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Experimental and theoretical studies are made of Brownian particles trapped in a periodic potential, which
is very slightly tilted due to gravity. In the presence of fluctuations, these will trigger a measurable average drift
along the direction of the tilt. The magnitude of the drift varies with the ratio between the bias force and the
trapping potential. This can be closely compared to a theoretical model system, based on a Fokker-Planck-
equation formalism. We show that the level of control and measurement precision we have in our system,
which is based on cold atoms trapped in a three-dimensional dissipative optical lattice, makes the experimental
setup suitable as a testbed for fundamental statistical physics. We simulate the system with a very simplified
and general classical model, as well as with an elaborate semiclassical Monte Carlo simulation. In both cases,
we achieve good qualitative agreement with experimental data.
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I. INTRODUCTION

A very general problem in physics is that of a Brownian
particle moving in a periodic potential; a seminal treatment,
using Fokker-Planck formalism, is given by Risken �1�. Of
particular interest is the “tilted washboard potential,” where
the Brownian particle is also subjected to a constant force,
which can actually be used to model a wide variety of physi-
cal systems �see, e.g., �2,3� and references therein�. Recently,
there has been significantly increased interest in the dynam-
ics of small systems, where fluctuations and noise play a
dominating role and where a classical thermodynamic equi-
librium does not occur. There have been theoretical discov-
eries �e.g., �4–8�� providing understanding of fluctuations
and nonequilibrium situations, as well as experimental
breakthroughs �e.g., �9,10��. Closely related to this are sys-
tems where noise, or fluctuations, is the source for directed
drift, so-called Brownian motors �see, e.g., �11–13��, or
where the noise opens up a possibility for drift in a biased
system, where this bias would otherwise not have been
enough to overcome potential barriers and/or friction.

In this work, we trap and hold cold atoms for several
seconds in a three-dimensional dissipative optical lattice
�14,15�. The thermal energy of the atoms is on the order of a
tenth of the depth of the periodic potential, and the tilt of the
“washboard potential” in the vertical direction due to gravity
is approximately three orders of magnitude lower than the
potential depth �on the range of the period of the potential�
�16�; thus, the potential should support the atoms from grav-
ity with a very good margin. However, these dissipative op-
tical lattices put the atoms in a regime where fluctuations
play a dominating role and where dissipation is also present.

These fluctuations will trigger a discernible drift, even with
such a small bias, and threshold effects will be present if
parameters such as external force, potential depth, fluctuation
amplitude, or damping are varied. This makes this system a
suitable experimental testbed for fundamental studies of fluc-
tuation phenomena. In addition, the setup used here is very
close to the double optical lattice arrangement that has been
used to create a Brownian motor �17–19�. The present work
is therefore also of interest for an understanding of the role
of gravity in that context.

II. PROBLEM IN A FOKKER-PLANCK EQUATION
CONTEXT

A classical particle in the above predicament, with �verti-
cal� position coordinate x, will follow the Langevin equation

ẍ = −
1

m

d

dx
V�x� − �ẋ +

F

m
+ ��t� . �1�

Here, m is the mass, � is a uniform damping constant, F is a
uniform external force, and � is a Langevin stochastic force
�1�. The periodic potential is

V�x� = V0 sin�2�x/L� , �2�

where L is the spatial period of the potential.
The characteristics of such a system will be determined

by the relative strengths of the terms in Eq. �1�, and in par-
ticular the magnitude of the friction is important. The case
that compares most closely with our system is the one where
the friction is relatively small or, in another terminology,
where the system is not overdamped. This means that the
particle can be either in a “locked state,” where it oscillates
around a minimum in one potential well, or in a “running
state,” where it travels from well to well; and it will undergo
transitions between these states.

The mobility of an ensemble of particles is defined as �
= �ẋ� /F and, for the frictionless case, the locked and running
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states would correspond to ��=0 and ��=1, respectively.
The solution to this general problem is outlined in �1�. In the
case where the friction is small but still significant, and the
noise term is of the same order as the potential depth �in
appropriately rescaled units�, the transition from locked to
running, with increased force �or decreased potential depth�,
is much less sharp, and the mobility never quite becomes
zero, as long as there is some noise. For the case where the
noise term and the friction are not spatially dependent, there
exist analytical solutions to this general problem �1�.

III. TILTED DISSIPATIVE OPTICAL LATTICE

Dissipative optical lattices arise from atom interaction
with a periodic light shift potential, created by a number of
laser beams, tuned below and relatively close to an atomic
dipole-allowed transition �14,15�. In our case, the detuning �
is typically on the order of 10–40 natural linewidths � of the
transition in question. The proximity to a resonance means
that incoherent light scattering will be important for the dy-
namics of the atoms. There will be diffusion effects associ-
ated with photon recoils and with instantaneous changes to
the light shift potential due to optical pumping �20�; these
“heating” effects correspond to the noise term � in Eq. �1�.
Moreover, with a proper configuration of the laser beams,
laser cooling will be present �cf. �14,15,20,21��, correspond-
ing to the damping �.

A. Laser cooling

The seminal treatment of laser cooling �20,22� is really
only relevant for atoms that move around in the lattice, and
the approximate approach is there taken that the friction con-
stant � is a constant and that a spatial average can be used.
This allows for a reasonably straightforward treatment based
on a Fokker-Planck equation approach �22�. However, in ac-
tual experiments with dissipative optical lattices, this cooling
mechanism may be relevant for the initial damping of the
thermal energy, and for the first phases of the route to equi-
librium, but the atoms will quickly loose enough thermal
energy in order to be trapped in the potential wells of the
lattice; and, at equilibrium, they indeed typically get local-
ized close to the bottom of the potentials �cf. �23��. The
details of the mechanisms for the continued route to equilib-
rium, for an atom localized in a well, are not precisely
known. However, with strong support from experimental and
theoretical investigations �cf. �22,24–29��, we assume here
the following. An atom trapped in a well experiences no
direct damping. However, its probability of acquiring energy
from light scattering, and to get unlocked, is higher the more
excited it is in the well. When it gets unlocked, it will be
again exposed to laser cooling, it will loose its kinetic en-
ergy, and it will be trapped again in some bound state. As this
goes on, there will be a gradual accumulation toward lower-
lying and more deeply trapped states, from which the escape
probability is low, and eventually equilibrium will be
reached. Furthermore, the deeper the potentials are, the
larger the portion of atoms is trapped, but even for very
shallow potentials the majority of the atoms are trapped; or,

correspondingly, one atom spends most of its time being
trapped, interrupted by short periods of interwell flight
�24,27,28,30�, where it can travel over several wells.

B. Damping term in the current work

In the current work, the relevance of trapping strongly
affects how the damping is to be treated. We make the work-
ing hypothesis that when an atom is trapped �locked state�,
its motion is undamped. If, and when, it becomes untrapped
�running state�, an effective friction �LC �with LC standing
for “laser cooling”� turns on, which we assume can be rea-
sonably well approximated by the spatial average used in
�20�, i.e., an untrapped atom is subjected to dissipation of its
momentum as in the traditional picture of laser cooling.

The acceleration due to the tiny bias force F=mg �where
g is the gravitational acceleration� is so small that it will not
significantly affect the velocity of the atoms during a single
period of interwell flight. The damping, −�LCẋ, will occur
only due to the velocity the atoms acquire from the light
scattering, i.e., the Langevin force �, and a free atom will
shortly be trapped again. Thus, the dynamics of the atom will
be of a “stop-and-go” nature. The effect of gravity will only
be a very small average downward drift of the center of mass
of the sample, partly because a trapped atom has a slightly
higher probability to escape downward than upward and
partly because an untrapped atom will travel slightly longer
distances when going downhill than uphill. Thus, �x� is as-
sumed to change �downward� linearly with time since any
memory of the gravitational acceleration will be erased when
the atom is recaptured �see also �29��.

IV. EXPERIMENT

For the vast majority of experiments done with dissipative
optical lattice, the holding time in the optical lattice has been
rather short, i.e., 10–100 ms. This is partially because it is
difficult to achieve longer lifetimes, and more importantly
because when the laser cooling dynamics is studied, longer
time scales have not been believed to be important. The basic
idea behind our experiment is to hold the atoms for much
longer times, approaching 10 s, and study how the mean
position of the sample evolves. This can be done by direct
imaging of the atoms in situ. However, as a more precise
diagnostic, we release the atoms and measure their arrival at
a laser probe located at a distance l=5 cm below the sample
�“time-of-flight detection” �19��. We do this for a range of
different potential depths V0, providing us with data for the
mobility as a function of F /V0. The potential depth is varied
by adjusting the irradiances and the detunings of the optical
lattice laser beams �14�. From the time-of-flight data, we can
also analyze the velocity distribution in more detail, in order
to approximately quantify how much time an atom spends in
the locked and the running states on average �31�.

A. Experimental setup

The experimental setup has been described in more detail
elsewhere �18,19,31,32�. In short, we trap and cool cesium
atoms with standard laser cooling techniques �21�. The initial
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cold cloud typically consists of about 108 atoms with a tem-
perature of around 5 �K, which corresponds to about
25Erec, where Erec= prec

2 /2m is the kinetic energy associated
with the recoil of absorption or emission of a single resonant
infrared photon �of momentum prec�. The atoms are then
transferred to a three-dimensional optical lattice, which is
constructed by four laser beams in a three-dimensional gen-
eralization of the “lin� lin configuration” �14,15,33�. The
optical lattice is detuned by either 30 or 40 natural linewidths
� ��=2��5.21 MHz� from the transition between the hy-
perfine structure states Fg=4 and Fe=5, within the D2 line of
Cs �34�. This configuration will give a phase-stable lattice
with a face-centered-tetragonal geometry, and with a vertical
symmetry axis. The lifetime of the atomic sample is limited
by collisions with the residual gas in the vacuum chamber
and by diffusion in the optical lattice. The maximum lifetime
is on the order of 10 s, giving us ample time to perform the
intended studies.

B. Experimental results

In Fig. 1, we show measured positions of the center of
mass of the atomic cloud as a function of holding time in the
optical lattice, 	, as derived from time-of-flight data �19�.
The arrival time of an atom to the time-of-flight probe is a
function of its initial position and initial velocity. From the
average arrival time, the average position �x�= �ẋ�	 follows
directly. The linear evolution of the drift, evidencing the
stop-and-go dynamics, is observed from the data presented in
Fig. 1, where a faster drift due to the gravitational tilt is also
observed for shallower potentials.

1. Mobility

In order to extract the velocity of the drift �ẋ�, straight
lines are fitted to curves like the ones in Fig. 1. Figure 2�a�
shows results for a range of data, with �ẋ� as a function of the
potential depth for the detunings −30� and −40�.

In Fig. 2�b� we display the same data, but now scaled as
the mobility � as a function of the constant force F divided
by the potential depth. This allows for a more direct com-

parison with the general theoretical treatment in �1�. Such a
comparison must be made with care since in �1� a spatially
uniform friction is assumed, whereas our experimental con-
ditions are such that the damping force that acts on indi-
vidual atoms depends strongly on position and kinetic en-
ergy. Moreover, even with a simplified model for a friction
force, the coefficient of friction will vary with detuning �20�.
Nevertheless, fluctuation-induced drift in the tilted potential
is clearly demonstrated.

2. Running and locked states

By analyzing the velocity distributions obtained by time-
of-flight detection, the fraction of atoms in the running state
compared with the total amount of atoms, Nrun /Ntot, can be
extracted �19,27,31�. Assuming that the momentum distribu-
tion corresponds to a �truncated� Gaussian core of trapped
atoms, with wide wings corresponding to untrapped atoms,
we can calculate approximate numbers for Nrun /Ntot and by
Gaussian fits to the momentum distributions. The results of
this for the same data used to observe the drift are shown in
Fig. 3�a�.

Within our range of detunings and irradiances, the frac-
tion of the atoms that are free is typically just a few percent.
For potential depths smaller than about 200Erec, the fraction
of atoms in the running state increases drastically, and for the
shallowest potentials we use, it gets as high as about 25%.
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FIG. 1. �Color online� Position of the center of mass �x� of the
atomic cloud derived from time-of-flight detection data, as a func-
tion of holding time 	 in the optical lattice for the potential depths
45Erec �black curve�, 95Erec �red curve�, 125Erec �green curve�,
200Erec �blue curve�, and 395Erec �purple curve�, for a detuning of
−40�.

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

〈. x
〉(
m
m
/s
)

10008006004002000
V0 / (FL)

(a)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

�
(1
02
1
s/
kg
)

0.0200.0150.0100.0050.000
(FL) / V0

(b)

FIG. 2. �Color online� �a� Derived drift velocity �ẋ� as a function
of potential depth V0, scaled by the gravitational force F and the
spatial period of the optical lattice L, for the detunings −30� �open
squares� and −40� �circles�. �b� The same data, but plotted as the
mobility, � as a function of �FL� /V0. The solid line is from a
semiclassical Monte Carlo simulation, while the dashed line is from
a simplified classical simulation.
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This behavior has striking similarities with Fig. 2�a�, where
the average velocity downward due to gravity also increases
drastically for the same potential depths. As an attempt to
investigate the dependence between the drift and the fraction
of atoms in the running state further, in Fig. 3�b� we plot
�ẋ� / �Nrun /Ntot� versus the potential depth. From this it is
clear that the drift, not being constant, depends not only on
the fraction of untrapped atoms but also on something else.

V. SIMULATIONS

A. Semiclassical Monte Carlo method

With a semiclassical Monte Carlo simulation of the atom-
laser interaction �30,35�, we derive theoretical data corre-
sponding to all experimental curves shown. In these simula-
tions, the laser field and the motion of the atoms are treated
classically, which enables tracking of the position and mo-
mentum of each particle, while the internal state of the atom
is treated quantum mechanically, using the true degenerate
level structure of the Fg=4→Fe=5 transition. In addition,
the presence of the excited Fe=4 level is also included �35�.
Diffusion and friction arise “naturally” from the laser-atom
interaction and are position and velocity dependent, as in the
experiment.

The simulations comprise 15 000 noninteracting atoms,
starting from an initial cloud contained in a single lattice
well, at a temperature of 5 �K. The drift velocity is obtained
by calculating the median position of the atoms at the end of
the simulation and dividing by the duration of the simulation
��50 ms�. This is necessary because a direct calculation of
�ẋ� is affected by the presence of a few high-velocity atoms,
corresponding atoms that become untrapped and never get
recaptured by the lattice. Such atoms are believed to be also
present in the experiment, but drift out of the lattice and
never get detected.

The optical lattice here is one-dimensional �along the ver-
tical�, which means that an exact quantitative agreement can-
not be expected, but all qualitative features in the experiment
are reproduced, and so are the orders of magnitude of the
mobility, the fractional populations, and the potential depths
where significant features occur. Also, the fraction of atoms
in the running state is calculated much more precisely from
total energies and positions of the individual atoms than it
can be determined from the experimental time-of-flight data.
The results, smoothed out to remove the fluctuations due to
the small sample size, are shown together with the experi-
mental data in Figs. 2 and 3.

One of the constraints of the current experimental setup is
the use of gravity as the external force. This means that the
variation of FL /V0 can only be achieved by a change in V0.
However, V0 is not independently controllable, but it de-
pends on the irradiance of the lasers and their detuning with
respect to the atomic transition. These in turn affect friction
�Sisyphus cooling� and diffusion �photon scattering�, and
therefore also the temperature of the atoms, such that it can
be seen as being a function of the optical lattice potential
depth �see, e.g., �14,22��.

To investigate how this affects the mobility, we have run
simulations at constant potential depth for different values of
the external force. In Fig. 4�a�, the simulation result previ-
ously shown in Fig. 2�b� is plotted along with the mobility
obtained varying F, for two different values of V0. Over the
range covered by the experiment, the mobility now appears
constant, with a value dependent on the potential depth. Fur-
ther increasing the value of the external force �Fig. 4�b��, the
well-known behavior of Brownian particles in tilted poten-
tials emerges, with a transition region between locked and
running states �1�. It thus appears that the variation of the
mobility as a function of V0 �Fig. 2� reflects the fact that it is
the laser irradiance, and not strictly the potential depth, that
is modified. In addition, the current experiment probes a re-
gion corresponding to a low-mobility locked state, in accord
with the fact that most atoms have an energy below the well-
to-well barrier height �27,31�. Note that the semiclassical
model used here cannot reproduce the Doppler cooling
�20,21� that will become important as the velocity of the
atoms increases.

B. Classical approach

In order to check the generality of the system and rel-
evance of an analysis in terms of a Fokker-Planck equation,
as in Eq. �1�, we also perform a simple completely classical
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FIG. 3. �Color online� �a� The fraction of unlocked atoms as a
function of potential depth V0, scaled by the gravitational force F
and the spatial period of the optical lattice L, for the detunings
−30� �open squares� and −40� �circles�. The solid line represents
the semiclassical Monte Carlo simulation, and the dashed line is the
classical simulation. �b� The drift divided by the fraction of atoms is
the running state versus the potential depths. A straight line indi-
cates the recoil velocity. Note that velocity is defined to be positive
upward.
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Monte Carlo simulation for the Langevin equation corre-
sponding to Eq. �1�, for a one-dimensional system with clas-
sical particles in a tilted washboard potential, as in Eq. �2�. In
this simulation, we let the noise term and the friction scale
linearly with the potential depths. For simplicity and gener-
alization we take a uniform friction. The results are presented

together with the experimental data in Figs. 2 and 3. The
basic characteristics of our system are reproduced.

VI. CONCLUSION

To conclude, we have made a quantitative study of how
random isotropic fluctuations, together with a very small bias
force, give rise to an average drift. When the fraction be-
tween bias force and trapping potential, F /V0, is varied, the
magnitude of this drift can change. The system can be well
described by a Fokker-Planck equation formalism, and the
experimental control, together with the precision in the mea-
surements, makes the system suitable as a general testbed for
studies of fundamental fluctuation phenomena. To emphasize
this, we qualitatively reproduce our data with a simplified
classical simulation, as well as with a careful semiclassical
Monte Carlo simulation of the laser cooling setup. Our re-
sults also evidence the “stop and go” nature of the dynamics
of the atoms, where they continuously exchange between
being trapped in potential wells and traveling over many
wells �24,27,28,30�.

One of the constraints of the present experiment is the use
of gravity as the bias force. This leaves the potential depth V0
as the main variable parameter, but it is only accessible
through the laser irradiance, which also modifies diffusion
and friction. One possible solution would be the introduction
of an additional laser beam using its radiation pressure as the
bias force. Moreover, it is possible to operate the optical
lattice far detuned from the atomic resonance, where it only
serves as a �conservative� potential. Extra laser fields could
provide diffusion and friction, allowing the exploration of a
broad range of scenarios.
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