition�, for the three
materials.
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of the potential energy of the intruder be transferred to the
beads. And, again, this is easier for the polystyrene beads.

IV. CONCLUSIONS

We have studied the lubrication properties of a monolayer
of beads on the displacement of an intruder moving on it. We
find that the low density of the beads is crucial to obtain a
reduced friction. Our results also teach us that the low den-
sity of the beads induces a bed fluidization, provoking in turn
a greater acceleration of the intruder. When compared with
the other denser materials, the contrast is more than evident.
The lighter the beads, the sooner the rheology starts to be
dominated by the rolling of the grains and the sliding of the
intruder above them, being less important the friction and the
collisions among grains.
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APPENDIX

In order to determine the friction acting on the intruder
according to Eq. �2�, let us consider that a bead initially at

rest is reached at t0 by the intruder moving down the heap
and after a time interval �t the bead moves a distance x0 and
reaches a speed v, while the intruder moves a distance R.
Considering the forces acting on the bead, the theorem of
work and energy states

Wfr1
+ Wfr2

= �Ec + �Ecr + �Epg. �A1�

Here Wfr
represents the work of the force and its momen-

tum. Then

fr1x0 + � fr1
�� − fr2x0 + � fr2

�� =
1

2
mvb

2 +
1

2
I�2 + mg�h

�A2�

where �h=x0 sin 	, and the angle rotated by the bead is
��=

x0

Rb
. Considering that the bead is rolling without sliding,

we obtain

2fr1x0 =
7

10
mvb

2 + mgx0 sin 	 . �A3�

We termed 
= R
x0

. It is easy to understand that also 
= v
vb

,
thus

fr1 =
7

20
m

v2


2x0
+

1

2
mg sin 	 . �A4�

From Eq. �A4� it follows Eq. �3�.
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