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Mapping of the diffusion equation in a channel of varying cross section onto the longitudinal coordinate is
already a well studied procedure for a slowly changing radius. We examine here the mapping of diffusion in a
channel with abrupt change of diameter. In two dimensions, our considerations are based on solution of the
exactly solvable geometry with abruptly doubled width at x=0. We verify the surmise of Berezhkovskii et al.
�J. Chem. Phys. 131, 224110 �2009�� that one-dimensional diffusion behaves as free in such channels every-
where except at the point of change, which looks like a local trap for the particles. Applying the method of
“sewing” of solutions, we show that this picture is valid also for three-dimensional symmetric channels.

DOI: 10.1103/PhysRevE.82.031143 PACS number�s�: 05.40.Jc, 87.10.Ed

I. INTRODUCTION

Increasing interest in nanomaterials and biological sys-
tems in the last decade has motivated numerous studies of
transport in quasi-one-dimensional �quasi-1D� structures,
such as pores, channels, along fibers, etc. The most effective
description of such systems is purely one-dimensional, not
dealing with the less interesting motion of particles across
the channel, but representing correctly all its important ef-
fects on transport in the longitudinal direction.

Our system of interest is diffusion in a channel with vary-
ing cross section. Mapping of the original d dimensional �d
=2,3� diffusion equation

���x,y,t�
�t

= �D0
�2

�x2 + Dt�
j=1

d−1
�2

�yj
2���x,y,t� , �1�

in the channel with reflecting walls onto the longitudinal
coordinate x is already well understood when the cross sec-
tion A�x� is a smooth and slowly varying function. The sim-
plest 1D equation which reasonably replaces Eq. �1� is the
Fick-Jacobs �FJ� equation �1�.

�p�x,t�
�t

= D0
�

�x
A�x�

�

�x

p�x,t�
A�x�

, �2�

governing the 1D density p�x , t�

p�x,t� = �
A�x�

��x,y,t�dy , �3�

the integral of the d-dimensional density ��x ,y , t� over the
transverse coordinates y= �y1 , . . . ,yd−1�; D0=Dt is the diffu-
sion constant, and A�x� denotes both the cross section and its
area.

The FJ equation takes only the longitudinal mass conser-
vation into account. One arrives at this equation if the trans-
verse relaxation is infinitely fast, which is equivalent to a
channel of negligible width in comparison with the typical
longitudinal length scale. In practice, FJ equation has to be
corrected; the analysis of Zwanzig �2� and Reguera and Rubí
�3� showed that the correction should has the form

�p�x,t�
�t

=
�

�x
A�x�D�x�

�

�x

p�x,t�
A�x�

, �4�

where D�x� is an effective diffusion coefficient, a function
estimated by the formula

D�x� = D0/	1 + R�2�x� , �5�

for three-dimensional �3D� symmetric channels of radius
R�x�; here, A�x�=�R2�x�.

An exact mapping procedure �4–7�, based on introducing
anisotropy of the diffusion constant in the diffusion Eq. �1�,
taking the transverse constant Dt=D0 /� much larger than D0,
enables us to find systematically the corrections to the FJ Eq.
�2� up to an arbitrary order in the small parameter �. Then in
the limit of stationary flow �i.e., at nearly a constant net flux
through the channel�, the � expansion of D�x� can be ex-
pressed explicitly,

D�x�
D0

= 1 −
�

2
R�2 +

�2

48
R��18R�3 + 3RR�R� − R2R�3�� − ¯

�6�

for 3D symmetric channels �6�. The formula �5� correctly
sums the terms depending only on R��x� at �=1. Aside from
them, the exact D�x� also depends on the higher derivatives
of R�x� of any order, which are neglected in Eq. �5�. Numeri-
cal tests �8� exhibited its validity restricted to not very steep
changes of R�x�: 
R��x�
�1.

Many tasks in practice, e.g., particles diffusing between
cavities, or escaping from a cavity through a long narrow
tunnel, require solving the situation when R�x� or A�x�
changes abruptly. R��x� becomes infinite at the point of
change and use of the formula �5� is dubious. Some problems
of this kind were solved by Berezhkovskii et al. �9–12�. We
revisit the simplest of these, a channel consisting of two
straight cylinders of different radius; R�x�=a for x�0 and
R�x�=b for x�0. At x=0, the parts are connected by a flat
hard wall �reflecting� annular fitting.

Berezhkovskii et al. approximated the connection as a
trap for the transiting particles �11�. They are partially ab-
sorbed at x=0 with specific trapping rates from left and right,
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but diffuse freely elsewhere in both parts of the channel.
Using this 1D description in calculation of the mean first
passage time, the authors arrived at results in excellent agree-
ment with the numerical solution of the full 3D problem.

The aim of our paper is to validate this approximation
within the context of our exact mapping procedure. At first
sight, the concept of a local trap at x=0 seems to be a rough
approximation. The abrupt change of radius of the channel
influences the stationary 3D density in a wide vicinity of x
=0 and so one could expect that diffusion in this transition
region cannot be considered as free even in the 1D picture.
Also the coefficient D�x� depending on the derivatives of
R�x� implies a nonlocal relation between the radius R�x� and
the 1D diffusivity.

On the other hand, the recurrence mapping procedure,
generating the exact expansion of D�x� Eq. �6�, requires the
function R�x� to be analytic, and its direct adoption for R�x�
approaching the step function becomes dubious.

In our analysis, we utilize calculation of D�x� from the
stationary density p�x� Eq. �3�, if it is known explicitly for
some exactly solvable geometry �13�. Then

1

D�x�
= −

1

J
A�x�

d

dx

p�x�
A�x�

, �7�

J denotes the net flux corresponding to the stationary density
p�x�. According to Ref. �13�, the resultant D�x� represents
the sum of the expansion of D�x� in �, and so this method is
equivalent to the exact mapping in the limit of the stationary
flow.

In Sec. II, we show that the two-dimensional �2D� version
of the stepwise channel is exactly solvable. For a specific
ratio b /a, we derive explicit 2D density ��x ,y� using confor-
mal transformation in the complex plane. Despite compli-
cated ��x ,y� near x=0, we find that the 1D density p�x� has
a simple form

p�x� = − J�x + Ct��x� + C0� + A�x��0, �8�

��x� denotes the Heaviside unit step function, Ct, C0 are
constants depending on geometry �a and b� and �0 is an
equilibrium 2D density.

Next, we give arguments that p�x� preserves the form Eq.
�8� for any a and b. The formalism in the complex plane can
be used only for 2D channels. In Sec. III, we derive a
complementary formalism based on “sewing” of solutions in
both parts of the channel, which is also usable in 3D. We
demonstrate that the stationary density p�x� in the 3D chan-
nels is of the form Eq. �8�, too.

The 1D density p�x� grows linearly everywhere, even in
the vicinity of x=0, but it exhibits a jump at x=0. If applied
in Eq. �7�, 1 /D�x�=1 everywhere except at x=0, where we
observe a singularity. This picture corresponds exactly to the
concept of a local trap at x=0 and free 1D diffusion else-
where, as supposed by Berezhkovskii.

II. CONFORMAL TRANSFORMATION

We will now study the stationary diffusion in a 2D chan-
nel with a step at x=0, bounded by the x axis and a function
A�x�

A�x� = b + �a − b���x�; �9�

the 2D density ��x ,y� satisfies reflecting �Neumann� bound-
ary conditions �BC� on the walls, including the transverse
connection between the left and right parts at x=0.

First we recall briefly the formalism of calculating D�x� in
the complex plane �explained in Ref. �13�, Appendix B�. We
work with the coordinates z=x+ iy, z̄=x− iy. Any analytic
complex function f�z� is a solution of the Laplace equation
�f�z�=�z�z̄ f�z�=0, which is also valid for its components

Jf�z� = ��x,y� + i��x,y� . �10�

The conditions

Re f�x� = 0, Re f�x + iA�x�� = 1, �11�

together with the Cauchy-Riemann relations for � and � fix
the Neumann BC for Im f�z� at the boundaries y=0,A�x� and
so ��x ,y� in Eq. �10� can be interpreted as the 2D stationary
density in the channel, carrying the total flux J.

The primitive function g�z�=�f�z�dz directly determines
the 1D density p�x�=J Re�g�x�−g�x+ iA�x��
, hence the for-
mula �7� becomes

1

D�x�
= A�x�

d

dx
� 1

A�x�
Re�g�x + iA�x�� − g�x�
� . �12�

As an example, we consider the function

f�z� = −
i

�0
ln z = −

i

�0
ln�x + iy� . �13�

Its imaginary part Im f�z�=−�1 /2�0�ln�x2+y2� represents
the stationary density ��x ,y� from a pointlike source placed
at the origin, supplying the unit flux J to the corner bounded
by the positive part of the x axis, where Re f�x�0�=0,
and the line y=A�x�=x tan �0, where Re f�x+ ix tan �0�=1;
this is a wedge of angle �0. Satisfying the Neumann BC
is apparent from the symmetry. The corresponding primitive
function g�z�=−�i /�0��z ln z−z� then determines p�x� and
according to Eq. �12�, we obtain D�x�=�0 / tan �0
= �arctan A��x�� /A��x� �see Ref. �13�.�.

Any conformal transformation z=	�w� �and its conjugate�
preserves the original BC of the transformed function h�w�
= f�	�w�� on the transformed boundaries in the new complex
variable w=u+ iv. The Laplacian is transformed as �z�z̄
= 
	��w�
−2�w�w̄ and thus also h�w� satisfies the Laplace equa-
tion �w�w̄h�w�=0. So we can apply the same formalism on
h�w� as before on f�z� to calculate the stationary densities
��u ,v�, p�u� and finally D�u� in the new geometry.

In the present case, we choose

w = arccosh�2z − k − 1

k − 1
� −

1
	k

arccosh� �k + 1�z − 2k

�k − 1�z � , �14�

transforming the upper half plane �x ,y� onto the steplike
channel in the variables u ,v �see Figs. 1�a� and 1�b��. The
positive part of the x axis transforms to the lower boundary,
broken at w=0 and i��1−1 /	k�, corresponding to z=k and
1, when the argument of the first arccosh becomes 
1. The
negative part of the x axis transforms to the flat upper bound-
ary at v=� and the source of particles at z=0 has its image
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at −� inside the channel. The parameter k regulates the ratio
of widths b /a=	k of the wide and narrow parts of the chan-
nel. Note that �inverse� mapping the transverse source at −�
to the single point z=0 supplies uniqueness to the 1D pro-
jection.

The half plane y�0 can be taken as a corner of angle
�0=� studied above. The function f�z�, which satisfies the
required BCs for the half plane, is given by Eq. �13� for
�0=�. So the corresponding function h�w�, describing the
stationary flow in the step-wise channel is

h�w� = −
i

�
ln�	�w�� , �15�

where 	�w� is the inverted relation �14�. For a few values of
k, we can express the function 	�w� and so h�w� explicitly
�see Appendix�.

For our demonstration purposes, we consider only k=4,
corresponding to the widths a=� /2 and b=�. Skipping the
tedious algebra, we state the final formula for the rotated and
shifted �u ,v� plane, w=u+ iv= i�−x− iy= i�−s, turning the
channel to the desired position with the flat boundary iden-
tical with the x axis,

h�s� =
3i

�
ln�1 − e−2i�/3�1 + ies

1 − ies�2/3� +
i

�
ln�2�1 − i sinh s��

+ 1 + i�0/J = ���x,y� + i��x,y��/J , �16�

consistent with Eq. �10�. We added an imaginary constant
i�0 /J, which does not influence either the Neumann BC, or
the values Re�h�s��=0,1 at the lower and upper boundaries.
�0 represents an equilibrium density, or a constant fixing
��xl,r ,y�=0 at a distant absorbing left or right end of a real
channel �
xl,r
�a ,b�. The density ��x ,y� according to Eq.
�16� is depicted in the contour graph in Fig. 2.

Now, from the primitive function g�s�=�h�s�ds,

g�s� =
is

J
�0 + s +

3i

�
�1

3
Li2�− ie−s� −

1

3
Li2�ies� + Li2�e−i�/3�1 − q�� − Li2�e−i�/3�1 + q�� + Li2�ei�/3�1 − q�� − Li2�ei�/3�1 + q��

+ Li2��1 − q�/2� − Li2��1 + q�/2� − Li2� 1 − q

1 + e−i�/3� + Li2� 1 + q

1 + e−i�/3� − Li2� 1 − q

1 + ei�/3� + Li2� 1 + q

1 + ei�/3� − ln�1 + q�


�ln
3i

2
e−s +

1

2
ln�1 + q�� + ln�1 − q��ln

3

2i
es +

1

2
ln�1 − q��� , �17�

where q=e−i�/3��1+ ies� / �1− ies��1/3 and Li2�z�=−�0
zdx ln�1

−x� /x denotes the polylogarithm function, we find the 1D
density

p�x� = J Re�g�x� − g�x + iA�x���

= − J�x + Ct��x� + C0� + A�x��0. �18�

The constants Ct, C0 are given by

Ct = Re�g�0+ + i�/2� − g�0− + i��� = 1.21640

C0 = Re�g�0− + i�� − g�0�� = − 1.64792. �19�

According to Eq. �12�, D�x�=1 for any x�0.
We can avoid the tedious calculation of h�s� and g�s�. For

x�0, the formula �12� reduces to

x

iy

0 1 k

u

iv

iΠ

0�’

0

0�’

k’

1’

�’

��’

FIG. 1. Conformal transformation �Eq. �14�� transforms the up-
per half plane �the upper figure� onto the stepwise channel �the
lower figure�.

�3 �2 �1 0 1 2
x

0

Π�2

Π

0

Π�2

Π

y

FIG. 2. Contour plot of the 2D density ��x ,y� in a channel of
widths a=� /2 and b=� for x�0 and x�0, respectively.
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1

D�x�
=

d

dx
Re�g�x + iA� − g�x�� , �20�

as A�x�=A is constant �a or b�. Next,

1

D�x�
= Re��sg�s�
s=x+iA − �sg�s�
s=x� = Re�h�x + iA� − h�x��

= ��x,A� − ��x,0� = 1. �21�

Consequently, we need not express h�s� explicitly, and Eq.
�21� is valid for any k, i.e., for any ratio b /a, and in fact for
any flat portion of a 2D channel.

It is instructive to compare this result with the Fick-
Jacobs approximation, which supposes infinitely fast relax-
ation in the transverse direction. Then the 2D density
��x ,y�=��x� does not depend on y, ��0+�=��0−� and thus the
stationary p�x�=A�x���x�=−Jx+A�x��0 to preserve mass
conservation. Taking the true relaxation into account, we
gain an extra jump of p�x� by −JCt at x=0, due to the par-
ticles moving slowly along the transverse wall in the y direc-
tion, i.e., stationary if watched only in the 1D picture. The
point x=0 looks then like a trap. The trap is local, as D�x�
=1 everywhere else and so the 1D diffusion there is really
free.

Finally, combining Eqs. �7� and �18�, we arrive at the
relation

1

D�x�
= A�x�

d

dx
� x + Ct��x� + C0

A�x� �
= 1 + �bCt + �b − a�C0�

��x�
A�x�

. �22�

To avoid ambiguity in fixing ��x� /A�x� at x=0, we recom-
mend using the first “raw” formula �22� in practical calcula-
tions �14�.

III. SEWING OF SOLUTIONS

Due to using the complex plane formalism, our consider-
ation in the previous Section is restricted only to 2D chan-
nels. We present now a complementary calculation, enabling
us to extend our technique to 3D channels.

The method is based on the fact that the steady state dif-
fusion problem can be decomposed into two separate diffu-
sion problems in half planes to the left and right of the abrupt
width change with impermeable boundaries at x=0 and suit-
ably chosen sink/source terms. For the channel, defined by
the function �9� �Fig. 3�, we suppose that the particles dif-
fusing from e.g., left side of width b�a are absorbed just
before x=0 along the cross section 0�y�a with some dis-
tribution ��y� and immediately after x=0 injected to the op-
posite part. The transverse boundary a�y�b at x=0 is re-
flecting. The same distribution ��y� of absorption from the
left and injection to the right mimics the steady state flux
density through the step of the channel. Our task then is to
find ��y� such that the 2D stationary density will be continu-
ous at x=0, ��0−,y�=��0+,y� for 0�y�a. The correspond-
ing integral equation also fixes the constant Ct.

Consider first the 2D case. The procedure exploits our
knowledge of the stationary density around a pointlike

source in a flat channel of width a placed at a point �0,y0�,
y0�a. In the 2D channel, we have the expression

��x,y
y0� = −
J

2�
ln��cosh

�x

a
− cos

�

a
�y − y0��


 �cosh
�x

a
− cos

�

a
�y + y0��� + CL, �23�

on solving the Laplace equation with Neumann BC at the
walls y=0 and a �see Appendix�. For 
x
�a, the contribution
of cosine in Eq. �23� becomes negligible, the 2D density
depends only on x, so the constant CL can fix � to zero at
distant absorbing ends of the channel, x= 
L. The density
�Eq. �23�� corresponds to the total flux 
J on the right and
the left side of the source.

We can consider now only the right part of the channel,
0�x�L, with the particles injected along the �reflecting�
wall at x=0, distributed according to the function ��y0�
=��−y0�. Then the 2D density is

��x,y� = Ca − �
−a

a

��y0�ln�cosh
�x

a
− cos

�

a
�y − y0��dy0

�24�

�using also integration across the mirror image of the chan-
nel, see Fig. 3�. The same calculation can be done for the left
side of the channel, but now, we suppose that its width is
b�a,

��x,y� = Cb + �
−a

a

��y0�ln�cosh
�x

b
− cos

�

b
�y − y0��dy0.

�25�

Instead of injecting, the particles are drained at x=0 with the
same distribution, hence ��y0� was replaced by −��y0�. No
particles are drained for a� 
y0
�b, the Neumann BC there
is maintained by construction of the 2D density.

Finally, we provide the “sewing,” ��0+,y�=��0−,y� for

y
�a. Combining Eqs. �24� and �25�, we get an integral
equation

�
−a

a

��y0�ln��1 − cos
��y − y0�

a
� 
 �1 − cos

��y − y0�
b

��dy0

= Ca − Cb, �26�

fixing the function ��y0� and the difference Ca−Cb.

a
b

x

flux in flux out

0

y

y0

�y0
mirror image

FIG. 3. Shape of the 2D channel.
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The function ��y0� is seen to be proportional to the longi-
tudinal current density jx�x ,y0�=−�x��x ,y0� at x=0+. From
Eq. �24�,

jx�0+,y� = �
−a

a� ��/a�sinh��x/a���y0�dy0

cosh��x/a� − cos���y − y0�/a�
�

x→0+

= �
−a

a

2���y − y0���y0�dy0 = 2���y� �27�

and the total flux is

J = �
0

a

jx�0+,y�dy = 2��
0

a

��y�dy . �28�

The function ��y0� and thus also Ca−Cb can be scaled by J.
If b=a, the solution of Eq. �26� is ��y0�=J / �2�a� and the
corresponding Ca−Cb=−�J /��ln 4. Then it is convenient to
define Ca−Cb=−J�C+ �1 /��ln 4�, where C depends only on
a and b and equals zero for the flat channel.

Integration of Eqs. �24� or �25� over the cross section
gives the 1D density p�x�,

p�x� = ACA − sgn�x��
−a

a

��y0�dy0


 �
0

A

ln�cosh
�x

A
− cos

��y − y0�
A

�dy

= ACA − J�x − sgn�x�
A

�
ln 2� , �29�

A=a for x�0 and A=b for x�0. Comparing this result with
Eq. �18�, we find

Ca = �0 − J��Ct + C0�/a + �1/��ln 2� ,

Cb = �0 − J�C0/b − �1/��ln 2� , �30�

hence the relation between Ct, C0, and C reads

Ca − Cb +
J

�
ln 4 = − JC = − J�Ct + C0

a
−

C0

b
� . �31�

There is ambiguity in setting Ct, C0. If � is added to Ct and
b� / �a−b� to C0, the relation �31� holds and �0 in Eq. �18�
increases by J� / �a−b�. We can set C0=0 and then Ct=aC.
The constant �0 is then fixed to satisfy the Dirichlet BC at the
absorbing end of the channel.

The calculation presented can be verified in the exactly
solvable case a=� /2, b=�. The function ��y� related to the
density ��x ,y� from Eq. �16�,

��y� =
	3J

4�2�	3 cos y

1 + sin y
+	3 1 + sin y

cos y
� , �32�

solves the integral Eq. �26�, giving the constant C
= �3 /2��ln�27 /16�=0.24983. One can check that Ct, C0 from
Eqs. �19� satisfy the relation �31� with this value of C. De-
tails of this calculation are given in the Appendix.

Extension of this method to 3D symmetric channels is
straightforward. We consider a channel of radius

R�x� = b + �a − b���x� , �33�

b�a �Fig. 4�. The 3D density ��x ,r� �in cylindrical coordi-
nates, not depending on the angle �� has the form

��x,r� = CR + sgn�x��
0

a

GR�x,r
r0���r0�dr0, �34�

R denotes a, b for x�0 and x�0, respectively. The function
GR�x ,r 
r0� represents the stationary density generated by the
source shaped as an infinitesimally thin ring of radius r0
placed symmetrically in the infinite cylinder of radius R at
x=0. The function ��r0�, determining the distribution of the
current density jx�x ,r� across the radius at x=0, is taken with
opposite signs for the left and right parts to provide the local
mass conservation. Finally, sewing of the solutions in both
parts, ��0+,r�=��0−,r�, yields the equation

�
0

a

��r0��Ga�0+,r
r0� + Gb�0−,r
r0��dr0 = Cb − Ca, �35�

fixing the function ��r0� and Cb−Ca.
In our next analysis, we use GR�x ,r 
r0� written as

GR�x,r
r0� =
1

�R2�− 
x
 + �
n=1

�

e−kn
x
J0�knr0�J0�knr�
knJ0

2�knR� �
�36�

�derived in the Appendix�, J��z� denotes the Bessel functions
and kn runs over the roots of J1�knR�=0. Using this formula
in Eq. �34�, we calculate the total flux,

J = − �
0

a

2�r�x��x,r�dr
x=0+

= �
0

a ��r0�
a2 dr0�

0

a

2r�1 + �
n=1

�
J0�knr0�J0�knr�

J0
2�kna� �dr

= �
0

a

��r0�dr0; �37�

the transients �15� in the summation give zero contribution
due to orthogonality of the constant function with J0�knr�,
see Eq. �A14�. The function ��r0� and the difference Cb
−Ca in Eq. �35� are scaled by the flux J. For the flat channel,
b=a, the current density jx�0,r� is constant, so the flux flow-
ing through the infinitesimal ring of radius r0 is ��r0�
=2r0J /a2. If applied in Eq. �35�, we get Cb−Ca=0 due to
the same orthogonal relation. So in general, we expect

b

r0 a
x

FIG. 4. Shape of the 3D channel.
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C= �Cb−Ca� /J will play the same role as in the 2D channels.
Integrating ��x ,r� Eq. �34� over the cross section, we have

p�x� = �R2CR − sgn�x��
0

R

2�rdr

x


�R2�
0

a

��r0�dr0

= �R2CR − Jx . �38�

Again, the transients in the sum of Eq. �36� give no contri-
bution due to the orthogonality relations �A14�. The resulting
1D density Eq. �38� represents free diffusion anywhere ex-
cept at x=0, where it exhibits a jump. If Cb=�0, which is
fixed at the absorbing end of the channel, we arrive at a
formula of the form Eq. �8�,

p�x� = − J�x + �a2C��x�� + A�x��0, �39�

A�x�=�R2�x�.
The crucial constant C= �Cb−Ca� /J is obtained by solving

the integral equation �35� with use of the relation �37�. For
numerical solution, the formula �36� converges slowly; it can
be replaced by Eq. �A25� in the Appendix.

IV. CONCLUSION

We examined mapping of diffusion in 2D and 3D chan-
nels with an abrupt change of diameter onto the longitudinal
coordinate. Our analysis was based on direct calculation of
the 2D �3D� stationary density ��x ,y�. We used a conformal
transformation in the complex plane for the 2D channels and
then applied the method of sewing of solutions in the wide
and narrow parts of the channel, which is also usable in 3D
channels. The corresponding 1D density p�x� Eq. �3� is un-
ambiguously connected with the effective diffusion coeffi-
cient D�x�, entering the extended FJ Eq. �4�, via the relation
�7�. As shown in Ref. �13�, this method of determining D�x�
is equivalent to an exact mapping �6� in the limit of station-
ary flow, i.e., for slow processes.

Solution of the exactly solvable 2D channel demonstrated
that although the abrupt change of width at x=0 influences
the 2D density in a wide vicinity of this point, the stationary
1D density grows linearly everywhere except at the point of
junction, where we observe a jump of p�x�. In the language
of the effective diffusion coefficient D�x�, diffusion in such
channels is free except of the point x=0. Here, the particles
are diffusing along the transverse wall, and so their move-
ment is invisible if viewed only in the longitudinal direction.
Then the junction behaves like a trap. Let us stress that the
trap is local, restricted to the point x=0 when the transverse
relaxation is correctly taken into account.

The same picture is confirmed for symmetric 3D chan-
nels. The 1D description of such channels appears to be very
simple. Aside from fixing the BCs at the ends, the relevant
1D diffusion is characterized only by one constant C, de-
pending on the wider and narrower radii b and a, coming
from the solution of the integral Eq. �35�, or Eq. �26� for 2D
channels. Unfortunately, they can be solved only numerically
in general.

The method of sewing the solutions enables us to under-
stand as well the reason that the 1D description is so simple
here. The stationary density in the separated wide and narrow

parts of the channels can be expressed explicitly as a sum of
the transients �15�, Eq. �36�. Sewing of two halves of un-
equal diameters generates transients emanating from the
junction �and decaying exponentially in distance 
x
�. Projec-
tion to 1D means integration over the cross section with the
unit weight function, but here, the unit function is orthogonal
to the transients. So they are integrated out in the 1D picture
for x�0. The remaining nonzero contribution has simplicity
of the stationary flow in a flat channel.
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APPENDIX: DETAILED CALCULATIONS

We present here some details of calculation of the 2D
density ��x ,y� using the conformal transformation for step-
wise channels and then verification of the method of sewing
by the exact solution for the 2D channel with the ratio b /a
=2. Finally, we derive the Green’s functions �23� for a flat
2D channel and GR�x ,r 
r0� necessary for Eq. �34� in the 3D
case.

The 2D density ��x ,y� in a stepwise channel �Fig. 1�b�� is
given by the imaginary part of the complex function h�w�
Eq. �15�, where 	�w� is the inverted transformation �Eq.
�14��. If we rewrite this relation in the form

e	kw =
z�2z − k − 1 + 2	�z − 1��z − k��	k

�k − 1�	k−1��k + 1�z − 2k + 2	k�z − 1��z − k��
,

�A1�

we can find a substitution enabling us to convert it to a cubic
or quartic equation for certain values of k and express the
function h�w� explicitly.

For k=4, corresponding to the widths a=� /2 and b=�,
we substitute cosh Q= �2z−5� /3. Then the Eq. �A1� becomes
a cubic equation

e3Q + 3e2Q − 3e2w+Q − e2w = 0, �A2�

solvable by Cardano’s formula,

eQ = − 1 − 	3 1 + e2w�	3 1 + iewei� + 	3 1 − iewe−i��; �A3�

�=0, 
2� /3 discerns three particular solutions. Taking care
to choose the correct � to make 	�w� consistent in the whole
region of the channel and keeping Re�h�w��=0 and 1 at the
lower and upper boundary, respectively, we arrive at 	�w�
and finally h�w� according to Eq. �15�. Rotation of the com-
plex plain w= i�−s, turning the channel to the desired posi-
tion with the flat boundary identical with the x axis, also
requires restoring the conditions �11� �they are flipped after
the rotation�. So the final h�s� Eq. �16� is taken as 1−h�w
= i�−s�.

Next, verifying the method of sewing by the exact 2D
solution for the ratio b /a=2, we start with the formula �16�,
containing the 2D density ��x ,y� in a 2D channel of the
widths b=� and a=� /2. As shown by the relation �27�, the
function ��y� is proportional to the longitudinal current den-
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sity jx�x ,y� at x=0+. It is effective to calculate it in the com-
plex plane,

jx�x,y� = − Im��x���x + iy� + i��x + iy��
 = − Im�Jh��z�� .

�A4�

From Eq. �16�, we obtain

h��z� =
1

��1 − i sinh z��cosh z +
2i

e2i�/3r1/3 − r
� , �A5�

where r= i cosh z / �1− i sinh z�. Then

Im�h��z�
z=0++iy� =
	3

2�
�	3 cos y

�1 + sin y�
+	3 �1 + sin y�

cos y
� ,

�A6�

giving the formula �32� for ��y�.
Now, we need to verify that this function solves Eq. �26�,

i.e., if applied in this equation, the result of integration will
not depend on y. It is convenient to substitute u=tan�y0 /2�
and v=tan�y /2�, transforming the left hand side integral to

I�v� =
	3J

2�2�
−1

1 du

1 + u2�	3 1 − u

1 + u
+	3 1 + u

1 − u
�


 ln�16�1 + uv�2�u − v�4

�1 + v2�3�1 + u2�3 � . �A7�

We check then the nullity of dI�v� /dv �adopting the substi-
tutions p3= �1+u� / �1−u� and q3= �1−v� / �1+v��. The result-
ant value of Ca−Cb can be calculated from Eq. �A7� taking
an arbitrary v. Applying the same substitutions, we arrive
at Ca−Cb= �J /2��ln�28 /39�, yielding finally C
= �3 /2��ln�27 /16� from Eq. �31�.

In the rest of this appendix, we derive the Eq. �23� and the
3D Green’s function GR�x ,r 
r0�, used in Eq. �34�.

The stationary density ��x ,y 
y0� around a pointlike
source of particles placed at �0,y0� in a flat channel, bounded
by y=b and 0, �equivalent to the electrostatic potential
around a charge placed in the same geometry with the dielec-
tric walls� can be calculated by the method of mirrors �16�.
Aside from the true source at �0,y0�, we sum contributions to
the density from all its mirror images with respect to the
walls, lying at ym=y0+2mb and ȳm=−y0+2mb, m is an inte-
ger, to provide the Neumann BC at y=0 and b. To remove
divergence of such a sum, we subtract the contributions of
the mirror sinks, draining the particles at �
2L ,ym� and
�
2L , ȳm� with the half strength of the sources at x=0. This
guarantees zero density at x= 
L for large L��b�. Adopting
the well known logarithm formula for the potential of a
single charge in the 2D plane, we write

��x,y
yo� = − Z �
m=−�

�

ln
R0,m

2 R̄0,m
2

R+,mR−,mR̄+,mR̄−,m

, �A8�

R0,m=	x2+ �y−ym�2, R
,m=	�x
2L�2+ �y−ym�2, R̄0,m

=	x2+ �y− ȳm�2, R̄
,m=	�x
2L�2+ �y− ȳm�2 and Z expresses
the strength of the source. Summation of Eq. �A8� gives

��x,y
y0� = −
Z

2
ln

h0
2�y0�h0

2�− y0�
h+�y0�h−�y0�h+�− y0�h−�− y0�

, �A9�

where h
�y0�=cosh���2L
x� /b�−cos���y−y0� /b� and
h0�y0�=cosh��x /b�−cos���y−y0� /b�. The functions

ln h
�y0� =
�

b
�2L 
 x� − ln 2 + ln�1 − 2 cos

��y − y0�
b


 e−��2L
x�/b + e−2��2L
x�/b� �A10�

become constants �proportional to L� in the limit L→�, as
the exponential terms in Eq. �A10� become negligible. The
denominator in Eq. �A9� can be hidden in the integration
constant CL. Thus we arrive at the Eq. �23�. The strength of
the source Z is replaced by the net flux J flowing through the
�positive� part of the channel.

The 3D Green’s function GR�x ,r 
r0� in Eq. �34� is related
to the stationary density generated by a ring source of par-
ticles of radius r0, placed symmetrically in the cylinder of
radius R at x=0. Outside the source, the 3D density ��x ,r�
�not depending on the angle � due to the symmetry� satisfies
the equation

��1/r��rr�r + �x
2���x,r� = 0, �A11�

which is separable. Its particular solutions e−k
x
J0�kr� �J0 de-
notes the Bessel function� provide the expected decay for
growing 
x
, as well as nonsingular behavior at r=0. The
parameter k�0 is fixed to satisfy the Neumann BC at r=R.
So the density has the form

��x,r� = − c0
x
 + �0 + �
n=1

�

cne−kn
x
J0�knr� , �A12�

n enumerates the roots of J1�knR�=0, �0 is fixed at the distant
absorbing end of the channel. The coefficients cn have to
ensure that the longitudinal flux jx�x ,r� at x=0+ is propor-
tional to ��r−r0�; the integral of jx�x ,r� around the source
ring is

2�rjx�0+,y� = 2�r�c0 + �
n=1

�

cnknJ0�knr�� = J��r − r0� .

�A13�

Applying the orthogonality relations for Bessel functions
�17�,

�
0

R

rJ0�knr�dr = 0,

�
0

R

rJ0�knr�J0�kmr�dr =
R2

2
J0

2�knR��n,m, �A14�

we obtain
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��x,r� =
J

�R2�− 
x
 + �
n=1

�

e−kn
x
J0�knr0�J0�knr�
knJ0

2�knR� � .

�A15�

The function GR�x ,r 
r0� in Eq. �36� is the 3D density �Eq.
�A15�� for the unit flux.

The sum in Eq. �A15� converges slowly and so it is not
suitable for numerical solving of Eq. �35�. Instead, we derive
an alternative formula.

The 3D Green’s function G3D, corresponding to a point
like source, satisfies the equation

�1

r
�rr�r +

1

r2��
2 + �x

2�G3D�r�,r���

= −
1

r
��x − x����r − r����� − ��� �A16�

in cylindrical coordinates �18�. The axial symmetry of the
source, as well as of the resultant density, enables us to in-
tegrate G3D and Eq. �A16� over the angle �� �over the length
of the source ring�,

G�x,r
x�,r�� = 2�r�G3D�r�,r��� ,

�1

r
�rr�r − �x

2�G�x,r
x�,r�� = − ��r − r����x − x�� .

�A17�

To handle a singularity appearing in this calculation, we sup-
pose first a finite cylinder, 
x
�L with the source ring placed
at x�=0 and both ends at x= 
L absorbing. So
G�x ,r 
0,r��=G�x ,r 
r�� becomes a periodic function with
the period 4L and we can perform the Fourier transform,

G�x,r
r�� =
1

L
�

k

Gk�r
r��cos kx ,

�1

r
�rr�r − k2�Gk�r
r�� = − ��r − r�� , �A18�

k runs over �n+1 /2�� /L, n=0,1 , . . .. The last equation is
solved using the solutions �
�r� of the homogeneous equa-
tion

�1

r
�rr�r − k2��
�r� = 0, �A19�

satisfying desired BCs on the left and right boundaries. The
particular solutions of Eq. �A19� are the Bessel functions
I0�kr� and K0�kr�. The density at r=0 has to be finite, hence
�−�r� cannot contain K0�kr�. The upper solution, �+�r�
= I0�kr�+�kK0�kr�, satisfies the Neumann BC �r�+�x� 
r=R=0,
which fixes �k, so

�−�r� = I0�kr�, �+�r� = I0�kr� +
I1�kR�
K1�kR�

K0�kr� .

�A20�

Then Gk�r 
r��=−�+�r���−�r�� /W; r� is the maximum and
r� the minimum of �r ,r�
. The Wronskian W=�+��r��−�r�

−�−��r��+�r�=−I1�kR� /rK1�kR�. Taking ��r−r��= �r� /r���r
−r�� into account, hidden in Eqs. �A17� and �A18�, the cal-
culation results in

Gk�r
r�� = r�I0�kr���K0�kr�� +
K1�kR�
I1�kR�

I0�kr��� .

�A21�

The first term does not depend on R and so it corresponds
to the density generated by the source ring of radius r� in an
unbounded space. If L→�, the summation in Eq. �A18� be-
comes integration,

G��x,r
r�� =
r�

�
�

0

�

I0�kr��K0�kr��cos�kx�dk

=
r�

�	x2 + �r + r��2
K� 2	rr�

	x2 + �r + r��2� ,

�A22�

where K�z� denotes the complete elliptic integral �17�. The
same formula describes the electrostatic potential generated
by the same ring charged by the charge 2�r�.

The second part of Eq. �A21� diverges for k→0,

I0�kr�I0�kr��
K1�kR�
I1�kR�

�
2

kR
� 1

kR
+

kR

2
ln

kR

2
+ ¯� .

�A23�

The diverging leading term is connected with the Fourier
transform of the function L− 
x
 for 
x
�2L, repeated with
period 4L,

L − 
x
 = �
n=0

�
8L

�2n + 1�2�2cos��n +
1

2
��x

L
� , �A24�

so we obtain the contribution r��L− 
x
� /R2 to G�x ,r 
r�� Eq.
�A18� from it. We can omit the diverging constant �L and
replace the remaining sum by integration over k in the limit
L→�. Finally, the resulting formula

GR�x,r
r�� = −

x


�R2 −
1

�2�
0

� � 2

�kR�2

− I0�kr�I0�kr��
K1�kR�
I1�kR� �cos�kx�dk

+
1

�2	x2 + �r + r��2
K� 2	rr�

	x2 + �r + r��2�
�A25�

is multiplied by 2, because the particles are emitted only into
a half �left or right� of the cylinder in our consideration, and
also divided by 2�r�, introduced at the beginning by integra-
tion of G3D�r� ,r��� over the length of the source ring. This
factor is already included in our definition of the function
��r0�, Eq. �34�. One can check numerically the equivalence
of this formula with Eq. �36�.
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